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Abstract—Inspired by the idiom, “Mitigation (prevention) is
better than cure!”, this work presents a random yet cognitive
side-channel mitigation technique that is independent of un-
derlying architecture and/or operating system. Unlike malware
and other cyber-attacks, side-channel attacks (SCAs) exploit
the architectural and design vulnerabilities and obtain sensitive
information through the side-channels. In contrast to the ex-
isting randomization-based side-channel defenses, we introduce
a cognitive perturbation-based defense, Covert-Enigma, where
the introduced perturbations look legit, but lead to an incorrect
observation when interpreted by the attacker. To achieve this,
the perturbations are injected at appropriate time instances to
introduce additional operations, thereby misleading the attacker
making the extracted data futile. To further make the attack
more intricate for the attacker, proposed Covert-Enigma offers
two modes of operation, chosen by the user, to determine the
kind of induced cognitive perturbations - arbitrary and cyclic
modes. Arbitrary mode selects a group of key bits and flips
them during every execution of the victim. Cyclic mode exhibits
similar behavior, except it selects a new set of bits to flip after
‘N ’ cycles as chosen by the user. The cognitive perturbations
are introduced in the form of a wrapper application to the
victim, thus imposing no requirements on architectural level
modifications nor soft updates/edits to the operating system.
We report rigorous evaluation of the proposed Covert-Enigma
protecting RSA cryptosystem attacked by Flush+Reload crypto
side-channel attack along with the bit(s) recovered after observing
RSA under attack. Compared to traditional randomization-based
defenses, proposed cognitive Covert-Enigma leads to 50% less
overhead.

Index Terms—Side-channel Attack (SCA), Hardware-Security,
Cryptosystems.

I. INTRODUCTION

Modern computing systems require designers to embed
novel features to satisfy the ever exploding need for high
performance and efficient systems. Regardless of evolved
features, such as speculative execution, three-level cache ar-
chitecture, memory sharing/deduplication, etc., the computing
systems are vulnerable to security threats, also known as side-
channel attacks (SCAs). A plethora of past research works
has focused on the vulnerabilities in the systems. Some of the
works on the vulnerabilities and their exploits are: malware
[2]–[4], reverse engineering of hardware [5], [6]; attacks on
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machine learning-based malware detectors [7]–[10], cache-
based side-channel attacks [1], [11], [12]. SCAs exploit the
architectural vulnerabilities, such as timing, power, frequency,
etc., in the victim application. By exploiting such vulnerabili-
ties, the SCAs attempt to steal confidential data from sensitive
applications. There have been a rapid increase in the cache-
targeted SCA [13]–[15]. Computing systems require cache to
achieve performance gains. Hence, almost all the applications
(sensitive or generic) utilize cache for storing recently accessed
memory locations. For instance, cache-targeted SCAs rely
cache-access patterns - hit or miss - to determine the recently
accessed location(s) [16]–[20]. By studying such patterns that
serve as a covert channel leaking sensitive information, the
attacker can determine the recently accessed location, hence
the secret information. To thwart such emerging threats, our
work focuses on defending against cache targeted SCAs.

The unsolved challenges and limitations of the existing
defenses can be outlined as follows: a) suggested hardware
or software modifications might not be feasible to adapt;
and b) VM1 (virtual machine) migration -based mitigation
are resource hungry strategies, and contribute to a significant
timing overheads.

To overcome the limitations of previous works [21]–[23]
and thwart SCAs, we introduce Covert-Enigma, a defense
for timing-based SCAs. In contrast to the previously men-
tioned existing works that focus on architectural changes,
the proposed Covert-Enigma primarily focuses on maximizing
the entropy2 of the side-channel information obtained by the
attacker without interfering with the original functionality of
the victim application. In the Covert-Enigma, the original
application is coupled with a protective application (wrapper)
that induces cognitive perturbations in the cache-access infor-
mation obtained by the attacker.

In contrast to the existing randomization techniques, pro-
posed Covert-Enigma introduces randomization under the
constraint that the archived information by attacker looks legit
and similar to the normal information, yet leading to a wrong
key. In Covert-Enigma, we induce cognitive perturbations in
the (security-sensitive) applications’ operations by executing
dummy instructions that leave the victim’s functionality un-
altered yet scrambling the sequence observed by the attacker.

1In a multi-tenanted cloud environment, the operating system (along with
the victim application) is moved and executed on another physical hardware,
disallowing the co-location of victim and the attacker OS.

2We define Entropy as the amount of randomness in the obtained data. The
less entropy information has, the easier it is to decrypt the data.
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These induced cognitive perturbations mislead the information
retrieved by the attacker, thereby thwarting the attack. Our
proposed Covert-Enigma tenders user-tunable parameters such
as the length of successive bits to modify and the cycle
frequency, where the number of cycles can be chosen after
which the proposed method cognitively selects the other set
of bits to perturb. This offers the user to adjust the level of
complexity of the injected perturbations. Arbitrary and Cyclic
are two operational modes that a user can select, and the
details are discussed in other sections. The arbitrary mode
offers one or more bits to be cognitively perturbed in the
sequence of operations chosen at runtime, whereas the Cyclic
mode chooses bit(s) and then keeps perturbing3 same bits4

for few executions as determined by the user, post which
the position changes. The Cyclic mode is advantageous when
the attacker suspects a defense mechanism is in place and
tries to repeatedly execute the user application to ascertain
the static part of the sequence - as seen by the attacker -
which are added perturbation(s). We want to emphasize that,
in this work, ‘entropy-maximization’ refers to a reduction in
the useful information obtained by an attacker by increasing
cognitive randomness over side-channels to decrypt the secret
key. The proposed Covert-Enigma technique is thoroughly
evaluated against active and passive cache-targeted SCAs with
victim applications utilizing different keys.

The cardinal contributions of this work are:

• Contrary to the existing works, the proposed Covert-
Enigma enforces security on the covert channel by in-
jecting cognitively crafted perturbations that imitate legit
operations yet mislead the attacker.

• Render the attack more time-consuming (in terms of the
iterations it takes to break the defense) by providing two
modes of operation, Arbitrary and Cyclic, thus offering
more flexibility in terms of the defense.

• Evaluate and compare the benefits of the proposed
Covert-Enigma in terms of overhead and performance
based on the key size, mode of operation, user-tunable
parameters, and the number of bits recovered post-attack
on the victim.

The rest of the work is organized as follows. Section II pro-
vides the working principle of the flush+reload and flush+flush
type side-channel attacks followed by the vulnerability in
encryption application. Section III describes the proposed
defense, threat model, generation of cognitive perturbations,
and modes of operation of the proposed Covert-Enigma. This
is followed by Section IV which includes the validation
process, recovery of sensitive data under SCA attacks (without
the presence of Covert-Enigma), the behavior of Covert-
Enigma under attack, the performance of Covert-Enigma and
the overhead analysis. Section V describes the motivation
supporting the proposed idea as a case study, followed by the
state-of-the-art in Section VI. Section VII concludes the work.

3Perturbation or cognitive calls refer to dummy cache accesses that leads
to meaningful decryption, yet incorrect

4Bit here refers to the bit in the secret information. Bit position refers to
the bit in the stream of secret information to be protected as observed by the
adversary

II. SIDE-CHANNEL ATTACKS: BACKGROUND

This section will briefly introduce the SCAs on which the
evaluation of proposed Covert-Enigma is performed along with
some previous works.

A. Side-Channel Attacks

1) Flush+Reload Attack: Flush+Reload is a prominent
cache targeted SCAs that utilizes the cache-access timing
information to retrieve the key. The process of Flush+Reload
attack is performed in three steps, as follows: Step 1: The
attacker (spy) flushes a memory line in the (shared) cache.
Step 2: Spy waits for a certain amount of time (to let the
victim access the cache). Step 3: After the timeout, the spy
reloads the data into the cache and observes the access time to
determine whether the cache line was accessed by the victim
or not and in Figure 1(a).

(a) (b)

Discard

Yes

Flush  Victim's data

Wait for an interval

Flush data again
Timeout!!

Time > 
Threshold

Capture
secret
data

No

Flush  Victim's data

Wait for victim to access data

Reload data
Timeout!!

Time > 
Threshold Discard

Yes

Capture Secret Data

No

Fig. 1. (a) Flush+Reload attack: the spy (attacker) flushes the data and waits
to determine whether victim accessed the flushed line or not; (b) Flush+Flush
attack: the spy (attacker) flushes victim data, waits for a short interval and
re-flushes the same location to observe the time it takes to flush the data, thus,
deciding if the data was accessed by the victim

Thus, the Flush+Reload attack can be inferred as follows:
if there was a cache hit for the spy application indicates
that the cache line (data) was accessed (and fetched) by the
victim application, else the victim does not utilize the data.
For instance, the encryption algorithms such as GnuPG’s RSA
encryption use a sequence of the square, reduce and multiply
operations to calculate the private key’s exponent. Utilizing
the Flush+Reload attack, depending on the cache hit/miss and
the sequence of the Square, Modulo, and Multiply operations,
the spy deduces if the bit in key was a logical ’1’ or ’0’.
By continuously repeating the above process, the attacker can
retrieve the entire private key [16].

2) Flush+Flush Attack: Flush+Flush attack [17] is a rel-
atively advanced cache targeted attack that supersedes the
above discussed Flush+Reload SCA both in terms of speed
and stealthiness. The Flush+Flush attack is shown in Figure
1(b). Unlike the Flush+Reload attack, Flush+Flush is passive
and works only by executing clflush instruction in an
infinite loop. Unlike Flush+Reload, Flush+Flush attack does
not access any data, the number of cache misses thus created
are zero, and hence it becomes difficult to detect. When the
clflush instruction is issued, data that is cached takes more
time to be flushed out of the cache as it has to be evicted out
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across all cache levels completely as against non-cached data,
which takes less time. Based on the execution time of the
clflush the Flush+Flush attack concludes if the data was
cached or not cached. The attack does not load any memory
line into the cache, and hence if clflush takes more time to
execute would imply that the victim accessed the data. Based
on this strategy, the attack monitors the victim’s activities by
observing multiple cache lines or data of the victim.

B. GnuPG Encryption

In the previous subsection, we studied the SCAs, and here
we describe briefly the victim application that we utilize as a
case study to analyze the impact of proposed Covert-Enigma.
GnuPG’s public-key encryption (PKE) is a popular way of
encrypting the data to maintain confidentiality and integrity.
The PKE generates a pair of public and private keys, the
width of which is decided by the user. Any document that
is encrypted with a public key can only be decrypted with
the corresponding private key. Let’s say user A wants to send
secret data to user B. In such a case, B will have its own
public and private key, of which the public key will be made
available to user A. User A will use user B’s public key to
encrypt the secret data and send the encrypted data to user
B. To reveal the secret data, user B will decrypt the file with
its private key. The way the RSA algorithm is implemented,
it is nearly impossible to brute force an encrypted file if the
width of the secret keys is large enough and also due to the
known fact that users (both legitimate and attackers) have
no access to the RSA algorithm directly while it is in the
process of encryption and decryption. This might have been
true until a few years ago, but not anymore due to the state-of-
the-art SCAs that have successfully broken the keys’ secrecy,
thereby rendering the PKEs vulnerable to attackers. We have
discussed the GnuPG’s implementation of the RSA and the
DSA (with Elgamal) type encryption methods in this work.
A series of complex calculations compute the private keys,
and the exponent is what the attackers try to target. Once the
exponent is captured over the covert channel, the algorithm
can be easily broken. Work in [16] vividly describes how side-
channel attack can be used to spy on victim’s (RSA) operations
and thus steal secret data.

III. DESIGN AND IMPLEMENTATION OF COVERT-ENIGMA

In this section, we will first discuss the challenges that need
to be addressed to deploy a successful SCA defense. Further,
we present the attack model used in many of the existing
works.

Some of the cardinal challenges designers face while in-
cubating any defense in place to protect the victim are: The
defense mechanism should serve as a transparent shield and
does not alter the victim application’s functionality. Second,
the attacker executes the application for a large number of
times to reduce noise in the channel while trying to capture
the desired secret information. In such a scenario, the defense
mechanism must ensure that the victim application is guarded
against such attack methodology while reducing useful infor-
mation leaked to the attacker. Lastly, but crucial, the defense

mechanism must not significantly add overhead to the system
while trying to protect the victim application. Covert-Enigma
draws inspiration from adversarial learning [24] where we
introduce pixel-level perturbation for forcing misclassifications
on the attacker’s end. In Covert-Enigma we perturb the cache-
access sequence by using cognitive operations to mislead the
attacker.

A. The Attack Model

We assume an adversary whose intention is to steal the
confidential data that the victim is processing. For the
Flush+Reload and Flush+Flush attack to work, sharing the
cache space with the victim is a prerequisite. The spy does not
need access to privileged execution mode; instructions such
as clflush are allowed for user-level processes. The Covert-
Enigma does not require superuser privileges as well. It is
realistic to assume that the spy knows the addresses to monitor
the victim. The Covert-Enigma has similar knowledge of the
same addresses of interest to shield the victim against the
attacker [16]. The spy can execute on any core as the last-
level cache (LLC) is shared across all the cores. Given the
attack happens in a real-world setting, we assume that the
adversary does not have the right/control to execute the victim
at the same time as the adversary, but rather, the adversary
can observe a part of the victim’s execution during each
run. Also, referring to [16], the adversary cannot capture
successive victim cache accesses that happen before the next
probe (monitored addresses) monitoring cycle.

1 f u n c t i o n Square ( ) { . . . . . . .
2 Probe 1 / / Addres s 0 x0 86 f0
3 . . . . . . . . . . }
4
5 f u n c t i o n M u l t i p l y ( ) { . . . . . . .
6 Probe 2 / / Addres s 0 x08628
7 . . . . . . . . . . }
8
9 f u n c t i o n Modulo / Reduce ( ) { . . . . . . .

10 Probe 3 / / Addres s 0 x08616
11 . . . . . . . . . . }

Listing 1. Spy inserts probes to monitor targeted vulnerable functions in the
victim

B. Side-Channel Attack Without Covert-Enigma

Figure 2(a) shows the working methodology of traditional
Flush+Reload attack to spy on a victim (encryption) applica-
tion to reveal the secret key. The spy inserts probes at the
function addresses of non-trivial functions such as square,
modulo, and the multiply operations as these are repetitive
and their sequence determine the data flow and reveals the
secret key bits - this is how the existing cache-targeted SCAs
[16], [17] function. In the case of Flush+Reload attack, the spy
(attacker) constantly flushes the addresses at probed locations
and monitors if the victim accesses the flushed lines. The
process of probing the square, multiply, and modulo/reduce
encryption functions by the attacker is shown in Listing 1.
Referring to Figure 2(a), the attacker is able to retrieve the
secret information.
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C. Covert-Enigma: Injecting Cognitive Perturbations

Introducing random operations5 as in existing works to
induce perturbations is not efficient as the attacker can filter
out portion that does not contribute to the construction of
secret data [21], [25], [26]. Figure 3 shows an example of
cognitive perturbations injected during the victim’s execution.
Part (a) presents a sequence of operations that decodes to
“10001”. Part (b) shows random sequences injected, but these
random calls do not make sense in the context of the secret
data revealed by the victim. For example, adding a Reduce-
Square-Multiply operation, as shown in 3(b), does make the
secret data retrieval difficult, yet it does not force the attacker
to translate a ‘0’ bit to ‘1’ or vice-versa. In other words,
randomization does not lead to misinterpretation of the secret
data and can be filtered out by the attacker. Hence, it is crucial
to introduce perturbations cognitively that seem legit.

In this work, we consider RSA implementation [27] as
the victim. For RSA, to induce cognitive perturbations, the
Covert-Enigma makes cognitive calls to the code within
the functions square, reduce and multiply, responsible for
crypto-operation. For instance, a sequence of Square-Reduce
operations corresponds to bit ‘0’, whereas a sequence of
Square-Reduce-Multiply-Reduce will correspond to bit ‘1’
[16]. These operations are implemented as function calls in
the GnuPG’s encryption suite [27], [28]. Hence, by making a

5By random, we mean that random injection of any fake/dummy cache
access does not help much to mislead the attacker

dummy function call to the Multiply followed by the Reduce
function, the defense can pose as if the sequence corresponds
to bit ‘1’ whereas the actual secret bit was ‘0’. We term this
phenomenon as the elevation of entropy. It is to be noted that
the reverse operation holds true as well, injecting perturbations
such that sequences corresponding to bit ‘1’ are observed as a
‘0’. After cognitive perturbation, the series contains additional
‘multiply’ and ’reduce’ operation, as shown in part (c). With
these additional accesses, the sequence is deduced as “11001”.
The implementation of this technique does not modify the
victim’s original functionality. Referring to Figure 2(b), the
attacker observes “11010” instead of the original sequence of
“10010”, given the cognitive perturbations.

The cognitive perturbations are dummy calls as they are
not a part of the victim’s original operations. Referring to
Listing 2, the functions function 1 and function 2 are victim’s
original operations. In the function main, the result of either
function 1 or function 2 is fetched from the cache. We
say the function call is a dummy call when the function’s
obtained result is discarded, meaning that the victim did not
use the result. The cache access is only made to perturb
the sequence of operations or cache accesses. The dummy
calls are injected by Covert-Enigma as a part of the defense
mechanism to trick the attacker into observing the sequence of
operations the victim performs, including the injected dummy
calls. The attacker depends on the cache access patterns,
indicated by probe hit/miss, to steal secret information. Hence,
by injecting dummy operations, the attacker observes the
victim’s original operations perturbed by dummy operations.
These injected perturbations translate to misleading secret
information different than the original information without
injected perturbations.

D. Generation of Cognitive Perturbations
The generation of cognitive perturbation is intended to

render the observance of sensitive information (over the side-
channel) during the attack a time-consuming task. With cogni-
tive perturbations, it becomes not only a time-consuming task
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for the attacker, but it also becomes difficult on the attacker’s
part to differentiate between the cache accesses caused by the
defense in place versus those caused by the victim application.
The adversary monitors the probed addresses. Therefore, the
adversary is aware of the pattern of the victim’s accesses
when it executes the probed code lines. Our motivation in
introducing cognitive perturbation is that if we can carefully
craft cache accesses such that they would be considered legit
by the adversary, it would be dummy operations that the victim
makes to increase the entropy in the side-channel. Because
these operations, though dummy in nature, make real cache
accesses, they are considered by the adversary as an operation
made by the victim while processing sensitive data. These
cognitive operations need not be the replica of the functions
found in a victim. Still, they could be simple lines of code that
reload the same addresses6 as are flushed by the adversary.

1 f u n c t i o n 1 {
2 a = c a c h e l o c a t i o n ( 1 0 0 ) ;
3 re turn a ; }
4
5 f u n c t i o n 2 {
6 b = c a c h e l o c a t i o n ( 1 7 0 ) ;
7 re turn b ; }
8
9 f u n c t i o n m a i n {

10 dummy flag = 0 ;
11 i f ( b i t ==0)
12 r e s u l t = f u n c t i o n 1 ;
13
14 e l s e i f ( b i t ==1)
15 r e s u l t = f u n c t i o n 2 ;
16
17 dummy flag = 1 ;
18 i f ( b i t ==0)
19 r e s u l t = f u n c t i o n 1 ;
20 d i s c a r d ( r e s u l t )
21 e l s e i f ( b i t ==1)
22 r e s u l t = f u n c t i o n 2 ;
23 d i s c a r d ( r e s u l t )
24 }

Listing 2. Example of a dummy operation

We build cognitive operations that execute (and access cache)
similar to what the victim’s original functions would do by
simply reloading addresses in the memory corresponding to
the lines of code in the victim’s original operations. These
cognitive operations are considered legit by the adversary
application, as will be evident in Section IV, where we present
and analyze the experimental results.

Addition of the cognitive perturbations might present the
notion of additional power consumption, which may be used
for other forms of side-channel attacks. However, the dummy
function calls are limited in number, and the workload of
these functions is miniature in nature. Thus, the amount of
additional power or latency introduced by the Covert-Enigma
is small. In addition, to perform a power-based SCA, the basic
assumption would be that the attacker has power signatures for
all the victim application(s) and can reliably compare the same
with the golden power traces. However, the power trace collec-
tion involves uncertainties from different system components,
which could be similar to additional power consumption by the
introduced dummy operation of Covert-Enigma. Furthermore,
the power SCAs are beyond the scope of this work

6The vulnerability in the victim application is known to the adversary.
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bits change each run; (c) Sequence seen by adversary with Covert-Enigma
cyclic mode where position of group of perturbed bits remains same until
iteration ‘N ’; (d) Bit positions from previous run remain same; (e)Bit
positions have shifted randomly during new ‘cycle’ of same execution

E. Covert-Enigma Modes of Operation

To enhance the robustness of the Covert-Enigma , the
Covert-Enigma is equipped with two modes of operation -
arbitrary and cyclic. Each mode can be set by the user to inject
the corresponding level of perturbations. The tuning of the
parameters in the mode refers to the reconfigurable aspect of
Covert-Enigma. The reconfigurable parameters are “total bits
perturbed” for the Arbitrary mode; and “total bits perturbed”
and “Cycle Iterations (N)” for the Cyclic mode.

1) Arbitrary Mode: As in Figure 4(b), the arbitrary mode
cognitively perturbs a group of cache operations by calling
dummy operations to elevate the randomness. The arbitrary
mode randomly selects positions to call dummy operations. To
avoid keeping the number of successive dummy operations
static, arbitrary mode randomly groups cache operations (of
the victim) and inserts dummy cache accesses7 in between
two successive victim cache access. The random bit position
selection is explained in Section III-E3.

2) Cyclic Mode: As illustrated in Figure 4(c),(d) and (e),
our Covert-Enigma supports cyclic mode of operation, where a
group of bits is selected at random and cognitively perturbed,
and the group selected stays the same for a few cycles
(execution runs, in other words) determined by the user. Post
the cycle count (details in the next subsection), a different set
of bits is selected to insert dummy operations. In summary,
the perturbed bit positions change every few cycles (denoted
as ‘N ’) selected by the user, and for new executions, i.e., at
‘N + 1’ cycle, new bits are selected, the position of which
remains the same for another ‘N ’ runs, as shown in Figure
4(d). The duration of the cycle is denoted as ‘N ’ where N
is an integer. After ‘N ’ cycles, a new bit or set of bits are
selected to perturb cognitively, and the sequence seen by the

7Cache is accessed but does not contribute to the functionality of the
victim’s operations
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attacker changes; this is shown in Figure 4(e). The positions of
these bits are random during every run and reduce the secret
bits recovered during an attack by elevating the randomness
in the side-channel.

3) Generation of Random Bit Positions: We introduced the
two modes of operation previously. Both arbitrary and cyclic
modes require random numbers to be generated to select bit
position to inject cognitive perturbation(s). In such a case,
Intel’s RDRAND [29] and Linux’s ‘/dev/random’ [30] can be
utilized. The true random number generator (TRNG) generates
‘true’ random numbers based on random, non-deterministic
noise generated by the device drivers into an entropy pool,
which returns random numbers. The Covert-Enigma utilizes
these random numbers to generate cognitive noise.

1 A t t a c k {
2 Loop 1 : c l f l u s h ( Probe 1 ) ;
3 c l f l u s h ( Probe 2 ) ;
4 c l f l u s h ( Probe 3 ) ;
5 Reload Probe 1 , Probe 2 and Probe 3 ;
6 w a i t f o r t i me = t w a i t ;
7 t = Measure R e l o a d i n g t ime ;
8 jump Loop1 ;
9 cmp ( t , t h r e s h o l d t ime ( t h ) ) ;

10 i f ( t > t h ) => Cache miss ;
11 i f ( t < t h ) => Cache h i t ; }

Listing 3. Attack code to capture data

F. Summary of Covert-Enigma

Algorithm 1 outlines a high-level simplified view of the
proposed Covert-Enigma along with a snippet of the victim
and the attack code. Covert-Enigma part is presented in
Algorithm 1 from Lines 15 to 39. The user needs to feed
in the value of the size of the key. The position array,
successive bits array stores the values of the bit positions
to inject dummy calls to and the successive bits to perturb,
respectively. The values required for driving the cyclic mode
are saved to a tamper-proof location that stores the current
cycle count, along with the two arrays mentioned above. The
Covert-Enigma and victim are synchronized using function
calls. The arbitrary mode is shown in Lines 20-25. The
arbitrary mode injects the perturbations until the bit count in
the successive bits array. In our implementation, the Covert-
Enigma only injects a dummy multiply followed by a dummy
reduce to give the notion of a bit ‘1’ instead of a bit ‘0’
- as a Square-Reduce-Multiply-Reduce sequence corresponds
to bit ‘1’ being processed by the RSA. The cyclic mode
is shown in Lines 26-39. The cyclic mode operates similar
to another mode. The major difference is that it does not
keep injecting dummy operations with every new cycle of the
victim application. To enable this, the Covert-Enigma accesses
a tamper-proof location that stores the cycle count and the
other two arrays mentioned previously. This helps to keep
injected perturbations in the victim’s cache access patterns
‘static’ for a user-selected number of cycles, specified by the
value ‘N ’. If the victim has not completed the set number of
cycles, the Covert-Enigma ensures that the same positions are
selected to inject the dummy operations by reloading from
the tamper-proof location. Otherwise, new random positions

Algorithm 1 Pseudocode illustrating generation of perturba-
tions with Covert-Enigma and the modes of operation
Require: Private Key
Ensure: Decoded Incorrect Key
1: Victim Program (Mode = Arbitrary or Cyclic)

{// Performs secure-critical operations that leak data over covert channel}

2: func Square()
3: { Probe 1 inserted here
4: Do Square operation;
5: Wait for the Covert-Enigma; }

6: func Reduce()
7: { Probe 3 inserted here
8: Do Reduce operation;
9: Wait for the Covert-Enigma; }

10: func Multiply()
11: { Probe 2 inserted here
12: Do Multiply operation;
13: Wait for the Covert-Enigma; }

14: Covert-Enigma (){
15: position key size = 1024/2048/3076 or 4096;
16: position array = true random generator();
17: successive bits array = true random generator();
18: tamper proof location = {N, position array, successive bits array};
19: bit count=0;
20: if (mode = Arbitrary(total bits) ) then {
21: for i in range(0 : sizeof(position array)):
22: if (current position=position array[i]) {
23: do { Multiply(dummy);
24: Reduce(dummy);
25: } while(bit count!= successive bits array[i]) }

26: else if (mode = Cyclic(total bits, N)) then {
27: if (cycle count != N;) then {
28: reload tamper proof location = (N, position array,
29: successive bits array );
30: else
31: {refresh tamper proof location = (N, position array,
32: successive bits array );

33: int N, cycle count=0, bit count; #N is selected by user

34: for i in range(0 : sizeof(position array)):
35: if (current position=position array[i]) {
36: do { Multiply(dummy);
37: Reduce(dummy);
38: tamper proof location++; }
39: while(bit count!= successive bits array[i]) } }
40: end Victim Program;

are generated. For the purpose of brevity, we limit the details
of the attack, but interested readers can refer to [16] for details.

The attack code has been shown in Listing 3. The attack
code is launched with the victim executing in parallel by the
adversary to spy on the side-channel data. The probes 1,2,
and 3 are inserted by the victim in the first few lines of code,
which the attacker knows are called iteratively by the victim.
These probes from the attack’s point of view are simply the
addresses of the lines in the victim code. The attack code
then flushes these probed lines and waits for time t wait for
the victim to execute. If the victim executed and accessed
the flushed cache line, the attacker, upon reloading the line,
would see it as a cache hit - since the data was available and
fetched quickly. Else, the attacker sees a cache miss. The cache
hit/miss decisions are based on the threshold8 value (slightly

8The threshold is the probe access time in cycles
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varies from system to system), which was ‘120’ cycles for our
experimental setup.

Entropy Maximization By the conventional entropy equation,
H = − log(Pi), where Pi is the probability of bit i. As
seen previously, Covert-Enigma increases randomization by
injecting perturbations in the signal; hence, the probability
that the attacker observes the correct/original key bit reduces
dramatically. Hence, the lower the probability, the higher
the entropy, which means more randomness in the retrieved
information. Since a group of bits are selected to perturb
the observed side-channel data, and the user can choose the
position of these bits and their quantity, the total permutation
of such sequence is huge if the attacker tries to observe the
side-channel data after iterating the victim for thousands or
even more number of times. With a 4096-bit key, the attacker
would have to iterate it for 4096P 2=16.77*106 for 2 bits
perturbed and 4096P 6=4.7 ∗ 1021 for 6 bits perturbed. Hence,
by setting more number of bits to be cognitively perturbed
or randomly choosing the number of bits to be cognitively
perturbed, the user can render more resilience to SCAs, despite
the attacker executing an attack a large number of times.

IV. EXPERIMENTAL EVALUATION

A. Validating the Attack and Covert-Enigma

Experimental Setup: We tested the proposed Covert-Enigma9

on system with Intel-i7 core running Ubuntu 18.04 LTS OS
with 16 GB RAM and GnuPG’s [28] RSA [27] implementa-
tion. Flush+Reload [16] attack code can be found at [31].
Validation of Attack: Here, we evaluate the efficacy of the
proposed defense to mitigate side-channel leakage to dissuade
the adversary from stealing sensitive data. The cache size (last
level cache) on our experimental setup was 2MB, with 16-way
cache associativity. The cache map is a representation after
one iteration of the victim. We present cache access maps
(part of a cache that is of interest to investigate) in Figure 5
for scenarios where the victim is under attack and when our
proposed Covert-Enigma shields the victim. The nuances of
the colors shown in the figure demonstrate the relative accesses
made to a particular location - darker shade signifies more
frequent accesses. In comparison, a lighter shade signifies
relatively less frequent accesses. As seen in Figure 5(a) and
(b), probed functions for RSA victim are highlighted. These
locations correspond to the cache locations attacked by the
adversary.

Figure 5(a) shows access to the cache made by the victim
and the adversary. Figure 5(b) shows the cache accesses
made by the defense, adversary, and the victim, as the same
cache is shared across. In 5(a) one can see tightly clustered
dense regions of cache access. However, in 5(b), one can
observe the dense areas spread across the whole map. Such
a disaggregation leaves the attacker with more ambiguity.
Further, some areas have shown an increase in access rate due
to additional dummy operations introduced by Covert-Enigma.
It is to be noted that the Figure 5 is a simplified illustration

9https://github.com/hartanonymous3512/Covert-Enigma.git

of cache accesses obtained from experiments to demonstrate
the effectiveness of proposed Covert-Enigma.
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Fig. 5. (a) Cache access map for operations observed when the victim is under
attack; (b) Cache access map for operations observed when Covert-Enigma
makes cognitive calls to the probed cache lines
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Fig. 6. Bits recovered under SCA shown with different dummy cache accesses
and for different key sizes. The victim application is wrapped by Covert-
Enigma. The number of bits recovered (secret) reduces with increase in
dummy cache calls made by Covert-Enigma

B. Recovering Sensitive Data

We also evaluate the effectiveness of the proposed defense
in terms of key extraction. In other words, we present the
information regarding how many key-bits can be extracted
by executing the RSA application under the Flush+Reload
SCA with traditional randomization and proposed defense. We
follow the procedure described in [16], [17] for key extraction.
We execute the attack on the victim and recover as many bits
of the secret data as possible. As described in our threat model,
we place our experiments in a real-world setting where the
adversary does not have control over the victim and can only
observe a part of the victim’s execution. This is realistic as
the victim only executes for encryption/decryption operations
only when required. Hence, it is imperative to mention that
the adversary initiates the attack during such instances and
observes a portion of the victim’s execution. The results of the
key recovery are presented in Table IV and VI. The colored
text highlights the cognitive perturbations that are injected. For
Cyclic mode, the selected bit positions remain the same until
‘N ’th round (N = 25 in our experiments), followed by new
bit positions selected. A part of the observed key is shown for
conciseness. We evaluate the defense under different key sizes
for crypto-operation.

Table II shows the key extraction for different key sizes
with traditional randomization defense. We implement a ran-
domization strategy similar to that in [21]–[23]. We do not
claim an accurate replication of the defense in [21]–[23], yet
consider a similar approach as a baseline for comparing the
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TABLE I
GROUP OF KEY BITS PERTURBED BY COVERT-ENIGMA

Group of key bits perturbed by Covert-Enigma - Arbitrary mode
Attack Victim Key Original Key Victim seen key Key seen by the adversary

Flush+Reload RSA key 1 100100001110 100100001110 100111001110
RSA key 2 010110000111 010110000111 010110111111

Group of key bits perturbed by Covert-Enigma - Cyclic mode
Attack Victim Key Original Key Victim seen key Key seen by the adversary

Iteration 1 Iteration Nth Iteration (N+1)th

Flush+Reload RSA key 1 100100001110 100100001110 111100111110 111100111110 100111001111
RSA key 2 010110000111 010110000111 110111100111 110111100111 011110011111

proposed methodology versus a similar defense where the
cache is accessed randomly to mislead the attacker. The works
in [21]–[23] are based on randomization but require hardware
or software stack changes. We have replicated them without
software stack or hardware architecture changes. Hence, to
establish a baseline, we consider the above-mentioned works
as a randomization-based defense generically, and compared
our work with a similar version. Figure 6 presents the results
for bit recovery with Covert-Enigma for different key sizes
and dummy cache accesses. The number of calls made are for
one complete execution of the victim. The results in Table II
demonstrate that with a defense strategy like that presented
by the work in [21]–[23], the recovery of the secret key/data
ranges from 88% to 77%. We have presented the recovery
rate with when the victim is protected by Covert-Enigma in
Figure 6. We have compared Table II with Figure 6 indicating
that with our proposed defense, the recovery rate reduces to
72-59% for key size of 1024, 68-52% for 2048, 62-48% for
3072, and 52-40% for a key size of 4096.

For the arbitrary mode, we obtain similar results as in
Figure 6. The cyclic mode’s advantage is in scenarios where
the user happens to use a crypto operation that uses the same
key for de-obfuscating different encrypted files on the system
and where the adversary can obtain information from multiple
executions of the victim. Another evaluation technique we
have used in this work is by comparing the observed traces.
The spy program is made to print the operations’ sequence
while the probed locations - probed functions Square, Reduce,
and Multiply - are accessed by the victim. These sequences
are compared against the victim’s operations under Covert-
Enigma. Table III presents the number of perturbations (ad-
ditional cache calls) injected for a 1024-bit key. The table
reports the differences seen in percentage. For instance, an 8%
difference is observed while comparing the victim’s operations
without Covert-Enigma and with Covert-Enigma. Theoreti-
cally, 8% should have been 10% for 100 additional calls in a
1024-wide key. But, as explained previously, the spy cannot
see successive cache operations, and hence, some operations
are not observed, as the probe scan time is less than the cache
access time.

TABLE II
SCA ON VICTIM PROTECTED BY TRADITIONAL RANDOMIZATION AND

COVERT-ENIGMA. ATTACKER RECOVERED SECRET DATA
Key Size 1024 2048 3072 4096

Bits Recovered (traditional randomization) (%) 88.2 85.1 81.7 77.0
Bits Recovered (Covert-Enigma) (%) 60-70 53-68 48-62 40-52

TABLE III
PERCENTAGE DIFFERENCE COMPARISON OF VICTIM OPERATIONS WITH

AND WITHOUT COVERT-ENIGMA
Amount of injected perturbations 100 300 500 600

Difference observed with perturbations(%) 8 26 48 55

C. Covert-Enigma with Flush+Reload Attack

We have chosen the Flush+Reload and Flush+Flush attack
spying on RSA-RSA and DSA-Elgamal encryption algorithms
with a secret key of 4096-bits, as implemented in the GnuPG.
We will also present the outcome with different modes of
operation - Arbitrary and Cyclic. We verified our proposed
Covert-Enigma by examining the perturbations injected both
on the victim and spy end. Figure 4 presents a pattern of the
sequence of operations plotted against time slots versus the
probe time as seen by the attacker/victim. Figure 4(a) shows
the secret information observed by the victim and the attacker
without the Covert-Enigma. Every Square-Modulo operation
not followed by Multiply is translated as bit ‘0,’ and every
Square-Modulo-Multiply-Modulo operation as bit ‘1’, as in
[16]. In this case, the victim and the attacker both see the
same information - the spy observes the channel’s leaked
information. Figure 4(b) shows the sequence of operations
when the victim is being protected by the Covert-Enigma in
the arbitrary mode -the victim observes the key as “10010000”,
the original key, while the attacker sees it as “10011100” since
some of the ‘0’ bits are flipped to bit ‘1’. These perturbations
are induced irrespective of the key, as shown in Table IV with
cognitively selected zeros converted to ones for the key 1
for the RSA-RSA type encryption -victim sees the key as
“100100001110”, the attacker observes it as “100111001110”.
One needs to note that in Figure 4 all the bits are not shown
to avoid congestion in the figure, and also, it was not possible
to show all of the 4096-bits. Also, for the Table IV and VI,
a part of the large key has been shown to demonstrate the
perturbation rather than the actual position in itself.

Similarly, for key 2, DSA-Elgamal type, some other random
bits are perturbed, and the attacker observes a different pattern.
For the Cyclic mode, as shown in Figure 4 and Table VI, the
perturbed key remains the same for ‘N = 25’ iterations, post
which other random bits are perturbed in the sequence that
begins with (N+1)th iteration, which stays static until the end
of the cycle which is (N+N )th iteration. As seen from Figure
4, the attacker observes the sequence as “11110000” which
remains the same until the end of iteration ‘N ’, post which
it changes to “10010110” and the results for the same can be
confirmed from Table VI.

Tables V and VII demonstrate the results where randomly
chosen (similar to the group perturbations) single bits are
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flipped/perturbed. The successive bits array value can be
modified to choose single bit perturbation instead of grouped
perturbation, where successive bits are perturbed. From Table
V, the victim sees the value as “100100001110” while the at-
tacker observes it as ”10011000110” for RSA type. Similarly,
it can be seen from Table VII how the observation is affected
using the Cyclic mode. The single-bit perturbations can be
chosen to perturb bits along the entire sequence of operations
of cache accesses. The user can choose a single bit versus a
group of bits considering the security-overhead trade-off.

D. Covert-Enigma with Flush+Flush Attack
We have evaluated our Covert-Enigma against Flush+Flush,

whose key extraction results are presented in Table IV and VI
for both the modes. Similar to the Flush+Reload, the induced
perturbations can deceive the spy in both arbitrary and the
Cyclic modes. For instance, for the RSA type keys, in the
arbitrary mode, the key gets translated from “111000100110”
to “111011100110” whereas for the Cyclic mode it is observed
as “111011111110” and “111000111110” during iteration-1
and iteration (N+1)th respectively. For our proposed defense
to work even for Flush+Flush, it needs to ensure that the lines
of code within the square, modulo, or multiply functions are
cached, and only then the attacker can flush a cache line within
the code and consider that the encryption must have accessed
the function/operation. Tables V and VII present results for
single bit perturbations for both the modes for Flush+Flush.
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Fig. 7. Overhead analysis for 4096-bit key with different amounts of
randomization. Overhead compared with a close replication of random cache
policy similar to [21]–[23]
E. Summary of the Implemented Results

Tables IV, V, VI, VII are ideal cases because while ex-
ecuting them on our machine we reduced the number of
background activity. But, in actual scenarios, the OS and other
application activity will generate noise in the cache, making
the attack more difficult. The attacker might not be able to
see the key bits in consecutive order. Hence, as the keys
seen by the attacker will be different every time and with
such randomness, explained in detail in Subsection III-F it is
very difficult for the attacker to retrieve the key knowing the
fact that executing SCAs successfully is non-trivial when it
comes to retrieving secret keys amid operating system noise
and various cache operations. Our Covert-Enigma enhances
security, but there is no single/unified mechanism to evaluate
all the corner cases. A single solution does not address all the
problems. Our proposed solution holds for the threat model
described previously.

F. Overhead Analysis
The overhead analysis graph is shown in Figure 7. The fig-

ure compares the execution times of traditional randomization
technique similar to [21]–[23] and Covert-Enigma. We con-
sider the arbitrary mode for presenting the results. The trend
is shown for different amounts of randomization added (along
the X-axis) and the execution time in microseconds (along Y-
axis). The average execution times across different percent of
randomization is shown in Figure 7. The trend clearly explains
that with our defense, the overhead is 50% less than a ran-
domization technique that tries to insert random calls for every
bit of the secret key. Our proposed defense inserts the calls
cognitively, hence incurs less overhead - cache is accessed less
frequently than traditional randomization techniques. We see
this trade-off as a beam scale balance that weighs security and
performance (in terms of execution time/cycles) on each of its
scale pans. The user can determine the amount of perturbations
by analyzing the overhead-security trade-off. Again, it is to
be noted that the traditional randomization we compare our
proposed methodology is not an exact reproduction of the
work in [21]–[23], but it is similar in a manner that we allow
injecting random perturbations in the cache in software; no
hardware modifications are required.

How the cognitive perturbations differ from traditional ran-
domization is explained further referring to Figure 7. If each
bit of the key is perturbed, meaning the cache is accessed
in a dummy fashion (randomly), the overhead is significantly
higher. From our experiments, if X is the base execution time
for the victim, then 2.19X is the overhead with traditional
randomization, while it is 1.29X with Covert-Enigma’s arbi-
trary mode. All the overheads are averaged for simplicity. A
4096-bit key is used for crypto operations, and by varying
the number of cognitive perturbations, higher security can be
offered. This comes at the expense of some overhead. With
10% injected perturbations, the overhead is 25% less with
Covert-Enigma compared to randomization only. With 25%
injected perturbations, we observe a 50% less overhead against
the randomization only method as mentioned above. Hence,
perturbing each bit is not a solution owing to large infeasible
overhead. With traditional randomization, the overhead can be
feasible, but the attack can break the defense much earlier than
it can when Covert-Enigma wraps the victim. Moreover, the
overhead of Covert-Enigma is less than the other technique.

V. THE ATTACK PHASE AND THE COVERT-ENIGMA: A
CASE-STUDY

In this section, we will briefly discuss the motivation
supporting the proposed Covert-Enigma which is presented
as a case study.

Figure 8 shows different scenarios of the victim’s access
to the cache memory and the attacker’s access and how the
attacker exploits this information deducing the secret key.
Figure 8(a) shows a scenario where the attacker tries to flush
the victim’s data, then waiting for a predefined time before
reloading the same data. As can be seen, since the victim
did not access the data, the attacker experiences a cache-miss
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TABLE IV
GROUP OF KEY BITS PERTURBED BY COVERT-ENIGMA - ARBITRARY MODE

Attack Type Encryption Key Original Key Victim seen key Key seen by the attacker

Flush+Reload RSA-RSA key 1 100100001110 100100001110 100111001110
DSA-Elgamal key 2 010110000111 010110000111 010110111111

Flush+Flush RSA-RSA key 3 111000100110 111000100110 111011100110
DSA-Elgamal key 4 100000110011 100000110011 100111110011

TABLE V
SINGLE KEY BIT PERTURBED BY COVERT-ENIGMA - ARBITRARY MODE

Attack Type Encryption Key Original Key Victim seen key Key seen by the attacker

Flush+Reload RSA-RSA key 1 100100001110 100100001110 100110001110
DSA-Elgamal key 2 010110000111 010110000111 010110100111

Flush+Flush RSA-RSA key 3 111000100110 111000100110 111001100110
DSA-Elgamal key 4 100000110011 100000110011 100001110011

TABLE VI
GROUP OF KEY BITS PERTURBED BY COVERT-ENIGMA- CYCLIC MODE

Attack Type Encryption Key Original Key Victim seen key Key seen by the attacker
Iteration 1 Iteration Nth Iteration (N+1)th

Flush+Reload RSA-RSA key 1 100100001110 100100001110 111100111110 111100111110 100111001111
DSA-Elgamal key 2 010110000111 010110000111 110111100111 110111100111 011110011111

Flush+Flush RSA-RSA key 3 111000100110 111000100110 111011111110 111011111110 111000111110
DSA-Elgamal key 4 100000110011 100000110011 100110111111 100110111111 111000110011

TABLE VII
SINGLE KEY BIT PERTURBED BY COVERT-ENIGMA- CYCLIC MODE

Attack Type Encryption Key Original Key Victim seen key Key seen by the attacker
Iteration 1 Iteration Nth Iteration (N+1)th

Flush+Reload RSA-RSA key 1 100100001110 100100001110 101100011110 101100011110 100101001111
DSA-Elgamal key 2 010110000111 010110000111 110110100111 110110100111 011110010111

Flush+Flush RSA-RSA key 3 111000100110 111000100110 111010110110 111010110110 111000101110
DSA-Elgamal key 4 100000110011 100000110011 100100111011 100100111011 101000110011

(a)

(b)

Victim

Victim

Attacker

Victim

Attacker
(c)

Flush
Waiting for

Victim Reload Access

Attacker

Fig. 8. Timing diagram depicting different scenarios where a victim and/or
an attacker may access the cache ;(a) Victim Does not Access; (b)Attack with
Victim Access; (c) Victim multi-Access

when it tries to reload the data, which is discarded. Figure 8(b)
visually describes the victim’s access while the attacker was
waiting for the victim to execute. Since the victim accessed the
data, the attacker experiences a cache-hit during the reloading
phase, thus deducing the data accessed by the victim. Figure
8(c) presents a scenario when the victim accesses the cache
multiple times within the same ‘wait’ window of the attacker.
But the attacker can spy on only the recent chunk of data
accessed by the victim, and it will never know what locations

the victim accessed preceding the recent access. In summary,
irrespective of the scenario, the attacker can still spy on the
location accessed by the victim.
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Fig. 9. (a) Sequence of operations in a crypto system that potentially leaks
secret data; (b) Cognitive noise injected in the victim’s covert channel data
to protect the information while tricking the attacker

In addition to this, referring to Figure 9, we can get an
idea of how the attacker spies on the crypto application while
executing secure critical operations. As explained in Section
II, the GnuPG uses different operations to encode/decode
user data or secret data where the sequence of these oper-
ations can leak the secret data shown in Figure 9. Part (a)
presents a sequence of operations that decodes to “10001” as
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discussed previously. If only some noise could be added to
these sequence traces, the SCAs could be thwarted with little
effort. Let’s consider a defense mechanism that adds noise
to the traces observed by the attacker. This might dissuade
the attacker from decoding the secret data as due to noise,
deducing the key would seem difficult. Still, in case of a
persistent attack on the system, the attacker can break the
defense wall by observing a large sample of the observed
data and filtering the noise. Hence, merely adding noise to
the operations’ sequence will not suffice and is not a robust
solution. We introduced cognitive noise to the sequence of
operations that looks legit to the attacker yet leads to an
incorrect deduction of the secret key. Figure 9(b) shows the
same sequence of operations as part (a) but with intelligently
crafted noise injected in the sequence. This crafted noise
concerning the sequences makes sense to the attacker. As
can be seen, the multiply and reduce operations are dummy
called succeeding the square and reduce operations (original
operations called by the victim), which, when observed by the
attacker, will translate to bit-1 instead of bit-0 which tricks
the attacker. Since the injected operations are dummy, they
do not harm the victim’s crypto operations. This has been
our motivation behind the proposed work. We have discussed
different modes of operation of the proposed method to render
the defense more robust and resilient to attacks.
Extending to other victims: It needs to be noted that our
proposed Covert-Enigma could be extended to any victim
that repeatedly calls for lines of code, where the sequence of
accesses to the cache is important. For example, suppose the
victim application is Advances Encryption Standard (AES). In
that case, the user can decide to randomize the cache accesses
AES makes for reading tables used for the crypto-operations.
The adversary times the access to the locations of the tables
to conclude which ones were accessed recently. The user can
employ Covert-Enigma to introduce cognitive perturbations,
which seems legit (cache access), but the sequence is scram-
bled to camouflage the sequence of cache operations. Thus,
it becomes possible to hide the real accesses made by AES,
yet leading the attacker to consider cache accesses made by
Covert-Enigma.

VI. STATE-OF-THE-ART

In order to secure the hardware systems against cache-
side channel attacks, various defense techniques have been
proposed that use different strategies. To address the chal-
lenges of cache-targeted SCAs, techniques such as static
cache partitioning [26], [32], partition locked cache [25], non-
monopolizable (nomo) cache architectures [33] and other de-
fenses [26], [32], [34], [35] are proposed. These techniques can
tremendously reduce the interference between the attacker and
victim’s memory access, thereby providing a better defense.
However, adopting such techniques require alterations in the
cache design which may not be feasible [26]. To overcome
such limitations, techniques such as cache-partitioning, ran-
domization of cache architectures are introduced. Conventional
fully associative cache is one of the preliminary randomization

based cache, where a memory line can be mapped to any of
the existing cache lines. Similarly, any of the cache lines can
be evicted in random, thus, preventing the leakage of cache-
access information. Despite its security benefits, this technique
incurs large delays and is power hungry [26]. In a similar way,
random permutation cache [25], newcache [22], [36], random
fill cache [21], and random eviction cache [26] strategies
are implemented. Compared to the cache-partitioning, the
randomization based solutions have shown higher robustness,
yet the above mentioned methods require modifications to the
hardware and/or software and incurs performance penalties.
We discuss the most relevant and prominent ones in this
section.

A. Cache Partitioning based defenses

These defenses are based on eliminating the cache inter-
ference between the running processes. This way, running
processes cannot snoop on each others’ cache activity. He
et al., [26] proposed to protect sensitive cache access (e.g.,
coming from sensitive data/operation) by reserving dedicated
cache sets for those sensitive accesses. Thus, the sensitive
cache access will always index to the dedicated sets and
all other cache access, including cache access from other
running processes or threads will index to the rest of the cache
sets. As the mapping from memory to a cache set involves
the physical memory address, the proposed solution utilizes
the operating system to organize physical memory into non-
overlapping cache set groups, also called colors, and to enforce
isolation policy on these groups. However, this approach leads
to inefficient resource utilization and hardware overheads.
Vladimir Kiriansky proposed dynamically allocated way guard
(DAWG) [37], a generic mechanism for secure way parti-
tioning of set associative structures including memory caches.
DAWG endows a set associative structure with a notion of
protection domains to provide strong isolation. When applied
to a cache, unlike existing quality of service mechanisms such
as Intel’s Cache Allocation Technology (CAT), DAWG fully
isolates hits, misses, and metadata updates across protection
domains. DAWG enforces isolation of exclusive protection
domains among cache tags and replacement metadata, as long
as: 1) victim selection is restricted to the ways allocated to
the protection domain (an invariant maintained by system
software), and 2) metadata updates as a result of an access
in one domain do not affect victim selection in another do-
main (are requirement on DAWG’s cache replacement policy).
DAWG protects against attacks that rely on a cache state-based
channel, which are commonly referred to as cache-timing
attacks, on speculative execution processors with reasonable
overheads. The same policies can be applied to any set asso-
ciative structure, e.g., TLB or branch history tables. DAWG
requires additional techniques to block exfiltration channels
different from the cache channel. Nonetheless, cache partition-
ing based defenses lead to hardware as well as performance
overhead.
SGX Enclave protection. Furthermore, Oleksenko et al. pro-
posed Varys [38], a system that protects unmodified programs
running in SGX enclaves from cache timing and page table
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SCAs. The Varys takes a pragmatic approach of strict reser-
vation of physical cores to security-sensitive threads, thereby
preventing the attacker from accessing shared CPU resources
during enclave execution. This execution environment ensures
that neither time-sliced nor concurrent cache timing attacks
can succeed. Due to the lack of appropriate hardware support
in today’s SGX hardware, Varys remains vulnerable to timing
attacks on Last Level Cache (LLC). The paper also proposes
a set of minor hardware extensions that hold the potential
to extend Varys’ security guarantees to L3 cache and further
improve its performance. But the downside is it requires the
application to monitor the SSA (SGX State Save Area) value,
thus increasing the overhead and it introduces a window of
vulnerability.
3D Integration. Chongxi Bao et al. in [39] show that 3D
integration also offers inherent security benefits and enables
many new defense mechanisms that would not be practical
in 2D. The work is compatible with the ongoing trend of
transition from 2D to 3D and enables designers to take security
into account when designing future cache using 3D integration
technology. Experimental results show that using their cache
design, the side-channel leakage is significantly reduced while
still achieving performance gains over a conventional 2D
system.
Intel Cache Allocation Technology (CAT). Xiaowan Dong
et al. present in [40] defenses against page table and last-level
cache (LLC) side-channel attacks launched by a compromised
OS kernel. They prototyped the solution in a system call
Apparition, building on an optimized version of Virtual Ghost.
To thwart LLC side-channel attacks, it leverage Intel’s CAT
in concert with techniques that prevent physical memory
sharing. Apparition’s control over privileged hardware state
can partition the LLC to defeat cache side-channel attacks.
Their defense combines Intel’s CAT feature (which cannot
securely partition the cache by itself) with existing memory
protections from Virtual Ghost to prevent applications from
sharing cache lines with other applications or the OS kernel.
Similarly, authors in the paper [41] propose to utilize CAT
(cache allocation technology) in Intel processors to provide
a system-level protection to defend against SCAs on shared
LLC. CAT is a way-based h/w cache-partitioning mechanism
for enforcing quality to LLC occupancy. ‘CATalyst’ uses CAT
to partition the LLC securely into a hybrid hardware-software
managed cache to defend against SCAs.

B. Randomization based defenses

To overcome limitations of hardware oriented approaches,
randomizing the memory access is introduced in [25], thus,
making the attack much harder, even impossible. For instance,
[26] uses random memory-to-cache mappings. There is a
permutation table for each process, which enables a dynamic
memory address to cache set mappings. This makes the
attacker hard to evict a specific memory line of the victim
process. However, maintaining the mapping and updating
mapping tables penalizes performance. It can also use software
based compiler assisted approach to transform applications to
randomize its memory access patterns.

Control flow randomization. Stephen Crane et al. in [23]
explore software diversity as a defense against side-channel
attacks by dynamically and systematically randomizing the
control flow of programs. Existing software diversity tech-
niques transform each program trace identically. This diversity
based technique instead transforms programs to make each
program trace unique. This approach offers probabilistic pro-
tection against both online and off-line side-channel attacks.
It extends previous, mostly static software diversification ap-
proaches by dynamically randomizing the control flow of the
program while it is running. Rather than statically executing
a single variant each time a program unit is executed, they
created a program consisting of replicated code fragments with
randomized control flow to switch between alternative code
replicas at runtime.

C. Detection based defenses

Computational anomaly detection. Work in [11] give an
overview of the attacks on hardware, including the SCAs,
and describes the panacea to thwart such attacks and secure
the hardware. Sanket et al. in [3], [10] have proposed a
unique methodology in detecting even stealthy malwares with
hardware performance counters and image processing along
with RNN-based ML to assist the detection process.
SCA detection in the cloud. Zhang et al. in [42] present
an architecture where cores (processors) equipped with spe-
cialized signature detection techniques are employed to detect
SCAs based on the hardware performance counters (HPCs)
these attacks generate in a system. Taesoo Kim et al. present in
[43] a system-level protection mechanism against cache-based
SCAs in the cloud named as ‘STEALTHMEM’. This mech-
anism protects cache from unauthorized access by managing
a set of locked cache lines per core that are never evicted
from the cache. Thus, any virtual machine (VM) can hide
its sensitive information from others. Work in [44] presents
‘StopWatch’ a system that defend against SCAs in cloud
environment by triplicating each cloud-resident VM and using
the timing of the I/O events at the replicas to determine the
timings observed by each replica or the attacker. Shi et al. in
their work in [45] propose a technique, they name as dynamic
cache coloring, which notifies the VM when an application is
executing secure-sensitive operations to swap the associated
data to a safe an isolated cache line to protect the same
against SCA attack by limiting its access. They presented the
technique for multi-tenant based cloud environment.

VII. CONCLUSION

In this work, we propose Covert-Enigma which can protect
applications from timing-based SCAs by injecting cognitive
perturbations and reducing useful information leaked on the
covert channel. The proposed technique is equipped with two
modes - Arbitrary and Cyclic - to render flexibility to the user
in terms of robustness. We verified the efficacy of Covert-
Enigma on Flush+Reload, and Flush+Flush attack on RSA
and Elgamal encryption methods. The results demonstrate
that the proposed technique can be utilized to secure victim
applications without needing modifications to hardware or the
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operating system. Our proposed technique’s average overhead
is 10% compared to without the defense in place due to
additional cache accesses. Our approach can easily be modified
to suit a variety of victim applications.
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