¹ Evolution of Animal Diversity

Bio 103 Lecture

Dr. Largen

² I What Am I?

- ✓ Of some 1.5 million species of organisms known to science
 over two-thirds are animals
- \checkmark Humans have a long history of studying animal diversity
 - But do we always know what an animal is when we see one?

3 🗷 What is an animal?

- ✓ Animals
 - eukaryotic
 - multicellular
 - heterotrophs
 - lack cell walls
 - have unique intercellular junctions

⁴ I What is an animal?

- ✓ Animals
 - Most are diploid
 - except for haploid eggs and sperm
 - proceed through a well-defined life cycle

⁵ Evolution of animals

- ✓ Animal kingdom probably originated from colonial protists
 - in which cells gradually became more specialized and layered

6 🗖 Evolution of animals

- ✓ Ecological, geologic, or genetic factors may have caused the Cambrian explosion in animal diversity
 - Cambrian fossils can be classified as ancient representatives of the familiar animal phyla

⁷ Characterizing the differences between animal phyla

- ✓ Animals can be classified according to pattern of development or body structure
 - Embryologic development
 - germ layers
 - blastopore fate
 - Symmetry
 - Body plan
 - Segmentation

⁸ Characterizing the differences between animal phyla

Embryologic development

- germ layers
 - what are they?
 - three cell layers
 » ectoderm outer layer
 - » mesoderm middle layer

- » endoderm inner layer
- formed at gastrulation
- » blastula with single layer of cells turns into a 3-layered embryo
- foreshadow the future organization of tissues
 - » the three embryonic layers differentiate into the tissues of the adult animal

9 🗷

¹⁰ Characterizing the differences between animal phyla

Embryologic development

- germ layers
 - diploblastic organisms
 - have two germ layers
 - » ectoderm outer layer
 - » endoderm inner layer
 - triploblastic organisms
 - have three germ layers
 - » ectoderm outer layer
 - » mesoderm middle layer» endoderm inner layer

¹¹ Characterizing the differences between animal phyla

Embryologic development

- blastopore fate
 - what is the blastopore?
 - Early during embryonic development the embryo is a hollow ball of cells
 - a portion of this hollow ball invaginates inward to form an opening called the blastopore
 - » blastopore can be thought of as the first opening
 - » this opening, the blastopore, becomes either the mouth or the anus of animals with body cavities

¹² Characterizing the differences between animal phyla

Embryologic development

- blastopore fate
 - protostomes
 - organisms in which the blastopore becomes the mouth
 » the first (proto) opening becomes mouth
 - deuterostomes
 - orgainisms in which the blastopore becomes the anus
 - » the second (deutero) opening becomes the mouth
- 13 🗷

14 🖃

¹⁵ Characterizing the differences between animal phyla

✓Symmetry

- refers to the arrangement of body structures in relation to some axis of the body
- three types of symmetry
 - asymmetry
 - radial symmetry
 - bilateral symmetry

¹⁶ Characterizing the differences between animal phyla

- ✓Symmetry
 - asymmetry

- · lack of any defined symmetry
- no plane passing through the central axis can divide the organism into halves that are mirror images of each other
 - cutting the organism in half produces dissimilar halves
- · exhibited by most members of the simplest phylum of animal kingdom
 - phylum Porifera the sponges

¹⁷ Characterizing the differences between animal phyla

✓Symmetry

- radial symmetry
 - can be bisected into roughly equal, mirror-image halves in any two-dimensional plane
 - multiple plans can be drawn through the central axis, each dividing the organism into two mirror images
 - · exhibited by members of three phyla
 - phylum Cnidaria jellyfish, sea anemones, corals
 - phylum Ctenophora sea walnuts, comb jellies
 - phylum Echinodermata sea stars& urchins, sand dollars
 - » radial symmetry seen in ADULTS in this phylum

18 🗷

¹⁹ Characterizing the differences between animal phyla

- ✓Symmetry
 - bilateral symmetry
 - can be bisected into roughly equal, mirror-image halves in only one plane (the sagittal plane)
 only one plane can be drawn through the central axis which divides the organism into two mirror images
 - · exhibited in all other animal phyla

²⁰ Characterizing the differences between animal phyla

✓Symmetry

- bilateral symmetry
 - a bilaterally symmetrical body plan has a
 - top **dorsal** portion (upper surface)
 - bottom ventral portion (lower surface)
 - front anterior end (toward head)
 - back posterior end (away from head)
 - side lateral portion (left or right side)

21 🗷

²² Characterizing the differences between animal phyla

✓ Body plan

- a widely held system for grouping animal phyla is based on
 - the presence/absence of a body cavity
 - type of body cavity

²³ Characterizing the differences between animal phyla

✓ Body plan

- what is a body cavity?
 - a fluid-filled space inside the body
 - this space may develop between
 - » between the mesoderm and endoderm, in which case its called a psuedocoel

» entirely within the mesoderm, in which case its called a coelom

²⁴ Characterizing the differences between animal phyla

✓ Body plan

- four types of body plans
 - sac-like
 - acoelomate
 - pseudocoelomate
 - coelomate

²⁵ Characterizing the differences between animal phyla

- ✓ Body plan
 - sac-like
 - simplest of body plans
 - no formation of three embryonic germ layers
 - no digestive system
 - no body cavity
 - exhibited by phyla that are asymmetrical or radially symmetrical as juveniles

26 🗷

27 🗷

²⁸ Characterizing the differences between animal phyla

- ✓ Body plan
 - bilaterally symmetrical animals exhibit three basic body plans
 - acoelomate
 - pseudocoelomate
 - coelomate

29 🗷

³⁰ Characterizing the differences between animal phyla

✓ Body plan

acoelomate

- organisms that lack a body cavity
- have a solid body with a single opening to the outside, the mouth
- · exhibited by
 - phylum Platyhelminthes flatworms
 - a few other minor phyla

31 🗷

³² Characterizing the differences between animal phyla

✓ Body plan

- pseudocoelomate

- organism with a body cavity
 - called a pseudocoel (pseudo = "false")
 - which develops between the mesoderm and endoderm
 - » and therefore it is not completely lined with mesoderm
- exhibited by
 - phylum Nematoda roundworms

- phylum Rotifera - wheel animals

33 🗷

³⁴ Characterizing the differences between animal phyla

✓ Body plan

coelomate

- · organism with a body cavity
 - called a coelom
 - which develops entirely within the mesoderm
 - $\ensuremath{\,{\scriptscriptstyle >}}$ and therefore it is completely lined with mesoderm
- exhibited by many phyla
 - Mollusca, Annelida, Arthropoda, Echinodermata, Chordata
- are either protostomes or deuterostomes

35 🗷

³⁶ Characterizing the differences between animal phyla

✓ Animals can be classified according to pattern of development or body structure

- Embryologic development
 - germ layers
 - blastopore fate
- Symmetry
- Body plan
- Segmentation

³⁷ Characterizing the differences between animal phyla

✓ Segmentation

- a key transition in animal body plan involved the subdivision of the body into segments
- segmentation underlies the organization of all advanced animals
- examples
 - repeating segments of earthworms
 - repeating vertebrae in vertebrates

38 🗷

³⁹ Hajor phyla of the animal kingdom

✓ Protostome coelomates represented by

- phylum Mollusca snails, clams, chiton, octopus, squids (~110,000 species)
- phylum Annelida earthworms, polychaetes, leeches (~12,000 species)
- phylum Arthropoda horseshoe crabs, shrimps, insects, spiders, centipedes, millipedes (~1,000,000 species)

⁴⁰ Hajor phyla of the animal kingdom

✓ Deuterostome coelomates represented by

- phylum Echinodermata sea lillies, sea stars, sea urchins, sea cucumbers (~6,000 species)
- phylum Hemichordata acorn worms (~90 species)
- phylum Chordata chordates (~42,500 species)
 - subphylum Urochordata tunicates
 - subphylum Cephalochordata lancelets

• subphylum Vertebrata - fish, amphibians, reptiles, birds, mammals

⁴¹ Some animals lack a body cavity

✓ Sponges, cnidarians, and flatworms lack a body cavity

42 INVERTEBRATES

- ✓ Sponges (Phylum Porifera)
 - have relatively simple, porous body
 - phylum Porifera
 - among simplest animals
 - Many are radially symmetrical
 - parts are arranged around a central axis
 - flagellated choanocytes filter food from water passing through porous body

43 INVERTEBRATES

- ✓ Sponges (Phylum Porifera)
 - lineage arose very early
 - probably evolved from multicellular choanoflagellates
 - group that most likely gave rise to animal kingdom

44 🗷 Invertebrates

- ✓ Cnidarians (Phylum Cnidaria)
 - radial animals with stinging threads
 - simplest animals with tissues
 - exist in two radially symmetrical forms
 - Polyps
 - such as hydra, corals, and sea anemones
 - Medusas
 - jellies

45 🗷

46 🖃

47 🗷 Invertebrates

Cnidarians (Phylum Cnidaria)

- Cnidocytes on their tentacles sting prey
 - tentacles
 - controlled by nerves
 - push food through mouth into a gastrovascular cavity
 - » where food is digested and then distributed
- only two cell layers are produced during gastrulation

⁴⁸ Most animals are bilaterally symmetrical

- ✓ have mirror-image right and left sides
 - a head with sensory structures
 - move headfirst through their environment

⁴⁹ Flatworms are the simplest bilateral animals

- ✓ Flatworms (Phylum Platyhelminthes)
 - also called planaria
 - have a simple nervous system
 - · consisting of brain, sense organs, and branching nerves
 - as in cnidarians, mouth is only opening for its gastrovascular cavity

⁵⁰ Flatworms are the simplest bilateral animals

- ✓ Flatworms (Phylum Platyhelminthes)
 - flukes and tapeworms are parasitic flatworms with complex life cycles

⁵¹ • Most animals have a body cavity

- ✓ Sponges, cnidarians, and flatworms lack a body cavity
- ✓ Nearly all other animals have a body cavity
- ✓ body cavity
 - fluid-filled space between digestive tract and body wall
 - aids in movement, cushions organs, and it may help in circulation

52 🗷

⁵³ Roundworms have a pseudocoelom and a complete digestive tract

- Nematodes (Phylum Nematoda)
 - have a body cavity not completely lined by mesoderm
 - like most animals, they possess a complete digestive tract
 - a tube with a mouth and an anus
 - many are free-living
 - others are parasites

54 🗷

⁵⁵ Diverse mollusks are variations on a common body plan

- ✓ Mollusks (Phylum Mollusca)
 - large and diverse phylum
 - includes
 - gastropods, such as snails and slugs
 - bivalves, such as clams and scallops
 - cephalopods, such as squids and octopuses

56 🗷

57 🗷

58 🗷

⁵⁹ Diverse mollusks are variations on a common body plan

- ✓ Mollusks (Phylum Mollusca)
 - all have a muscular foot and a mantle

- mantle may secrete a shell
 - which encloses visceral mass
- have true coelom
- have circulatory system
- many feed with a rasping radula

⁶⁰ • Many animals have a segmented body

- ✓ Segmentation
 - the subdivision of some or most of the body into a series of repeated parts, or segments
 - probably evolved as an adaptation for movement

61 🗷

⁶² Earthworms and other annelids are segmented worms

- Annelids (Phylum Annelida)
 - their segmented bodies give them added mobility for swimming and burrowing
 - · an earthworm eats its way through soi
 - polychaetes search for prey on seafloor or live in tubes and filter food particles
 - most leeches are free-living carnivores, but some suck blood

63 🗷

√s

64 🗷

65 🗖 Arthropods are the most numerous and widespread of all animals

- Arthropods (Phylum Arthropoda)
 - segmented animals
 - have exoskeletons
 - have jointed appendages
 - are most successful phylum of animals
 - · in terms of numbers, distribution, and diversity, they
 - Horseshoe crabs are ancient marine arthropods
- 66 🗷

67 🗷

68 🗖 Arthropods are the most numerous and widespread of all animals

- ✓ Arthropods (Phylum Arthropoda)
 - most arachnids are terrestrial and carnivorous
 - crustaceans are nearly all aquatic
 - millipedes and centipedes make up a fourth group of arthropods

70 🗷

71 🗷

⁷² Insects are the most diverse group of organisms

✓ Insects

- most numerous and successful arthropods
- have three-part body consisting of
 - head, thorax, and abdomen
 - · three sets of legs
 - wings (most, but not all insects)
- development of many insects includes metamorphosis

73 🗷

⁷⁴ Insects are the most diverse group of organisms

✓ Insect metamorphosis

- incomplete metamorphosis
 - · young resemble adults, but are smaller with different body proportions
- complete metamorphosis
 - · larvae specialized for eating & growing
 - larvae look different from adults
 - adults are specialized for dispersal and reproduction

75 🖃

76 🗷

77 🗷

- 78 Echinoderms have spiny skin, an endoskeleton, and a water vascular system for movement
 - Echinoderms (Phylum Echinodermata)
 - includes sea stars and sea urchins
 - are radially symmetrical as adults
 - some have water vascular system
 - has suction-cup-like tube feet used for respiration and locomotion

79 💵

80 🗷

⁸¹ Our own phylum, Chordata, is distinguished by four features

Chordates (Phylum Chordata)

- segmented animals
- with four distinctive features
 - dorsal hollow nerve cord
 - stiff notochord
 - · pharyngeal slits behind the mouth
 - muscular post-anal tail

⁸² Our own phylum, Chordata, is distinguished by four features

- Chordates (Phylum Chordata)
 - simplest are tunicates and lancelets
 - · are marine invertebrates
- 83 🗷

84 🗷

⁸⁵ A skull and a backbone are hallmarks of vertebrates

✓ Vertebrates

- Most chordates are vertebrates
- endoskeletons include a skull
- backbone is composed of vertebrae

86 🗷

⁸⁷ A skull and a backbone are hallmarks of vertebrates

✓ Vertebrates

- most vertebrates have hinged jaws
- lampreys lack hinged jaws
 - are classified as agnathans
- jaws evolved by modification of skeletal supports of gill slits

88 🗷

⁸⁹ Fishes are jawed vertebrates with gills and paired fins

✓ Vertebrates

- two classes of fish
 - Chondrichthyes
 - cartilaginous fishes such as sharks
 - Osteichthyes
 - bony fishes such as tuna and trout

90 🗷

⁹¹ Fishes are jawed vertebrates with gills and paired fins

✓ Vertebrates

- Bony fishes
 - more diverse and have
 - more mobile fins
 - · operculi that move water over the gills
 - · a buoyant swim bladder

92 💵

⁹³ Fishes are jawed vertebrates with gills and paired fins

✓ Vertebrates

- Bony fishes
 - · three major classes of bony fishes
 - Ray-finned fishes
 - Lobe-finned fishes
 - Lungfishes

94 🖃

95 C Amphibians were the first land vertebrates

✓ Vertebrates

- Class Amphibia
 - · represented today by
 - frogs
 - toads
 - salamanders

⁹⁶ Amphibians were the first land vertebrates

✓ Vertebrates

- Class Amphibia
 - · Amphibians were the first terrestrial vertebrates
 - limbs allow them to move on land
 - larvae must develop in water

97 🖃

98 C Reptiles have more terrestrial adaptations than amphibians

✓ Vertebrates

- Class Reptilia
 - able to live on land due to
 - waterproof scales
 - a shelled, amniotic egg
 - modern reptiles are ectotherms
 - warm their bodies by absorbing heat from environment

99 🗷

100
Reptiles have more terrestrial adaptations than amphibians

✓ Vertebrates

- Class Reptilia
 - · dinosaurs were most diverse reptiles to inhabit land
 - included some of the largest land animals ever
 - may have been endothermic, producing their own body heat

101 🗷

¹⁰² Birds share many features with their reptilian ancestors

✓ Vertebrates

Class Aves

- · like reptiles, this class has
 - scales
 - amniotic eggs

¹⁰³ Birds share many features with their reptilian ancestors

✓ Vertebrates

- Class Aves
 - other bird characteristics include
 - wings
 - feathers
 - an endothermic metabolism
 - hollow bones
 - a highly efficient circulatory system

104 🗷

105 Mammals also evolved from reptiles

✓ Vertebrates

- Class Mammalia
 - · descended from reptiles
 - are endothermic
 - have two unique characteristics
 - hair, which insulates the body
 - mammary glands
 - » which produce milk that nourishes their young

¹⁰⁶ Mammals also evolved from reptiles

✓ Vertebrates

- Class Mammalia
 - most give birth to young after a period of embryonic development inside body of the mother
 - embryo is nurtured by an organ called the placenta
 - a few mammals lay eggs
 - monotremes

107 🗷

¹⁰⁸ Mammals also evolved from reptiles

✓ Vertebrates

- Class Mammalia
 - marsupials
 - have a short gestation

109 🗷

¹¹⁰ Mammals also evolved from reptiles

✓ Vertebrates

- Class Mammalia
 - most are eutherians, also called placentals

- have a relatively long gestation
- complete embryonic development occurs within the mother

111 Image: Second state st

- ✓ phylogenetic tree
 - gives animal diversity an evolutionary perspective
 - traditional phylogenetic tree is based on
 - patterns of embryonic development
 - some fundamental structures
 - molecular-based tree has added two clades within the protostomes

113 🗷 114 🖃 ✓ Burgess Shale fossils 115 🗷 ✓ Sponges 116 🗷 ✓ Coral polyps 117 🖃 ✓ Purple striped jelly, Pelagia panopyra 118 🖃 ✓Lion mane jelly 119 🖃 ✓ Sea anemones 120 🖃 ✓ Cnidarians: jellies, sea anemone, coral polyps 121 🖃 ✓ Ctenophore

122 🗷

✓ Flatworm

123 🗷

✓ Roundworm, *C. elegans*

124 🗷

✓ Deer Cowrie, a marine gastropod with a shell

125 🗷

✓ Earthworm

126 🗷

✓ Beetle

127 🗷	
	\checkmark Butterfly metamorphosis: larva (caterpillar), pupa, emerging adult, adult
128 🗷	
	✓ Sea star, Bloodstar
129 🗷	✓ Brittle star
130 🗷	
	✓Cartilaginous fishes: sharks and rays
131 🗷	
	✓ Newt
132 🗷	
_	Extant reptiles: desert tortoise, lizard, King snake, alligators
133 🗷	
134 🗷	✓ Sea turtle
	✓ Banded gecko
135 🗷	
	✓ Emerald tree boa
136 🗷	
	✓Penguins, flightless birds
137 🗷	
_	✓ Marsupial mouse
¹³⁸ The End.	