Evolution of Animal Diversity
Bio 103 Lecture
Dr. Largen

What Am I?
- Of some 1.5 million species of organisms known to science
 - over two-thirds are animals
- Humans have a long history of studying animal diversity
 - But do we always know what an animal is when we see one?

What is an animal?
- Animals
 - eukaryotic
 - multicellular
 - heterotrophs
 - lack cell walls
 - have unique intercellular junctions

What is an animal?
- Animals
 - Most are diploid
 - except for haploid eggs and sperm
 - proceed through a well-defined life cycle

Evolution of animals
- Animal kingdom probably originated from colonial protists
 - in which cells gradually became more specialized and layered

Evolution of animals
- Ecological, geologic, or genetic factors may have caused the Cambrian explosion in animal diversity
 - Cambrian fossils can be classified as ancient representatives of the familiar animal phyla

Characterizing the differences between animal phyla
- Animals can be classified according to pattern of development or body structure
 - Embryologic development
 - germ layers
 - blastopore fate
 - Symmetry
 - Body plan
 - Segmentation

Characterizing the differences between animal phyla
- Embryologic development
 - germ layers
 - what are they?
 - three cell layers
 - ectoderm - outer layer
 - mesoderm - middle layer
Characterizing the differences between animal phyla

Embryologic development
- **germ layers**
 - diploblastic organisms
 - have two germ layers
 - ectoderm - outer layer
 - endoderm - inner layer
 - triploblastic organisms
 - have three germ layers
 - ectoderm - outer layer
 - mesoderm - middle layer
 - endoderm - inner layer
- blastopore fate
 - what is the blastopore?
 - Early during embryonic development the embryo is a hollow ball of cells
 - a portion of this hollow ball invaginates inward to form an opening called the blastopore
 - blastopore can be thought of as the first opening
 - this opening, the blastopore, becomes either the mouth or the anus of animals with body cavities
 - protostomes
 - organisms in which the blastopore becomes the mouth
 - the first (proto) opening becomes mouth
 - deuterostomes
 - organisms in which the blastopore becomes the anus
 - the second (deuter) opening becomes the mouth

Symmetry
- refers to the arrangement of body structures in relation to some axis of the body
- three types of symmetry
 - asymmetry
 - radial symmetry
 - bilateral symmetry
- lack of any defined symmetry
- **no** plane passing through the central axis can divide the organism into halves that are mirror images of each other
 - cutting the organism in half produces dissimilar halves
- exhibited by most members of the simplest phylum of animal kingdom
 - phylum Porifera - the sponges

17 Characterizing the differences between animal phyla

✅ Symmetry
 - radial symmetry
 - can be bisected into roughly equal, mirror-image halves in any two-dimensional plane
 - multiple plans can be drawn through the central axis, each dividing the organism into two mirror images
 - exhibited by members of three phyla
 - phylum Cnidaria - jellyfish, sea anemones, corals
 - phylum Ctenophora - sea walnuts, comb jellies
 - phylum Echinodermata - sea stars, urchins, sand dollars
 - radial symmetry seen in ADULTS in this phylum

18

19 Characterizing the differences between animal phyla

✅ Bilateral symmetry
 - can be bisected into roughly equal, mirror-image halves in only one plane (the sagittal plane)
 - only one plane can be drawn through the central axis which divides the organism into two mirror images
 - exhibited in all other animal phyla

20 Characterizing the differences between animal phyla

✅ Body plan
 - a widely held system for grouping animal phyla is based on
 - the presence/absence of a body cavity
 - type of body cavity

21

22 Characterizing the differences between animal phyla

✅ Body plan
 - what is a body cavity?
 - a fluid-filled space inside the body
 - this space may develop between
 - between the mesoderm and endoderm, in which case it's called a pseudocoel
Characterizing the differences between animal phyla

Body plan
- four types of body plans
 - sac-like
 - acoelomate
 - pseudocoelomate
 - coelomate

Body plan
- sac-like
 - simplest of body plans
 - no formation of three embryonic germ layers
 - no digestive system
 - no body cavity
 - exhibited by phyla that are asymmetrical or radially symmetrical as juveniles

Body plan
- bilaterally symmetrical animals exhibit three basic body plans
 - acoelomate
 - pseudocoelomate
 - coelomate

Body plan
- acoelomate
 - organisms that lack a body cavity
 - have a solid body with a single opening to the outside, the mouth
 - exhibited by
 - phylum Platyhelminthes - flatworms
 - a few other minor phyla

Body plan
- pseudocoelomate
 - organism with a body cavity
 - called a pseudocoel (pseud = “false”)
 - which develops between the mesoderm and endoderm
 - and therefore it is not completely lined with mesoderm
 - exhibited by
 - phylum Nematoda - roundworms
Characterizing the differences between animal phyla

- **Body plan**
 - **coelomate**
 - organism with a body cavity
 - called a coelom
 - which develops entirely within the mesoderm
 - and therefore it is completely lined with mesoderm
 - exhibited by many phyla
 - Mollusca, Annelida, Arthropoda, Echinodermata, Chordata
 - are either protostomes or deuterostomes

Characterizing the differences between animal phyla

- Animals can be classified according to pattern of development or body structure
 - Embryologic development
 - germ layers
 - blastopore fate
 - Symmetry
 - Body plan
 - **Segmentation**

Characterizing the differences between animal phyla

- **Segmentation**
 - a key transition in animal body plan involved the subdivision of the body into segments
 - segmentation underlies the organization of all advanced animals
 - examples
 - repeating segments of earthworms
 - repeating vertebrae in vertebrates

Major phyla of the animal kingdom

Protostome coelomates represented by
 - phylum Mollusca - snails, clams, chiton, octopus, squids (~110,000 species)
 - phylum Annelida - earthworms, polychaetes, leeches (~12,000 species)
 - phylum Arthropoda - horseshoe crabs, shrimps, insects, spiders, centipedes, millipedes (~1,000,000 species)

Deuterostome coelomates represented by
 - phylum Echinodermata - sea lillies, sea stars, sea urchins, sea cucumbers (~6,000 species)
 - phylum Hemichordata - acorn worms (~90 species)
 - phylum Chordata - chordates (~42,500 species)
 - subphylum Urochordata - tunicates
 - subphylum Cephalochordata - lancelets
• subphylum Vertebrata - fish, amphibians, reptiles, birds, mammals

41 Some animals lack a body cavity
✓ Sponges, cnidarians, and flatworms lack a body cavity

42 INVERTEBRATES
✓ Sponges (Phylum Porifera)
 – have relatively simple, porous body
 – phylum Porifera
 – among simplest animals
 – many are radially symmetrical
 – parts are arranged around a central axis
 – flagellated choanocytes filter food from water passing through porous body

43 INVERTEBRATES
✓ Sponges (Phylum Porifera)
 – lineage arose very early
 • probably evolved from multicellular choanoflagellates
 – group that most likely gave rise to animal kingdom

44 Invertebrates
✓ Cnidarians (Phylum Cnidaria)
 – radial animals with stinging threads
 – simplest animals with tissues
 – exist in two radially symmetrical forms
 • Polyps
 – such as hydra, corals, and sea anemones
 • Medusas
 – jellies

45

46

47 Invertebrates
✓ Cnidarians (Phylum Cnidaria)
 – Cnidocytes on their tentacles sting prey
 • tentacles
 – controlled by nerves
 – push food through mouth into a gastrovascular cavity
 » where food is digested and then distributed
 – only two cell layers are produced during gastrulation

48 Most animals are bilaterally symmetrical
✓ have mirror-image right and left sides
 – a head with sensory structures
 – move headfirst through their environment
Flatworms are the simplest bilateral animals

- Flatworms (Phylum Platyhelminthes)
 - also called planaria
 - have a simple nervous system
 - consisting of brain, sense organs, and branching nerves
 - as in cnidarians, mouth is only opening for its gastrovascular cavity

- Flukes and tapeworms are parasitic flatworms with complex life cycles

Most animals have a body cavity

- Sponges, cnidarians, and flatworms lack a body cavity
- Nearly all other animals have a body cavity
- Body cavity
 - fluid-filled space between digestive tract and body wall
 - aids in movement, cushions organs, and it may help in circulation

Roundworms have a pseudocoelom and a complete digestive tract

- Nematodes (Phylum Nematoda)
 - have a body cavity not completely lined by mesoderm
 - like most animals, they possess a complete digestive tract
 - a tube with a mouth and an anus
 - many are free-living
 - others are parasites

Diverse mollusks are variations on a common body plan

- Mollusks (Phylum Mollusca)
 - large and diverse phylum
 - includes
 - gastropods, such as snails and slugs
 - bivalves, such as clams and scallops
 - cephalopods, such as squids and octopuses

Diverse mollusks are variations on a common body plan

- Mollusks (Phylum Mollusca)
 - all have a muscular foot and a mantle
• mantle may secrete a shell
 – which encloses visceral mass
 – have true coelom
 – have circulatory system
 – many feed with a rasping radula

60 Many animals have a segmented body
✓ Segmentation
 – the subdivision of some or most of the body into a series of repeated parts, or segments
 – probably evolved as an adaptation for movement

61

62 Earthworms and other annelids are segmented worms
✓ Annelids (Phylum Annelida)
 – their segmented bodies give them added mobility for swimming and burrowing
 • an earthworm eats its way through soil
 • polychaetes search for prey on seafloor or live in tubes and filter food particles
 • most leeches are free-living carnivores, but some suck blood

63
✓ s

64

65 Arthropods are the most numerous and widespread of all animals
✓ Arthropods (Phylum Arthropoda)
 – segmented animals
 – have exoskeletons
 – have jointed appendages
 – are most successful phylum of animals
 • in terms of numbers, distribution, and diversity, they
 – Horseshoe crabs are ancient marine arthropods

66

67

68 Arthropods are the most numerous and widespread of all animals
✓ Arthropods (Phylum Arthropoda)
 – most arachnids are terrestrial and carnivorous
 – crustaceans are nearly all aquatic
 – millipedes and centipedes make up a fourth group of arthropods

69

70

71
Insects are the most diverse group of organisms

- **Insects**
 - most numerous and successful arthropods
 - have three-part body consisting of
 - head, thorax, and abdomen
 - three sets of legs
 - wings (most, but not all insects)
 - development of many insects includes metamorphosis

Insect metamorphosis

- incomplete metamorphosis
 - young resemble adults, but are smaller with different body proportions
- complete metamorphosis
 - larvae specialized for eating & growing
 - larvae look different from adults
 - adults are specialized for dispersal and reproduction

Echinoderms have spiny skin, an endoskeleton, and a water vascular system for movement

- **Echinoderms** (Phylum Echinodermata)
 - includes sea stars and sea urchins
 - are radially symmetrical as adults
 - some have water vascular system
 - has suction-cup-like tube feet used for respiration and locomotion

Our own phylum, Chordata, is distinguished by four features

- **Chordates** (Phylum Chordata)
 - segmented animals
 - with four distinctive features
 - dorsal hollow nerve cord
 - stiff notochord
 - pharyngeal slits behind the mouth
 - muscular post-anal tail
Our own phylum, Chordata, is distinguished by four features

- **Chordates** (Phylum Chordata)
 - simplest are tunicates and lancelets
 - are marine invertebrates

A skull and a backbone are hallmarks of vertebrates

- **Vertebrates**
 - Most chordates are vertebrates
 - endoskeletons include a skull
 - backbone is composed of vertebrae

A skull and a backbone are hallmarks of vertebrates

- **Vertebrates**
 - most vertebrates have hinged jaws
 - lampreys lack hinged jaws
 - are classified as agnathans
 - jaws evolved by modification of skeletal supports of gill slits

Fishes are jawed vertebrates with gills and paired fins

- **Vertebrates**
 - two classes of fish
 - Chondrichthyes
 - cartilaginous fishes such as sharks
 - Osteichthyes
 - bony fishes such as tuna and trout

Fishes are jawed vertebrates with gills and paired fins

- **Vertebrates**
 - Bony fishes
 - more diverse and have
 - more mobile fins
 - operculi that move water over the gills
 - a buoyant swim bladder

Fishes are jawed vertebrates with gills and paired fins
Vertebrates

Verterbrates

Bony fishes

- three major classes of bony fishes
 - Ray-finned fishes
 - Lobe-finned fishes
 - Lungfishes

Amphibians were the first land vertebrates

- Class Amphibia
 - represented today by
 - frogs
 - toads
 - salamanders

Amphibians were the first land vertebrates

- Class Amphibia
 - Amphibians were the first terrestrial vertebrates
 - limbs allow them to move on land
 - larvae must develop in water

Reptiles have more terrestrial adaptations than amphibians

- Class Reptilia
 - able to live on land due to
 - waterproof scales
 - a shelled, amniotic egg
 - modern reptiles are ectotherms
 - warm their bodies by absorbing heat from environment

Reptiles have more terrestrial adaptations than amphibians

- Class Reptilia
 - dinosaurs were most diverse reptiles to inhabit land
 - included some of the largest land animals ever
 - may have been endothermic, producing their own body heat

Birds share many features with their reptilian ancestors

- Class Aves
• like reptiles, this class has
 – scales
 – amniotic eggs

103 Birds share many features with their reptilian ancestors

✓ Vertebrates
 – Class Aves
 • other bird characteristics include
 – wings
 – feathers
 – an endothermic metabolism
 – hollow bones
 – a highly efficient circulatory system

104 Mammals also evolved from reptiles

✓ Vertebrates
 – Class Mammalia
 • descended from reptiles
 • are endothermic
 • have two unique characteristics
 – hair, which insulates the body
 – mammary glands
 » which produce milk that nourishes their young

105 Mammals also evolved from reptiles

✓ Vertebrates
 – Class Mammalia
 • most give birth to young after a period of embryonic development inside body of the mother
 – embryo is nurtured by an organ called the placenta
 • a few mammals lay eggs
 – monotremes

106 Mammals also evolved from reptiles

✓ Vertebrates
 – Class Mammalia
 • marsupials
 – have a short gestation

107 Mammals also evolved from reptiles

✓ Vertebrates
 – Class Mammalia
 • most are eutherians, also called placentals

108 Mammals also evolved from reptiles

✓ Vertebrates
 – Class Mammalia
 • most are eutherians, also called placentals
– have a relatively long gestation
– complete embryonic development occurs within the mother

111

112 PHYLOGENY OF THE ANIMAL KINGDOM
✓ phylogenetic tree
 – gives animal diversity an evolutionary perspective
 – traditional phylogenetic tree is based on
 • patterns of embryonic development
 • some fundamental structures
 – molecular-based tree has added two clades within the protostomes

113

114

✓ Burgess Shale fossils

115

✓ Sponges

116

✓ Coral polyps

117

✓ Purple striped jelly, *Pelagia panopyra*

118

✓ Lion mane jelly

119

✓ Sea anemones

120

✓ Cnidarians: jellies, sea anemone, coral polyps

121

✓ Ctenophore

122

✓ Flatworm

123

✓ Roundworm, *C. elegans*

124

✓ Deer Cowrie, a marine gastropod with a shell

125

✓ Earthworm

126

✓ Beetle
Butterfly metamorphosis: larva (caterpillar), pupa, emerging adult, adult

Sea star, Bloodstar

Brittle star

Cartilaginous fishes: sharks and rays

Newt

Extant reptiles: desert tortoise, lizard, King snake, alligators

Sea turtle

Banded gecko

Emerald tree boa

Penguins, flightless birds

Marsupial mouse

The End.