The Chemical Basis of Life

Bio 103 Lecture GMU Dr. Largen

- ² Sections
 - ✓Atoms & molecules
 - ✓Properties of Water
 - ✓ Rearrangements of Atoms

³ Atoms and Molecules

- 4 Atoms & Molecules -Biological function starts at chemical level
 - ✓ Knowledge of functions of organisms
 - reductionist approach
 - scientific approach
 - » whole best understood by studying parts

5 🗖 Atoms & Molecules -

Biological function starts at the chemical level

- \checkmark to understand chemical structure and function
 - start small
 - structures at each level are combined into each higher level
 - note the hierarchical aspect of this idea

6 🗖 Atoms & Molecules -

Biological function starts at the chemical level

✓ matter in all living things

- made up of chemicals
- structure and function
 - interrelated at every level

7 🗖 Atoms & Molecules -

Biological function starts at the chemical level

✓ example

- certain atoms come together to form the complex molecule chlorophyll
- many chlorophyll molecules are located in organelles called chloroplasts
- many chloroplasts are located in the cells of photosynthetic tissues in structures (organs) such as leaves of plants

8 Figure 2.1 The hierarchy of biological order from atom to organism (*Biology*, 6th Ed., Campbell & Reece)

9 🗖 Atoms & Molecules -

Life requires about 25 chemical elements

✓ life is composed of matter

✓ matter is composed of chemical elements

10 🗖 Atoms & Molecules -

Life requires about 25 chemical elements

✓ Matter

- mass the amount of a substance
 - -
- weight force gravity exerts on substance
- .

_

11 🗖 Atoms & Molecules -

Life requires about 25 chemical elements

✓ Matter

- three states (phases) on earth

- gas
- liquid
- solid

12 🗖 Atoms & Molecules -

Life requires about 25 chemical elements

✓Matter

– gas

٠

– liquid

solid

13 Atoms & Molecules -Life requires about 25 chemical elements

✓ Matter

- gas
- liquid

•

solid

14 Atoms & Molecules -

Life requires about 25 chemical elements

✓ Matter

- gas
- liquid
- solid
 - •

15 Atoms & Molecules -Life requires about 25 chemical elements

✓ chemical element

- substance which cannot be broken down into any other substance

٠

- each element consists of one type of atom

Life requires about 25 chemical elements

✓ naturally occurring elements

- 92 naturally occurring

✓ man-made elements

- additional 12 - 17 man-made elements

•

17 🗖 Atoms & Molecules -

Life requires about 25 chemical elements

✓ distribution of elements (non-living vs. living)

- in crust of earth (non-living)
 - 9 elements constitute ~99% (by mass) of the earth's crust

»

18 🗖 Atoms & Molecules -

_

Life requires about 25 chemical elements

✓ distribution of elements (non-living vs. living)

- in living organisms
 - of 92 naturally occurring elements
 - ~ 25 are essential to life
 - » 14 of which are found in organisms in any more than trace (>0.01%) amounts
 - » trace elements

»

19 Atoms & Molecules -

Life requires about 25 chemical elements

✓ of the 25 elements essential to life

- 11 are found in > than trace amounts
 - 4 make up ~96% of human body
 - C
 - H
 - **o**

– N

• 7 make up remaining ~4% of human body

- Ca, P, K, S, Na, Cl,Mg

- 20 🗷 Table 2.1 Naturally Occurring Elements in the Human Body (*Biology*, 6th Ed., Campbell & Reece)
- 21 🗖 Atoms & Molecules -
 - Life requires about 25 chemical elements

✓ Each element has a symbol

- .
- •
- examples
 - gold (Au) from Latin word aurum
 - oxygen (O) from English word oxygen

22 Atoms & Molecules -Elements can combine to form compounds

✓ Elements combine to form molecules and compounds

- -element
- molecule
- compound

23 Atoms & Molecules -

Elements can combine to form compounds

✓ element

—

can't be broken down

•

- atoms with same atomic number

✓ molecule

✓ compound

24 Atoms & Molecules -Elements can combine to form compounds

✓ element

✓ molecule

- group of atoms of same type held together

•

- example
 - molecule of oxygen (O₂)

✓ compound

²⁵ Atoms & Molecules Elements can combine to form compounds

- ✓ element
- ✓ molecule

✓ compound

- molecule containing atoms of 2 or more elements combined in a fixed ratio
- example
 - water
 - H_2O

-

26 🗖 Atoms & Molecules -

Elements can combine to form compounds

✓ Compounds

- more common than pure elements
 - •
- example., table salt (NaCl)
- in living organisms
 - contain at least 3 or 4 different elements
 - mainly C, H, O, N

27 Figure 2.2 The emergent properties of a compound (*Biology*, 6th Ed., Campbell & Reece)

28 🗖 Atoms & Molecules -

Elements can combine to form compounds

✓ Compounds

- described by combination of symbols and numerals
 - chemical formula (or molecular formula)
 - structural formula

29 Atoms & Molecules -Elements can combine to form compounds

✓ chemical formula or molecular formula

- consists of chemical symbols and numbers
 - · indicates types & number (subscript) of atoms present
 - •
- example, chemical formula for water is H₂O
 - no number subscript when single atom present
- 30 Atoms & Molecules -

Elements can combine to form compounds

✓ structural formula

- shows arrangement of atoms
 - in additional to type and number
- example, structural formula for water is H-O-H

31 🗖 Atoms & Molecules -

Atoms consist of protons, neutrons and electrons

- \checkmark Each element consists of one kind of atom
 - -
 - name "atom" comes from a Greek word meaning "indivisible"
 - atom is smallest unit of matter

32 🗖 Atoms & Molecules -

Atoms consist of protons, neutrons and electrons

✓ atoms

- composed of many types of subatomic particles
- nucleus contains
 - protons
 - neutrons
- electrons orbit the nucleus
- others particles
 - · discussed primarily by physicists

33 🗷

³⁴ Web/CD Activity 2B:

Structure of the Atomic Nucleus

35 🗖 Atoms & Molecules -

Atoms consist of protons, neutrons and electrons

✓ protons (p)

- type of charge =
- where found =
- relative mass =

36 🗷

37 🗖 Atoms & Molecules -

Atoms consist of protons, neutrons and electrons

✓ neutrons (n)

- type of charge =
- where found =
- relative mass =

38 🗷

39 🗖 Atoms & Molecules -

Atoms consist of protons, neutrons and electrons

✓ electrons (e)

- type of charge =
- relative mass =
- where found =

40 💵

41 🗖 Atoms & Molecules -

Atoms consist of protons, neutrons and electrons

✓ Electron orbitals can be

- various shapes
 - · usually illustrated as concentric circles
 - ٠
- ✓ electrons orbit nucleus
 - nearly at speed of light
 - ٠
 - •

42 🗖 Atoms & Molecules -

Atoms consist of protons, neutrons and electrons

✓ Electron orbitals

- arrangement of electrons in their orbits is key to chemical behavior of atom
- will return to this point shortly

43 🗖 Atoms & Molecules -

Atoms consist of protons, neutrons and electrons

- ✓ All atoms of a particular element
 - have same unique number of protons
 - known as the element's
 - atomic number
 - number of protons in atom's nucleus
 - »
 - top number in box for element in periodic table

44 🗷

45 🗖 Atoms & Molecules -

Atoms consist of protons, neutrons and electrons

✓ atom's atomic mass (also called atomic weight or mass number)

- equal to sum of masses of atom's protons & neutrons
 - measured in daltons
 - -
 - bottom number in box for element in periodic table

46 🖃

47 🗖 Atoms & Molecules -

Atoms consist of protons, neutrons and electrons

✓ isotopes

•

- atoms of same element that vary in neutron number and atomic mass
- isotopes of carbon
 - carbon ¹²C
 - carbon ¹³C
 - _
 - carbon ¹⁴C

48 Atoms & Molecules -Atoms consist of protons, neutrons and electrons

- ✓ Isotopes can be
 - stable
 - nuclei remain permanently intact
 - unstable (or radioactive)
 - nuclei decays spontaneously, giving off particles and energy

49 🗖 Atoms & Molecules -

Atoms consist of protons, neutrons and electrons

- ✓ Isotopes can be
 - unstable (or radioactive)
 - nucleus tends to break up into elements with lower atomic numbers
 - emits significant amount of energy, called radioactive decay
 - » radioactive isotopes

50 🗖 Atoms & Molecules -

»

Radioactive isotopes can help us or harm us

✓ Radioactive isotopes can be

- harmful to life
 - •
 - •
 - •
 - •

51 - Atoms & Molecules -

Radioactive isotopes can help us or harm us

✓ Radioactive isotopes can have

- beneficial uses

- •
- •
- •
- •

52 🗖 Atoms & Molecules -

Electron arrangement determines the chemical properties of an atom

✓ Electrons

- orbit nucleus of atom
- arrangement in orbits is key to chemical behavior of atom
- vary in amount of energy they possess
 - farther nucleus, greater its energy
- 53 🔄 Figure 2.9 Energy levels of an atom's electrons (*Biology*, 6th Ed., Campbell & Reece)

54 🗖 Atoms & Molecules -

Electron arrangement determines the chemical properties of an atom

✓ electrons are far from nucleus

- analogy:
- result
 - •
 - •
 - •

55 🗖 Atoms & Molecules -

Electron arrangement determines the chemical properties of an atom

✓ electrons in atom occur only at certain energy levels

- called electron shells (or electron energy levels)

✓ atoms may have 1, 2 or more electron shells

- _
- -

56 🗖 Atoms & Molecules -

Electron arrangement determines the chemical properties of an atom

✓ we'll consider first four electron energy shells

- covers most biologically significant elements
- first, innermost energy shell asdasdasda
 - can accommodate only 2 electrons
 - .
- second, third, fourth energy shells
 - can each accommodate 8 electrons
 - ٠

57 🗷

58 🗖 Atoms & Molecules -

Electron arrangement determines the chemical properties of an atom

 \checkmark atom has # of electron shells needed accommodate its number of electrons

- atom with 6 electrons (C) has 2 shells
 - 2 electrons in innermost shell
 - 4 electrons in outermost shell
- atom with 11 electrons (Na) has 3
 - 2 electrons in innermost shell
 - 8 electrons in second shell
 - 1 electron in outermost shell
- 59 🔄 Figure 2.11 Electron orbitals ((*Biology*, 6th Ed., Campbell & Reece)

60 🗖 Atoms & Molecules -

Electron arrangement determines the chemical properties of an atom

 \checkmark Energy is required to keep electrons in their orbits

- electrons have potential energy of position
 - · more potential energy in outermost shells than in innermost shells
- 61 Figure 2.9 Energy levels of an atom's electrons (*Biology*, 6th Ed., Campbell & Reece)
- 62 G Web/CD Activity 2C:

_

Electron Arrangement

63 🗖 Atoms & Molecules -

Electron arrangement determines the chemical properties of an atom

- number of electrons in outermost shell determines chemical properties of element
 - partially full outer shells = reactive

•

-full outer shells = unreactive (inert)

64 🗖 Atoms & Molecules -

Electron arrangement determines the chemical properties of an atom

✓ example

- -hydrogen (H) is highly reactive
 - one shell, only one electrons
 - _

65 🗷

66 🗖 Atoms & Molecules -

Electron arrangement determines the chemical properties of an atom

- ✓ example
 - -helium (He) is highly unreactive (inert)
 - one shell, two electrons

_

67 🗷

68 🗖 Atoms & Molecules -

Electron arrangement determines the chemical properties of an atom

✓ How does a chemical reaction enable an atom to fill its outer electron shell?

- 2 atoms w/incomplete outer shells react
 - each atom gives up or acquires electrons
 - results in atoms being held together by chemical bonds
- 69 Figure 2.10 Electron configurations of the first 18 elements (*Biology*, 6th Ed., Campbell & Reece)

⁷⁰ Web/CD Activity 2D:

Build an Atom

71 Atoms & Molecules -Chemical bonds

✓ strong chemical bonds

- ionic bonds
- covalent bonds
 - nonpolar covalent bonds
 - polar covalent bonds

✓ weak chemical bonds

- hydrogen bonds

72 Atoms & Molecules -

Chemical bonds

✓ strong chemical bonds

-ionic bonds

- covalent bonds

- nonpolar covalent bonds
- polar covalent bonds

weak chemical bonds

hydrogen bonds

73 🗖 Atoms & Molecules -

lonic bonds are attractions between ions of opposite charge

✓ electron transfer between 2 atoms moves 1 unit of negative charge from one atom to other

- original atom now has +1
- recipient atom now has charge of -1

•

٠

74 🗖 Atoms & Molecules -

lonic bonds are attractions between ions of opposite charge

✓ ions

- atoms in which number of electrons does not equal number of protons
 - carry a net electrical charge (+ or)
- types of ions
 - cations
 - anions

75 🗖 Atoms & Molecules -

lonic bonds are attractions between ions of opposite charge

✓ cation

- atom with net positive charge (+)
- _

- example:
 - sodium (Na) atom losses an electron, becomes sodium ion, or cation (Na⁺), with charge of +1

76 🗷

77 🗖 Atoms & Molecules -

lonic bonds are attractions between ions of opposite charge

✓ Anion

- atom with net negative charge (-)
 - •
- example
 - chlorine (Cl) atom, gains one electron, becomes chlorine ion, or anion (Cl), with charge of -1

78 🗷

79 🗖 Atoms & Molecules -

lonic bonds are attractions between ions of opposite charge

✓ two ions with opposite charge attract each other

- attraction called an ionic bond
 - resulting compound is electrically neutral

80 🗖 Atoms & Molecules -

lonic bonds are attractions between ions of opposite charge

✓ ionic bond

- results from transfer of electron from one atom to another atom
 - · resulting in two ions
 - cation
 - anion
- oppositely charged ions are attracted to each

•

- resulting compound is electrically neutral
- 81 Figure 2.14 Electron transfer and ionic bonding (*Biology*, 6th Ed., Campbell & Reece)
- 82 Figure 2.15 A sodium chloride crystal (*Biology*, 6th Ed., Campbell & Reece)

⁸³ • Web/CD Activity 2G:

Ionic Bonds

84 C Atoms & Molecules -Chemical bonds

✓ strong chemical bonds

ionic bonds

-covalent bonds

- · nonpolar covalent bonds
- polar covalent bonds

✓ weak chemical bonds

- hydrogen bonds

85 🗖 Atoms & Molecules -

Covalent bonds, the sharing of electrons, joins atoms into molecules \checkmark covalent bond

- occurs when two atoms share one or more pairs of outer shell electrons
 - results in both atoms having a full outer electron shell

_

86 🗖 Atoms & Molecules -

Covalent bonds, the sharing of electrons, joins atoms into molecules

✓ why is a covalent bond so stable?

- resulting molecule (compound)

· has no net electrical charge

- · outer shells are full
- · no free electrons to form bonds
- 87 Figure 2.12 Covalent bonding in four molecules (*Biology*, 6th Ed., Campbell & Reece)
- 88 🗖 Atoms & Molecules -
 - Covalent bonds, the sharing of electrons, joins atoms into molecules
 - ✓ More than one covalent bond can form between two atoms
 - -single covalent bond
 - double covalent bond
 - -triple covalent bond

89 🗖 Atoms & Molecules -

Covalent bonds, the sharing of electrons, joins atoms into molecules

✓ single covalent bond

- one pair of electrons shared by two atoms
- represented by

 - example, H H
- least strong of covalent bonds

90 🗷

91 🗖 Atoms & Molecules -

Covalent bonds, the sharing of electrons, joins atoms into molecules \checkmark double covalent bond

- two pairs of electrons shared by two atoms
 - · represented by
 - -
 - example, O=O
- stronger than single covalent bond

92 🗷

93 🗖 Atoms & Molecules -

Covalent bonds, the sharing of electrons, joins atoms into molecules \checkmark triple covalent bond

- three pairs of electrons shared by two atoms
 - · represented by
 - -
 - example, N <u>=</u> N
- strongest covalent bonds

٠

94 Web/CD Activity 2E: <u>Covalent Bonds</u>

95 🗖 Atoms & Molecules -

Covalent bonds, the sharing of electrons, joins atoms into molecules

✓ covalent bond energy

- forming bond requires input of energy
 - energy is stored in bond
- breaking bond results in release of energy
 - · released energy becomes available to do work

96 🗖

Atoms & Molecules -

Covalent bonds, polar versus non-polar

- ✓ Atoms in a covalently bonded molecule
 - in tug-of-war for shared electrons

✓ electronegativity

- measure of attraction (affinity) for shared electrons in covalent bond
 - stronger electronegativity = stronger pull on shared electron

97 🗖 Atoms & Molecules -Chemical bonds

✓ strong chemical bonds

- ionic bonds
- covalent bonds

nonpolar covalent bonds

- · polar covalent bonds
- ✓ weak chemical bonds
 - hydrogen bonds

98 🗖 Atoms & Molecules -

Covalent bonds, polar versus non-polar

Because of concept of electronegativity, covalent bonds can be divided into two categories

-nonpolar covalent bonds

-polar covalent bonds

99 🗖 Atoms & Molecules -

Covalent bonds, polar versus non-polar

✓ nonpolar covalent bond

- covalent bond between atoms with similar electronegativity
- result, electrons are shared equally between two atoms
- examples
 - O₂
 - H₂
 - CH₄ (methane)

100 Figure 2.12 Covalent bonding in four molecules (*Biology*, 6th Ed., Campbell & Reece)

101 Chemical bonds

- ✓ strong chemical bonds
 - ionic bonds
 - covalent bonds
 - nonpolar covalent bonds

polar covalent bonds

- ✓ weak chemical bonds
 - hydrogen bonds
- 102 Atoms & Molecules -

Covalent bonds, polar versus non-polar

✓ polar covalent bond

- covalent bond between atoms that differ in electronegativity
 - · atom with greater electonegativity pulls shared electrons closer
- results in bond has two dissimilar ends
 - "poles", with partial + and partial charges
- resulting molecules are said to be "polar"
- example = $H_2 O$
- 103 Tigure 2.13 Polar covalent bonds in a water molecule (Biology, 6th Ed., Campbell & Reece)

¹⁰⁴ Web/CD Activity 2F:

Nonpolar and Polar Molecules

105 Atoms & Molecules -Chemical bonds

- ✓ strong chemical bonds
 - ionic bonds
 - covalent bonds
 - nonpolar covalent bonds
 - polar covalent bonds

✓ weak chemical bonds

-hydrogen bonds

106 🗖 Atoms & Molecules -

Hydrogen bonds

✓ hydrogen bonds

- result when polar molecules interact with one another
- partial charge of one molecule is attracted to the partial + charge of another molecule
- in the case of water:
 - oxygen is very electronegative
- •
- 107 Figure 2.16 A hydrogen bond (*Biology*, 6th Ed., Campbell & Reece)

¹⁰⁸ Web/CD Activity 2H:

Hydrogen Bonds

¹⁰⁹ The Properties of Water

110 🗖 Water - Its Properties and Its Role in the Fitness of Environment

- ✓ importance of water to life
- \checkmark chemical characteristics of water
 - polarity and properties associated with it
 - hydrogen bonds
 - cohesion
 - surface tension
 - temperature moderation
 - · less dense as solid than as liquid
 - dissociation of water molecules
 - · water is versatile solvent
 - role in acid/base conditions
 - effect of pH on living organisms

111 The Properties of Water -

Water is essential to life

✓ Importance of water to life

- covers ¾ of earth's surface
- where life evolved
- essential to life
- makes up $\geq 2/3$ mass of all organisms
- 112 Figure 3.0 Earth (*Biology*, 6th Ed., Campbell & Reece)

113 The Properties of Water -

Chemical Structure of water

✓ chemical structure of water (H₂O)

- -2 H atoms covalently bonded to 1 O atom
 - resulting molecule is stable
 - outer electron shells full
 - no net charge
 - no unpaired electrons

114 🗷

115 🗷

116 The Properties of Water -

Water is a polar molecule

✓Water is a polar molecule

- O atom more electronegative than H atoms,
 - attracts electrons more strongly
- shared electron pair closer to O nucleus than to H nuclei, results in
 - partial charge at O ends
 - partial + charge at each H atom

118 🗷

119 The Properties of Water -

Water is a polar molecule

✓Water is a polar molecule

- water molecule as whole is neutral,
 - · but partial charges cause molecule to have "poles"
 - negative pole
 - O end

»

- · positive poles
 - H ends

»

120 🗷

¹²¹ Web/CD Activity 3A:

The Polarity of Water

www.campbellbiology.com

122 The Properties of Water -

Water's polarity leads to unusual properties

✓ Water's polarity

- leads to unusual properties
 - make life, as we know it, possible
- hydrogen bonds
- cohesion
- surface tension
- temperature moderation
- less dense as solid than liquid
- versatile solvent
- role in acid/base conditions

123 The Properties of Water -

Water's polarity leads to unusual properties

✓ polarity of water molecules

- makes them interact with each other
 - •
 - ٠
 - attraction results in formation of weak bonds called hydrogen bonds

124 The Properties of Water -

Water's polarity leads to unusual properties

✓ hydrogen bonds

- result when polar molecules interact with one another
 - ٠

125 🔄 Figure 3.1 Hydrogen bonds between water molecules (*Biology*, 6th Ed., Campbell & Reece)

126 🗷

127 The Properties of Water -Water's polarity leads to unusual properties

✓ hydrogen bonds

- individually very weak
 - form and break readily
 - •
- cumulatively strong
- each water molecule forms hydrogen bonds with maximum of four neighboring water molecules

128 The Properties of Water -

Water's polarity leads to unusual properties

✓ water exists in nature in all three physical states (or phases of matter)

- ✓
 - solid (ice)
 - liquid (water)
 - gas (water vapor)
- 129 Figure 3.x1 Water , liquid, solid, vapor (*Biology*, 6th Ed., Campbell & Reece)
- 130 Figure 3.5x1 Ice, water, and steam (*Biology*, 6th Ed., Campbell & Reece)

131 The Properties of Water -

Hydrogen bonds make liquid water cohesive

✓ cohesion

- results from attraction between polar water molecules
- -
- stronger for water than for most other liquids
- important in living world
 - · example, transport of water from roots to leaves in trees
- 132 Figure 3.2x Trees (*Biology*, 6th Ed., Campbell & Reece)

133 The Properties of Water -

Hydrogen bonds make liquid water cohesive

✓ Related to cohesion is surface tension

- measure of how difficult it is to stretch or break the surface of a liquid
- results from orientation of hydrogen bonds at air-water interface
- 134 🗖 The Properties of Water -

Hydrogen bonds make liquid water cohesive

✓ surface tension

- of water higher than any liquid except liquid mercury
- 135 Figure 3.3 Walking on water (*Biology*, 6th Ed., Campbell & Reece)
- 136 The Properties of Water -

Hydrogen bonds make liquid water cohesive

✓ adhesion

- results from attraction between polar water molecules and polar non-water molecules
 - such as glass
 - · capillary action
 - tendency of water to rise in small tubes

»

- example, xylem vessel walls in plants
- 137 Figure 3.2 Water transport in plants (Biology, 6th Ed., Campbell & Reece)

138 C Web/CD Activity 3B: Cohesion of Water

- www.campbellbiology.com
- 139 The Properties of Water -

Water's hydrogen bonds moderate temperature

✓ ability to resist temperature change

- greater in H2O than most other substances
 - heat
 - amount of energy associated with movement of atoms and molecules
 - temperature
 - intensity of heat
 - average speed of molecules rather than total amount of heat

140 The Properties of Water -

Water's hydrogen bonds moderate temperature

✓ Water resists temperature increases

- raising temperature of substance involves adding heat energy
 - · results in molecules moving faster
- in water
 - · some H bonds must first be broken to allow molecules to move more freely
 - much of added energy used to break H bonds
 - only a portion of heat energy is available to increase movement of water molecules

141 The Properties of Water -

Water's hydrogen bonds moderate temperature

✓ Water stores heat

- heat is absorbed as H bonds break
 - · water warms only a few degrees

– ✓ Water cools slowly

- as water cools, H bonds re-form
 - releasing some of stored energy as heat

- slows cooling process

142 The Properties of Water -

Water's hydrogen bonds moderate temperature

✓ Water resists temperature change

- organisms can maintain a relatively constant internal temperatures

- crucial in stabilizing temperatures on earth

143 The Properties of Water -

Water's hydrogen bonds moderate temperature

- ✓ Water resists tendency to evaporate or vaporize
 - liquids vaporize when molecules move fast enough
 - heating a liquid increases vaporization
- 144 The Properties of Water -

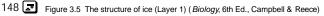
Water's hydrogen bonds moderate temperature

- ✓ Water resists tendency to vaporize
 - large amount of energy required to change one gram of liquid water into a gas
 - resistance to vaporization results from hydrogen bonding of its molecules
 - transition from a liquid to a gas requires input of energy to break hydrogen bonds

145 The Properties of Water -

Water's hydrogen bonds moderate temperature

✓ evaporation of water from surfaces causing a cooling of that surface


- enables organisms to dispose of excess heat by evaporative cooling
 - organism gives up some heat energy to break H bonds in water molecules
 - molecules then have enough heat energy to escape
 - » take heat energy with them when they go
- 146 Figure 3.4 Evaporative cooling (*Biology*, 6th Ed., Campbell & Reece)

147 - The Properties of Water -

Ice is less dense than liquid water

✓ Water less dense as a solid than as a liquid

- most substances, density \uparrow as temp \downarrow
- water most dense at 4°C
- hydrogen bonds in liquid water are unstable
 - •
- hydrogen bonds in ice are stable

¹⁴⁹ Figure 3.5 The structure of ice (Layer 2) (*Biology*, 6th Ed., Campbell & Reece)

150 The Properties of Water -

Ice is less dense than liquid water

✓ liquid water expands (becomes less dense) as it freezes

- H bonds btwn water molecules keep them far enough apart to give ice a density of ~ 10% less than density of liquid water
- less dense frozen water (ice) floats on more dense cold, unfrozen water
- 151 Figure 3.5x1 Ice, water, and steam (Biology, 6th Ed., Campbell & Reece)

152 The Properties of Water -

Ice is less dense than liquid water

- ✓ Ice is less dense than liquid water
 - ability of frozen water to float on liquid water
 - extremely important factor in enabling life to appear, survive and evolve
 - if ice were more dense than water it would sink
 - » all ponds, lakes, oceans would freeze solid from the bottom to surface making life impossible
- 153 Figure 3.6x2 Ice floats and frozen benzene sinks (*Biology*, 6th Ed., Campbell & Reece)

154 The Properties of Water -

Ice is less dense than liquid water

✓ Ice is less dense than liquid water

- since ice floats on water instead of sinking
 - ٠
 - ice insulates liquid water
- 155 Tigure 3.6 Floating ice and the fitness of the environment (*Biology*, 6th Ed., Campbell & Reece)
- 156 Figure 3.6x1 Floating ice and the fitness of the environment: ice fishing (*Biology*, 6th Ed., Campbell & Reece)

157 Water - Its Properties and Its Role in the Fitness of Environment

✓ importance of water to life

- ✓ chemical characteristics of water
 - polarity and properties associated with it
 - hydrogen bonds
 - cohesion
 - surface tension
 - temperature moderation
 - less dense as solid than as liquid
 - dissociation of water molecules
 - · water is versatile solvent
 - role in acid/base conditions
 - · effect of pH on living organisms

158 The Properties of Water -

Water is a versatile solvent

✓ solution

- <u>liquid.</u> uniform throughout (homogeneous)
 - · a mixture of two or more substances

✓ solvent

- substance in solution that serves as dissolved agent
- •

✓ solute

- substance which is dissolved by solvent
- ✓ aqueous solution
 - solution that has water as its solvent

159 The Properties of Water -

Water is a versatile solvent

✓ Water is a versatile solvent

water is solvent in all cells

- results from polarity of its molecules

160 - The Properties of Water -

Water is a versatile solvent

✓ Water is a versatile solvent

- consider how a crystal salt dissolves in water
 - Na⁺ and Cl⁺ ions at surface of salt crystal have affinities for different parts of water molecules
 - Na⁺ ions attract area of H₂O at O
 - Cl⁻ ions attract + areas at H's
 - water molecules surround and separate Na⁺ and Cl⁻ ions (hydration shell)
 - causing salt crystal to dissolve
- 161 Tigure 3.7 A crystal of table salt dissolving in water (*Biology*, 6th Ed., Campbell & Reece)

162 The Properties of Water -

The chemistry of life is sensitive to acidic and basic conditions

- \checkmark Most water molecules remain intact in aqueous solutions within living organisms
 - some break apart in a process called dissociation or ionization
 - · formation of ions when covalent bonds in a water molecule break spontaneously

163 The Properties of Water -

The chemistry of life is sensitive is sensitive to acidic and basic conditions

✓ Two types of ions result from dissociation of water molecules (H₂O)

- hydrogen ions (H⁺) with + charge

– hydroxide ions (OH⁻) with – charge

164 The Properties of Water -

The chemistry of life is sensitive is sensitive to acidic and basic conditions

- Two types of ions result from dissociation
 - hydrogen ions (H*) with + charge result
 - when one of protons (from hydrogen atom nuclei) dissociate from rest of molecule

165 **The Properties of Water** -

The chemistry of life is sensitive is sensitive to acidic and basic conditions

Two types of ions result from dissociation

- hydroxide ions (OH⁻) with - charge results

- · rest of dissociated water molecule, which retains shared electron from covalent bond, is negatively charged and forms a hydroxide ion, OH-
- 166 🗷 Unnumbered Figure (page 47) Dissociation of water molecule to hydronium and hydroxide ions (Biology, 6th Ed., Campbell & Reece)
- 167 🔄 Unnumbered Figure (page 47) Dissociation of water molecule to hydronium and hydroxide ions (Biology, 6th Ed., Campbell & Reece)

¹⁶⁸ Web/CD Activity 3C:

Dissociation of Water Molecules

www.campbellbioogy.com

169 The Properties of Water -

The chemistry of life is sensitive is sensitive to acidic and basic conditions

- ✓ Hydrogen and hydroxide ions
 - result from spontaneous dissociation of water molecules
 - proper balance is required for proper functioning of chemical processes within organisms
 - this balance described and measured terms of acids, bases and pH scale

170 The Properties of Water -

The chemistry of life is sensitive is sensitive to acidic and basic conditions

✓ acid

any substance that dissociates in water to increase concentration of H⁺ ions

✓ base (or alkali)

- any substance that combines with H⁺ ions when dissolved in water

✓ neutral

- any substance in which concentrations of H⁺ ions and OH⁻ ions are equal

171 The Properties of Water -

The chemistry of life is sensitive is sensitive to acidic and basic conditions

✓ pH scale

- used to measure acidity or alkalinity of a solution
- pH stands for potential hydrogen
- = negative logarithm of hydrogen ion ([H⁺]) concentration in solution

172 The Properties of Water -

The chemistry of life is sensitive is sensitive to acidic and basic conditions

✓ acid

- any substance that dissociates in water to increase concentration of H⁺ ions
- stronger = more H⁺ ions it produces
- have pH values below 7
- hydrochloric acid (HCI) ionizes completely in water to H⁺ and Cl⁺ ions, has a pH of 1

173 🖃

174 The Properties of Water -

The chemistry of life is sensitive is sensitive to acidic and basic conditions

✓ base

- any substance that combines with H⁺ ions when dissolved in water
- combining with H⁺ ions lowers H⁺ ion concentration
- have pH values above 7
- strong bases, such as sodium hydroxide (NaOH), have pH values of 12 or more

175 🗷

176 The Properties of Water -

The chemistry of life is sensitive is sensitive to acidic and basic conditions ✓ Neutral

- any substance in which H^+ ions conc. = OH^- ions conc.
- have a pH value of 7
 - at 25°C, a liter of pure water contains 1/10,000,000 (or 10^{-7}) mole of H⁺ ions
 - negative logarithm of 10⁻⁷ equals 7, and therefore pH of pure water is 7

177 🖃

178 The Properties of Water -

The chemistry of life is sensitive is sensitive to acidic and basic conditions

- ✓ pH inside almost all cells, and in fluid surrounding cells, is ~ 7
 - slight change in pH can be harmful
 - biological fluids contain **buffers** that resist changes in pH

179 🗖 The Properties of Water -

- substance that resists changes in pH by
 - · accepts H⁺ ions when they're in excess
 - donates H⁺ ions when they're depleted
- acts as a reservoir for hydrogen (H⁺) ions
 - •
 - •

180 🗷

181 The Properties of Water -

The chemistry of life is sensitive is sensitive to acidic and basic conditions

✓ Cells need to maintain a constant pH level

- pH kept at a relatively constant pH by buffers
 - most buffers act as pairs of substances,
 - example, key buffer in human blood is an acid-base pair consisting of carbonic acid (acid) and bicarbonate (base)

182 Web/CD Activity 3D:

Acids, Bases, and pH

www.campbellbiology.com

183 **The Properties of Water -**

Acid precipitation threatens the environment

✓ changes in the pH of the environment can have drastic effects

- acid precipitation (rain, fog, snow) can cause changes in pH of environment

- 184 Figure 3.10 The effects of acid precipitation on a forest (*Biology*, 6th Ed., Campbell & Reece)
- 185 🔄 Figure 3.10x2 Acid rain damage to statuary, 1908 & 1968 (*Biology*, 6th Ed., Campbell & Reece)
- 186 The Properties of Water -

Acid precipitation threatens the environment

- ✓ acid precipitation (rain, fog, snow)
 - precipitation with a pH below 5.6
 - rain with pH of 2-3, recorded in eastern US
 - fog with pH 1.7, recorded downwind from LA
- 187 The Properties of Water -

Acid precipitation threatens the environment

✓ acid precipitation (rain, fog, snow)

- results mainly from presence in air of sulfur oxides and nitrogen oxides
 - result from burning of fossil fuels in factories and automobiles
 - coal, oil and gas are fossil fuels
- complex environmental problem with no easy solution
- 188 Figure 3.10x1 Pulp mill (*Biology*, 6th Ed., Campbell & Reece)

¹⁸⁹ C Rearrangements of Atoms

190 - Rearrangements of Atoms -

Chemical reactions rearrange matter

- ✓ chemical reactions
 - lead to chemical changes in matter
 - are essence of chemistry and life
- ✓ all chemical reactions involve
 - shifting of atoms from one molecule or ionic compound to another
 - · forming or breaking chemical bonds
 - · without change in number or identity of atoms involved

191 🗖 Rearrangements of Atoms -

Chemical reactions rearrange matter

✓ all chemical reactions involve

- reactants
 - original atoms/molecules present before reaction
- products
 - atoms/molecules resulting from reaction

192 Rearrangements of Atoms -

Chemical reactions rearrange matter

 $\boldsymbol{\checkmark}$ chemical reactions can be described by $\boldsymbol{\mathsf{chemical\ equations}}$

- reactants
 - left side of equation
- products
 - right side of equation
- arrow (instead of =)between "reactants" side and "products" side
 - means "yields"

• indicates direction in which reaction tends to proceed

193 Rearrangements of Atoms -

Chemical reactions rearrange matter

✓ chemical equations

- example: $2H_2 + O_2 \otimes 2H_2O$
 - reactants products
- same numbers H & O atoms on both left & right side of arrow, grouped differently
 - (H-H) + (H-H) + (O-O) = (H-O-H) + (H-O-H)
 - 4 H, 2 O = 4 H, 2 O
 - 2 molecules of H plus 1 molecule of O yields 2 molecules of water
- (note: organisms can't make water from H & O)

194 🗷

- 195 Figure 2.19 A molecular mimic (*Biology*, 6th Ed., Campbell & Reece)
- 196 🗖 Rearrangements of Atoms -

Chemical reactions rearrange matter

✓ chemical equations

- can proceed in two directions
 - forward = to right \rightarrow
 - reverse = to left \leftarrow
- when rates of forward & reverse reactions are equal, reaction has reached equilibrium

197 🗖 Rearrangements of Atoms -

Chemical reactions rearrange matter

✓ chemical reactions

- organisms carry out many chemical reactions
 - most involve carbon

- examples

- production of vitamin A in human cells
 - $\begin{array}{lll} \ C_{40}H_{56} \ + \ O_2 \ + \ 4H & \rightarrow & 2C_{20}H_{30}O \\ \ beta\mbox{-carotene} & \ vitamin \ A \end{array}$
 - $\hspace{0.1 cm} 40C, \hspace{0.1 cm} 2O, \hspace{0.1 cm} 60H \hspace{0.5cm} \rightarrow \hspace{0.5cm} 40C, \hspace{0.1 cm} 2O, \hspace{0.1 cm} 60H$

198 🖃

199 The End