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Abstract—Hardware Malware Detectors (HMDs) have recently been proposed to make systems more malware-resistant. HMDs use
hardware features to detect malware as a computational anomaly. Several aspects of the detector construction have been explored,
leading to detectors with high accuracy. In this paper, we explore whether malware developers can modify malware to avoid HMDs
detection. We show that existing HMDs can be effectively reverse-engineered and subsequently evaded. Next, we explore whether
retraining using evasive malware would help and show that retraining is limited. To address these limitations, we propose a new type of
Resilient HMDs (RHMDs) that stochastically switch between different detectors. These detectors can be shown to be provably more
difficult to reverse engineer based on recent results in probably approximately correct (PAC) learnability theory. We show that indeed such
detectors are resilient to both reverse engineering and evasion, and that the resilience increases with the number and diversity of the
individual detectors. Furthermore, we show that an optimal switching strategy between the RHMDs base detectors not only reduces
misclassification on evasive malware but also maintains high classification accuracy on non-evasive malware. Our results demonstrate
that these HMDs offer effective defense against evasive malware at low additional complexity.

Index Terms—HMDs, malware detection, evasive malware, adversarial machine learning
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1 INTRODUCTION

Malicious attackers compromise systems to install malware. Pre-
venting the compromise of systems is practically impossible:
attackers obtain privileged access to systems in a variety of ways [1],
[2]. While preventing compromise is difficult, detecting malware
is also becoming increasingly more complicated. Indeed, modern
malware is increasing in sophistication, challenging the abilities
of software detectors. Typical techniques for malware detection
such as dynamic binary instrumentation [3], information flow
tracking [4], and software anomaly detection [5] have both coverage
limitations and introduce substantial overhead (e.g., 10x slowdown
for information flow tracking is typical in software [4]). These
difficulties typically limit malware detection to static signature-
based virus scanning tools [6] which have known limitations [7],
allowing the attackers to bypass them and remain undetected.

In response to these trends, Hardware Malware Detectors
(HMDs) have recently been proposed to make systems more
malware-resistant. Several studies have shown that malware can be
classified based on low-level hardware features such as instruction
mixes, memory reference patterns, and architectural state informa-
tion such as cache miss rates and branch prediction rates [8], [9],
[10], [11]. In addition, the SnapDragon processor from Qualcomm
appears to be using HMDs for online malware detection, although
the technical details are not published [12]. At a time when malware
developers appear to have the upper hand over defenders, HMDs
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can offer a substantial advantage to defenders because the detector
is always on, has little impact on performance or power [13].

In this paper, we first explore whether attackers can adapt
malware to create evasive malware; continue to operate while
avoiding detection by HMDs. Should HMDs become widely
deployed, it is natural to expect that attackers will attempt to evade
detection. Intuitively, it should be possible for the attacker to evade
detection if there are no restrictions placed on them, by running
a mostly normal program and advancing the attack very slowly.
However, we assume that the attacker would like to minimize
the impact on the malware execution time since some attacks are
time sensitive (e.g., covert/side-channels [14]) or computationally
intensive [15]. We describe the threat model and limitations in
Section 2.

We approach the question of whether malware can evade
HMD, and whether HMDs can be made resilient to evasion, in the
following steps:

1) Can HMDs be reverse-engineered? Recent results in ad-
versarial classification [16] imply that arbitrarily complex
but deterministic classifiers can be reverse-engineered.
We confirm that this is the case for HMDs by reverse-
engineering a number of detectors under realistic as-
sumptions. We describe our dataset and methodology in
Section 3, and present and analyze the reverse-engineered
detectors in Section 4.

2) Having a model of the detector, can malware developers
modify malware to avoid detection? Evading the detection
by changing the behavior of the malware is known
as mimicry attacks [17]. We show (in Section 5) that
existing HMDs can be rendered ineffective using simple
modifications to the malware binary.

3) Can the malware evade detection even if the detector is
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retrained with some samples of the evasive malware? We
show in Section 6 that for simple evasion strategies that
can fool a given detector, retraining a logistic regression
(LR) detector does not result in effective classification
of evasive malware, unless the detection performance on
normal malware is sacrificed. In contrast, more sophis-
ticated detectors such as Neural Networks (NN) can be
successfully retrained, but the attacker is still able to
reverse-engineer the retrained detector and evade it again.

4) After showing that the current generation of HMDs is evad-
able, we explore whether new HMDs can be constructed
that are robust to evasion. In particular, we propose, in
Section 7, a new resilient HMD (RHMD) organization that
uses multiple diverse detectors and switches between them
unpredictably. We show that RHMDs that use even simple
base detectors are resilient to both reverse-engineering
and evasion. Furthermore, this resilience increases with
the number and diversity of the base detectors.

5) Having shown that the RHMD principle makes detection
evasion-resilient, the next question we consider is how to
control the base detectors’ switching behavior to optimize
detection and resilience jointly? To this end, in Section 8,
we show that by formulating an optimization problem as a
Bayesian Stackelberg game, we can improve the detection
accuracy of RHMDs as well as their robustness against
adversarial attacks.

6) Finally, we explore whether RHMDs fundamentally in-
crease the difficulty of evasion or simply present another
hurdle that can be bypassed by attackers. To this end,
in Section 9, we overview recent results in Probably
Approximately Correct (PAC) learnability theory that
proves that RHMDs provide a measurable advantage
in increasing the difficulty of reverse-engineering and
complicate evasion. By making HMDs resilient to evasion,
we bring them closer to practical deployment.

Evasive malware detection has been considered in the context
of software malware detectors [17], [18]. Moreover, some existing
HMD proposals discuss the possibility of malware evasion [8],
[11]. However, ours is the first to explores this important question
regarding HMDs in detail and develops solutions to it [19]. We
note that while our experiments target HMDs, the underlying
evasion problem exists in the context of any adversarial classifi-
cation problem [16]. Our work advances the state of the art in
general, not just for HMDs: we show systematically that reverse-
engineering is possible, we develop techniques that use the result of
reverse-engineered detectors to efficiently evade detection, and we
introduce evade-retrain games and study their resilience to evasion.

In summary, the contributions of the paper are as follows:

• We show that it is possible to reverse engineer HMDs,
regardless of their complexity accurately.

• We show that once an HMD has been reverse engineered,
malware can effectively evade it using low overhead evasion
strategies. This result brings into question the effectiveness
of existing HMDs.

• We develop a new attack strategy to create evasive malware
(called timer interrupt injection). This new strategy allows
the attacker to create powerful evasive malware while
drastically reducing the overhead of the attack; more than
80% and 60% less dynamic overhead compared to basic
block, i.e., before every control flow altering instruction,

and function level, i.e., before every return instruction,
injections strategies respectively.

• We show that simple linear HMDs such as LR cannot
be retrained to adapt to evasive malware. More complex
classifiers such as NN can adapt better, but may break down
after several generations of evasion and retrain. Moreover,
new malware can still reverse-engineer and evade even such
classifiers.

• We develop a new class of resilient HMDs (RHMDs) that
operates by randomizing detection responsibility across
different diverse detectors. RHMDs cannot effectively be
reverse-engineered to enable evasion, which we verify both
experimentally and using recent results from PAC learnabil-
ity theory. The number and diversity of the base RHMD
detectors increase the resilience to reverse-engineering and
evasion.

• We formulate the RHMD detection and evasion problem
as a Bayesian Stackelberg game to generate an optimal
switching strategy between the base detectors of the RHMD
that maximize the detection accuracy of both evasive and
non-evasive malware. Our results indicate that optimized
RHMD switching can detect more than 45% and 30% of
the malware and evasive malware missed by the RHMD
detection respectively.

• Lastly, we study the implementation complexity of such
classifiers in hardware.

2 THREAT MODEL AND LIMITATIONS

In general, our threat model consists of an attacker that tries to
re-write malware programs to bypass HMD’s detection, given a
black-box access to the targeted HMD. In particular, we assume an
adversarial attack model that starts with the adversary attempting to
reverse engineer HMD’s detection model since the black-box access
only allows the attacker to observe the classifier’s behavior (output)
for given programs (whether malware or normal programs). With
reliable reverse-engineering information, the attacker can attempt
to utilize the information to generate evasive malware that hides
by changing some of their characteristics (feature values). Such
an evasion mechanism is known as mimicry attacks [17], which
can be in the form of no-op insertion, code obfuscation by the
attackers, or calling benign functions in the middle of the malicious
payload [20].

Furthermore, we assume that the attacker is interested in
maintaining the malware’s original performance after re-writing. If
this assumption is not true, an attacker can simply run a regular
program with embedded malware that advances the malware
program arbitrarily slow (e.g., 1 malware instruction every N
normal instructions where N is arbitrarily large), making detection
impossible. Note that this is a limitation of all anomaly detectors,
and not only HMDs. This assumption is also reasonable for
important segments of malware such as: (a) malware that is time-
sensitive (e.g., that performs covert or side-channel attacks [14])
and (b) computationally intensive malware such as that executing
on botnets being monetized under a pay-per-install model [21]
(e.g., Spam bots or Click fraud). Such malware has a utility to the
malware writer proportional to their performance.

3 DATA AND METHODOLOGY

We collected malware samples from MalwareDB malware set [22]).
The downloaded malware data set consisted of 3000 malware
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programs. For regular program samples, we used Windows pro-
grams since the malware programs that we use are Windows-
based. The regular program set contains a variety of applications,
including browsers, text editing tools, system programs, SPEC 2006
benchmarks [23], and other popular applications such as Acrobat
Reader, Notepad++, and Winrar. In total, the non-malware data
set contains 554 programs. Both malware and regular programs
data sets were divided into 60% victim training, 20% attacker
training, and 20% attacker testing of the detector. The Victim
training refers to the data set used to train the baseline HMDs,
i.e., victim HMDs which the attacker is trying to adapt malware
to bypass them; attacker training refers to the data set used by
the attacker to reverse engineering the victim HMD; and attacker
testing refers to the data set used by the attacker to create evasive
malware programs as well as measuring the reverse-engineering
effectiveness. To ensure that there is no bias in the distribution of
malware programs across the sets, each set includes a randomly
selected subset of malware samples from each type of malware in
the overall data set.

The data was collected by running both malware and regular
programs on a virtual machine with a Windows 7 operating
system. To allow malware programs to carry out their intended
functionality, the Windows security services and firewall were
disabled. Furthermore, the dynamic traces of executed programs
were collected using Pin instrumentation tool [24]. Unlike mobile
malware where many malware samples require user interaction
and necessitate special efforts to ensure correct behavior [25], we
observed that the vast majority of our windows/desktop malware
operated correctly (through manual inspection and examination
malware behavior during run-time); several malware samples
tripped the intrusion detection monitoring systems on our network
as they attempted to discover and attack other machines, until we
separated the environment into an independent subnet.

The collected trace duration for each executed program was
5000 system calls or 15 million committed instructions, starting
after a warm-up period, whichever is reached first. While ideally,
we would have liked to run each program longer, we are limited
by the computational overhead; since we are collecting run-time
behavior of the programs using dynamic profiling information
through Pin within a virtual machine, the trace collection requires
several weeks of execution on a small cluster and produces several
terabytes of compressed profiling traces. We believe that this data
set is sufficiently large to establish the feasibility and provide
trustworthy experimental results. Our experimental evaluation is
extremely computationally intensive; for each reverse-engineering
experiment, we need to create (train) multiple reverse-engineered
detectors and test all of them. Furthermore, we use the whole data
for testing, i.e, we are doing multiple inferences (one per data
sample). Each detection (inference) requires 0.3µs. Finally, in all
of our experiments, cross-validation was performed to avoid biased
results, thus, we need to repeat our experiments multiple times
across different subsets of the data.

We collected different feature vectors, specifically:

• Executed instruction mixes (called Instructions in the rest of
the paper): this feature tracks the frequency of instructions,
i.e., number of times each opcode executed. Since the
number of op-codes is large, we have used correlation
analysis, as a feature selection method, on the training set
to select the most correlated op-codes (instructions) to the
training data labels.

• Memory address patterns (called Memory in the rest of
the paper): this feature tracks the distribution of memory
accesses. Specifically, we capture the memory access
(read/write) pattern by calculating the distance between
the memory address of the current load/store instruction
and the memory address of the first load/store instruction in
the features collection window. Subsequently, we created a
histogram of read distances and write distances separately
quantized into bins. For every features collection window,
we store the frequency of each bin to create the feature
vector.

• Architectural events (called Architectural in the rest of the
paper): tracks the numbers of different architectural events
occurring in an execution period such as unaligned memory
accesses and taken branches.

These features are modeled after those used in prior HMD
studies [8], [13].

4 REVERSE-ENGINEERING HMDS

This section demonstrates that we can successfully reverse-engineer
HMDs based on supervised learning (e.g., similar to those presented
in [8], [13]). Reverse-engineering the malware detector allows the
adversary to construct a model of the HMD. Please note that this
is different from IC reverse-engineering [26], as the adversary’s
goal is to reverse-engineer the detection model, e.g., weights and
hyperparameters, rather than the logic of the HMDs’ hardware
implementation. The detection model is necessary to be able
to methodically develop evasive malware. We assume that the
adversary can query the targeted detector and observe it’s detection
output; if they do not, the problem becomes NP-Hard [16].

(a) Reverse-engineering
of victim

(b) Evaluating reverse-engineered
detector

Fig. 1: Overview of the reverse-engineering process

Figure 1a shows the steps in reverse-engineering a detector.
First, the adversary prepares a training data set that is composed of
both regular and malware programs: this is a separate data set from
the one used to train the victim detector, which is unknown to the
attacker. Next, the adversary uses this data set to query the victim
detector and record its detection decisions. The decisions are used
as the label for the data as we construct the reverse-engineered
detector. Finally, the adversary may use different machine learning
classification algorithms trained with the labeled data to build the
new reverse-engineered detector.

Figure 1b shows the evaluation of the reverse-engineered
detector. The adversary first prepares an attacker testing data set,
as described above. Next, both the original detector and reverse-
engineered detector are queried using the attacker testing data set.
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Finally, the percentage of equivalent decisions made by the two
detectors is calculated. Note that from the adversary point of view,
it does not matter if the detector is classifying malware and regular
programs correctly; instead, the attacker desires to mimic the victim
detector’s classification and evaluates success on that basis.

For most of our studies, we evaluate baseline detectors that
use logistic regression (LR) and neural networks (NN); the
methodology naturally generalizes to other classification algorithms.
We implemented the NN classifier as a multi-layer perceptron
(MLP) with a single hidden layer that has a number of neurons
equal to the number of features in the feature vector. We use
the tanh function as the activation function. The rationale for
selecting these two algorithms is that prior studies showed that
LR performs well and has low complexity, facilitating hardware
implementations [13]. NN features more complex classification
ability, capable of producing a non-linear classification boundary.
These detectors allow us to contrast the detector complexity’s
impact on both the reverse-engineering process and mimicry
attacks. For some studies, we use other classifiers to illustrate
some generalizations of our conclusions.
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Fig. 2: Performance of individual detectors

The victim data set is used to train different detector instances
using each of the two algorithms for each of the three different
features, resulting in six detectors. Figure 2 shows the performance
of the detectors in classifying malware and regular programs using
area under the curve (AUC) and the accuracy of the classification
metrics for each of the detectors. Note that this figure shows the
performance of the baseline HMD, which we will be attempting
to reverse-engineer. AUC is the area under the Receiver Operating
Characteristics (ROC) curve which plots the sensitivity of the
detector against the percentage of false positives; the larger the
AUC, the better the classification. Accuracy refers to the ROC
point, which maximizes the accuracy (percentage of decisions that
are made correctly). It is a more direct measure of performance
since the HMD classification threshold will be typically set to
perform at or near this optimal point.

We assume that the attackers do not know the details of how
the target victim detector was trained. Thus, they do not know
important configuration parameters of the detector including: (1)
the size of the instruction window that is used to collect the features;
the detector collects the feature over a collection window, typically
measured in thousands of instructions; (2) the specific feature used
for the classification. However, we assume that the attacker has
a set of candidate features that includes the feature used by the
target detector; (3) the classification algorithm used by the target
detector. Importantly, the attacker has access to a machine with
a similar detector so they can test hypotheses and evaluate the
success of the mimicry attacks. Next, we show how the attacker
can reverse-engineer the detection period and the features used in
training the target detector.

4.1 Target Detector Classification Period
The classification period refers to the size of the instruction window
used to collect the classification features. Prior work [8] has shown
that a classification period of about 10K instructions works well
for supervised learning classifiers, but a detector may be trained
with a different classification period. For this experiment, we
used a classifier built using the Instruction mix feature, which we
assume the attacker knows (later we relax this assumption). The
target detector collection period is 10K. We prepare multiple pairs
of attacker testing and training datasets, using different collection
periods. Next, we train a reverse-engineered detector using different
data sets and evaluate its accuracy. We construct three reverse
engineered detectors using three machine learning algorithms for
each of the attacker data sets. The machine learning algorithms used
are LR, decision tree (DT), and support vector machine (SVM).
The results of these experiments are shown in Figure 3a. The results
show that the highest accuracy for reverse-engineering for each of
the machine learning algorithms used is when the collection period
is the same as the victim’s collection period (10K). Thus, by using
an experiment such as this one, the attacker can infer the victim’s
collection period.
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Fig. 3: Reverse-engineer configurations

4.2 Target Detector Feature
Malware detectors can be built using different features. In this
subsection, we explore reverse-engineering the victim detector’s
feature vector by only querying the victim detector. We use a
detector based on the Instruction mix feature with a classification
window of 10K instructions. We prepared multiple pairs of attacker
testing and training data sets using the same collection period (10K),
but using different feature vectors. Next, we construct reverse-
engineered detectors using the attacker training data sets labeled
with the victim detector’s output as malware or regular program.
For each of the attacker data sets, we constructed three detectors
using different machine learning algorithms, which are: LR, DT,
SVM. The results of this experiment are shown in Figure 3b. The
results show that the highest accuracy is achieved when the feature
vector is the same as the victim’s feature vector (Instructions).
We conclude that the victim HMD features can be successfully
reverse-engineered.

Note that at the correct value of the feature and period, it is
possible to obtain 0-error reverse-engineering in our experiments.
This is consistent with results from PAC learning theory, which
we overview in Section 9. Although we showed how to separately
reverse-engineer the classification period (assuming that the classi-
fication feature is known) and the classification feature (assuming
the classification period is known), we can also jointly reverse-
engineer them both. The process involves constructing detectors
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with different classification features and periods, and finding the
detector that maximizes the reverse-engineering accuracy.

4.3 Performance of Reverse-engineered HMD
In the next set of experiments, we evaluate the performance of
the reverse-engineered detectors. We reverse-engineer LR and NN
detectors, but the reverse-engineered detector is constructed using
three machine learning algorithms: LR, DT, and NN. The results
are shown in Figure 4a and Figure 4b. The results show that NN
can reverse-engineer both types of detectors with high accuracy
(e.g., less than 1% error for all LR detectors). The performance
is somewhat lower for NN since the separation criteria used in
the classification is more complex and therefore more difficult to
reverse-engineer accurately. As can be expected, the simpler linear
detector (LR) cannot effectively capture the non-linear behavior of
NN, consistent with PAC learning theory as we discuss in Section 9.
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Fig. 4: Reverse-engineering efficiency

5 DEVELOPING EVASIVE MALWARE

After reverse-engineering the victim detectors, the next step that
attackers are likely to take is to develop systematic transformations
of their malware that can evade HMDs detection. The malware
developers may modify their malware in any way, to attempt
to produce behavior in the feature space of the detector that
causes them to be classified as normal. Possible strategies to
accomplish this goal include using polymorphism to produce
different binaries [27]. However, since we are working with
actual malware binaries, we do not have the source available
to apply general transformations. Moreover, most of the malware
is obfuscated, making decompilation difficult and challenge binary
rewriting tools. To address these challenges, we developed a
methodology to dynamically insert instructions into the malware
execution in a controllable way (Figure 5). In particular, we
either simulate the invocation of a timer interrupt or construct
the Dynamic Control Flow Graph (DCFG) of the malware during
execution by instrumenting it through the PIN tool [24]. Next, we
add instructions into the control flow graph in a way that does not
affect the program’s execution state.

The injected instructions must change the feature vector in
a controlled way based on the reversed-engineered classifier to
attempt to move the malware across the classification decision
boundary to be classified as normal. For the Instruction feature,
the injection of opcodes increases the weight of the corresponding
feature directly. For the memory feature, insertion of load and store
instructions with controlled distances changes the histogram of
memory reference frequencies. For architectural features, the effects
may not be directly controllable. For example, increasing the cache
hit rate or the branch predictor success rate requires inserting code
segments that will generate cache misses or predictable branches,
respectively. Without loss of generality, all of our experiments

DCFG

Block level injecton

Function level injecton

Timing interrupt injection 

Fig. 5: Methodology for generating evasive malware

use the instruction feature. When attempting to change multiple
features, the evasion code must combine these strategies (for
example, alternating their use at different injection points).

We explore three approaches for injecting instructions: (1)
Block level: insert instructions before every control flow altering
instruction. Note that the instructions inserted at that point in the
program are executed every time that control flow instruction is
reached (i.e., we do not change the instructions that are injected at a
particular point in the program, once they are injected); (2) Function
level: insert instructions before every return instruction; (3) Periodic
injection: in this strategy, we set a timer interrupt that injects
instructions at a controllable frequency. Figure 7, demonstrate an
example of injecting instruction at both block-level (e.g., before
control flow altering instructions such as je) and functional-level
(e.g., before ret instructions). Referring to Figure 5, block level
and function level instruction injection requires construction of
DCFG, while timing interrupt injection does not. We describe these
two general approaches separately (in Subsections 5.1 and 5.2).
Random instruction injection: We first check if injecting ran-
domly chosen instructions in the malware programs is sufficient
to evade detection to establish that the injection must be specific
to the detector. Each malware program data set is divided into two
sets based on whether the victim detector successfully detected
them without modification. Each of the data sets is modified using
our framework to inject the additional instructions and retested; the
results are shown in Figure 6. Clearly, injecting random instructions
at the basic block level or the function call level does not help in
evading detection.
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Fig. 6: Detection with random instruction injection

Reverse-engineering driven instruction injection: The next
set of strategies we use is to exploit the information in the
structure of the reverse-engineered detector to attempt to avoid
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detection. Ideally, we would like to make the malware appear
close to regular programs in terms of behavior so that the detector
cannot successfully identify it. Therefore, we designed a strategy
that injects instructions based on the parameters of the reverse-
engineered detector (from Section 4) to make the detection difficult.

5.1 Block and Function Level Injection
We evaluate the success of the evasive strategies in avoiding
detection. To understand the rationale behind the instruction
selection, we must explain some details about the operation of LR.
LR is defined by a vector, θ , that identifies the linear separation
between the points being classified. The weights of the vector
elements determine the relative importance of these elements. Since
we are only adding instructions, we pick the instructions whose
weights are negative to move the malware towards the other side
of the separation line. In this first strategy, we inject only those
instructions that have the least weights in the vector.

main:   mov  $3, %eax 
            mov  $4, %ebx 
            call   add1
            sub   $7, %eax
            jz      L1
            imul %eax, %eax, $10
            j L2
L1:      idiv  %eax, %eax, $10
L2:      ret
...

add1:  add  %eax, %ebx
            ret

main:   mov  $3, %eax 
            mov  $4, %ebx 
            or     $0, %ebx
            call   add1
            sub   $7, %eax
            or     $0, %ebx
            jz      L1
            imul %eax, %eax, $10
            or     $0, %ebx
            j L2
L1:      idiv  %eax, %eax, $10
            or     $0, %ebx
L2:      ret
...

add1:   add  %eax, %ebx
            or     $0, %ebx
            ret

main:   mov   $3, %eax 
            mov   $4, %ebx 
            call    add1
            sub    $7, %eax
            jz       L1
            imul  %eax, %eax, $10
            j L2
L1:      idiv    %eax, %eax, $10
            or     $0, %ebx
L2:      ret
...

add1:   add    %eax, %ebx
            or     $0, %ebx
            ret

Original code Block-level injection Function-level injection

Fig. 7: Examples of block and function levels instruction injection;
the red colored instructions represent injected instructions.

Figure 9a, shows the percentage of malware detected by both
the original and reverse-engineered detectors, after injecting the
malware using the information for the reverse engineered detector
at the basic block and the function levels. We observe that the
modified malware evades detection by both detectors.

We conduct a similar experiment for the NN detectors, where
the classifier is not clearly defined by a single vector and the
separation plane is not linear. We develop a heuristic approach to
identify candidate instructions for insertion. Figure 8 shows a NN
with one hidden layer. Each circle in the figure represents a neuron
(input, hidden, and output neurons) in the network. To compute the
overall weight contributed by a single input, we multiply out its
contributions to the network’s eventual output and sum out these
products. For the example in Figure 8, the weight of input I1 can
be estimated as:

w1 = w1
11×wout

1 +w1
12×wout

2 +w1
13×wout

3

More generally, for input j, the weight is:

w j = Σ
n
i=1w ji×wout

i

With multiple hidden layers, we must add all the factors on all the
paths to which a given input contributes.

The procedure above allows us to collapse the NN description
into a single vector that summarizes the contribution of each feature.
This allows us to use the same strategies for instruction selection

I1

I2

I3

H11

H12

H13

Fout

Input Hidden layer Output

Fig. 8: Neural network with one hidden layer overview

that we used in LR; for example, we can select the instruction
with the most negative weight for insertion. However, for NN,
this is an approximate strategy; for LR, if we inject more of the
negative weight instructions, we are guaranteed to monotonically
decrease as the dot product of θ and the collected feature from the
malware execution becomes increasingly more negative. However,
the same cannot be guaranteed for NN because of its non-linear
separation plane. For example, consider a feature vector element
that contributes negatively to one neuron a and positively to another
b. Without evasion, the malware is detected with a firing and b not
firing. Initially, increasing the element’s weight may turn a below
the threshold leading the malware to evade detection. However,
if we keep increasing the weight, b eventually fires, causing the
malware to be detected again.

Figure 9b shows the percentage of modified malware detected
by the NN victim and reverse-engineered detectors. While the
evasive strategy also works in this case, it is slightly less effective;
with 2 injected instructions per basic block, we can evade detection
80% of the time.
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(a) Logistic regression
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Fig. 9: Detection with least weight injection

We assume that the attacker is interested in maintaining the
malware’s performance and does not want to arbitrarily slow it
down to evade detection. Figure 10, shows the static and dynamic
overhead of injecting instructions both at the basic block level and
the function call level. Inserting a single instruction at the basic
block level was effective in evading detection for most malware for
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LR; both the static overhead (increase in the text segment of the
executable) and the dynamic overhead (increase in execution time)
is about 10%.
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Fig. 10: Static and dynamic injection overhead

We also consider selecting the instruction for injection among
all the instructions with negative weight, with a probability
proportional to the weight; we call this strategy the weighted
injection strategy. Figure 11, shows the percentage of malware
detected by the victim, after weighted injection of the malware
using the information for both the reverse-engineered detector and
the victim detector at the basic block and at the function call levels.
The evasion success using the reverse-engineered detector is almost
equal to the success when using the actual victim detector. The
advantage of this strategy is that it makes it more difficult to detect
the evasion if the detector is retrained as explained in the next
section.

5.2 Timing Interrupt Injection
In both the block-level and function-level injection strategies, we
have little control over the frequency of appearance of the injected
instructions in the execution stream of the modified malware. For
example, if the basic blocks are long in the program execution
period, the injection may become infrequent and the malware may
get exposed. Moreover, if the basic blocks are short, the injection’s
overhead may increase, and it may be easier to detect the injection
due to the high frequency of the injected instructions. For these
reasons, we investigate an injection policy that uses a timer interrupt
to control the timing of the injection and the number of injected
instructions. Figure 12 shows the percentage of malware detected
by the victim when we use this policy as a function of the injected
instructions per 10K regular instructions. At around 500 injected
instructions, the most negative instruction policy allows almost all
malware programs to evade detection, which translates to more
than 80% less dynamic overhead compared to basic block injection.
In addition, for the weighted injection policy, this occurs at around
1000 injected instructions, which translates to more than 60% less
dynamic overhead compared to basic block injection.

6 RETRAINING VICTIM DETECTORS

The previous section results demonstrate that existing HMDs that
use supervised learning [8], [13] can be fairly easily evaded. The
next question we consider is: if a detector is retrained with the
addition of evasive malware samples in the training data set, would
it be able to classify them correctly? If the answer is yes, then
perhaps the weights can be updated regularly to allow the detector
to adapt to emerging malware. However, there is still a possibility
that the retrained detector could itself be reverse-engineered and
evaded again. Moreover, as attackers continue to evolve, it is not

-
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Fig. 11: Detection with weighted injection (LR)
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Fig. 12: Timing interrupt attack

clear if the detector will eventually become ineffective due to the
number of classes it is attempting to separate or converge to a
classification setting that is impossible to evade.

Figure 13a shows the effect of increasing the percentage of
evasive malware programs in the training data that we use to retrain
the simple LR detector. For example, the point with 10% indicates
that 10% of the malware part of the training set consists of evasive
malware, modified with one of our evasion strategies. We see that,
in general, increasing the percentage of evasive malware leads to
more accurate detection. Unfortunately, this comes at the cost of
losing accuracy for non-evasive malware, making simple retraining
an ineffective strategy. Furthermore, it is interesting to see that the
accuracy in classifying regular programs does not degrade.
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(a) Logistic regression
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(b) Neural networks

Fig. 13: Effectiveness of retraining

Figure 14a illustrates why linear detectors, such as LR, sacrifice
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accuracy when retrained. Figure 14a(1) shows that there is a
linear separation between the malware and regular programs.
Figure 14a(2) demonstrates that the evasive malware have to cross
the separation boundary in order to evade detection. Figure 14a(3)
shows that with the retrained detector, it may be impossible to find
a linear separation between malware (including evasive malware)
and regular programs. In contrast, non-linear classifiers such as
NN (Figure 13b) are able to detect this new form of malware with
high accuracy, even with a low percentage of evasive malware
in the retraining set. This can be achieved without affecting the
detection accuracy of non-evasive malware or regular programs.
Figure 14b illustrates why non-linear detectors are more effective
when retrained. Even when evasive malware crosses the original
classification’s separation boundary, a new non-linear boundary
can be found that separates the two malware classes from normal
programs. Thus, HMDs must be non-linear if we want to retrain
them in response to evasive malware detection.

1 2 3

(a) Linear model

1 2 3

(b) Non-Linear model

Fig. 14: Illustration of effect of retraining a linear and non-linear
classifiers with data that includes evasive malware

Figure 15 shows the detection of several generations of NN
detectors. n each generation, we repeat the detector’s retraining by
adding malware from the previous generations to the training set.
The original detector in generation 1 is first evaded successfully
as we see low detection for evasive malware. After we retrain, we
see that evasive malware developed to evade detector 1 is now
detected successfully (rightmost bar for detector 2). However, if
we reverse-engineer the detector and evade it again, we can do
so successfully as evidenced by the low detection of the evasive
malware in the third bar for detector 2. As the retrain-evade process
is continued, we expected one of two outcomes: (1) the detector
will no longer be able to classify; or (2) the decision boundary
will tighten and malware will no longer be able to evade. After
7 generations, the detector can no longer be trained successfully
as malware and normal programs became inseparable using our
NN. There are two possible explanations: (1) the feature is not
sufficiently discriminative, and it is possible to turn malware to be
similar to normal programs with respect to this feature. Note that in
each successive generation, the overhead is increased, and this level
of overhead may not be acceptable to the attacker; or (2) NN could
no longer represent the complex decision boundary between the
different classes of evasive malware and normal programs, similar
to how LR failed after one generation.
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Fig. 15: Detection after retraining over several generations

7 EVASION-RESILIENT HMDS

Although retraining the detectors detect evasive malware that
has representatives in the training set, we showed that retraining
might eventually fail as attackers continue to evade. Moreover,
retraining cannot detect novel evasive malware: they can be reverse-
engineered and evaded even after retraining.

In this section, we introduce a new class of evasion-resilient
HMDs (RHMDs). RHMDs leverage randomization to make
detectors resistant to reverse-engineering and, thus, evasion. In
particular, randomization introducing an error to the attacker’s
reverse engineering process. The introduced error increases while
increasing the number and diversity of the base RHMD detectors;
we show a proof for this claim in Section 9 based on PAC
learnability theory.

We randomize two detectors’ settings: i) The feature vectors
used for detection; and ii) The collection periods used in the detec-
tion. In particular, we construct detectors with these heterogeneous
features and switch between them stochastically in a way that
cannot be predicted by the attacker.

Our first study examines the effect of randomizing the feature
vectors used for detection. We start with two detectors using
the same detection period. The results of this experiment are
shown in Figure 16a. We reverse-engineer the detector using
two of the original feature vectors as well as a combination of
them. In particular, the point in the figure marked ”combined”
represents reverse-engineering with a combined detector using
the union of the two feature vectors. Using an RHMD with two
detectors, reverse-engineering the detector becomes substantially
more difficult because the model now includes two diverse detectors
which are selected randomly. The diversity can be further expanded
by using a pool of three detectors — the results of this approach are
shown in Figure 16b. Again, the combined point on the figure refers
to a reverse-engineering attempt using the union of the three feature
vectors of the three individual detectors. As seen from the results,
reverse-engineering becomes harder with increased diversity.

To further increase detector diversity, we construct detectors
with two different collection periods (10K cycles period and 5K
cycles period), resulting in a pool of six detectors, which are
randomly chosen by the detection logic. The results are presented
in Figure 17. Consistent with the previous trend, additional diversity
makes reverse-engineering even more difficult. Note that having
detectors operating on the same features with different periods does
not substantially increase the hardware complexity; the different
weights for the two detectors must be kept separately, but the
collection logic and the detector evaluation logic are shared.

Having reverse-engineered the detector, we use our evasion
framework to inject instructions to evade it. Given that the reverse-
engineering becomes inaccurate in RHMDs and given the random
switch between the individual detectors, the constructed evasive
malware can no longer hide from detection (Figure 18). It is
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Fig. 16: RHMD reverse engineering (features)
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Fig. 17: RHMD reverse engineering (features and periods)

interesting to note that the higher the detector’s diversity, the
more resilient it is to evasion, consistent with PAC learnability
theory discussed in Section 9. These results demonstrate that this
approach to constructing HMDs provides resilience to evasive
malware. The average detection accuracy of the RHMD without
evasion (Figure 18 with 0 injected instructions) is equal to the
average accuracy of its base detectors since the randomization
selects between the detectors with equal probability. Thus, the
average loss of detection due to randomization is the difference of
accuracy between the most accurate detector and the average of all
base detectors.
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Fig. 18: RHMD evasion resilience

For online detection, we evaluate hardware implementation
overhead by implementing RHMDs using Verilog, as an extension
of an open source x86-compatible core (AO486) [28]. The detectors
collect information from the CPU pipeline commit stage and apply
the detection logic at the detection period. We found that the core
frequency was not effected by adding the RHMD implementation,
but this was not surprising because RHMDs are implemented off
the critical path. Furthermore, we tried to run malware executables
on the AO486 core but, unfortunately, we were not successful since
the software ecosystem is different, and we were not able to boot
Windows on the AO486 core. After synthesizing the new core
implementation on an FPGA board for a configuration with three
detectors corresponding to the three features with the same period,
we observed that the area and power increase is modest: 1.72% and

0.78%, respectively. Note that the resilient detectors can also be
used to make offline detection [8] resilient to evasion.

8 OPT-RHMD: OPTIMAL SWITCHING STRATEGY

After demonstrating that the RHMD framework is resilient to
reverse-engineering and thus evasion attacks (Section 7), in
this section, we explore whether we can optimally configure
RHMDs for performance while retaining or improving resilience.
Specifically, since the RHMD uses a uniform random switching
between the based detectors, in this section, we explore finding an
optimized switching strategy that would guarantee high detection
accuracy and retain robustness of RHMDs.

In principle, the RHMD framework is similar to the Moving
Target Defense (MTD) framework that is used in software security.
In general, MTD systems’ goal is to reduce the attack surface
(success rate) by proactively switching between multiple software
configurations [29]. However, for RHMDs (a classification task), a
uniform random switching strategy might reduce overall detection
accuracy because the base detector with the highest detection
accuracy is not always selected [30]. Thus, in order to design an
effective switching strategy, that retains a good detection accuracy
and guarantees robustness against evasion attacks, we have to
reason about attacks in a multi-agent game theoretic fashion, which
facilitate providing formal guarantees about the security of such
systems.

In a malware detection framework, the RHMD (defender/leader)
selects a base detector up-front for the next detection. The inputs
(user) to RHMDs can be legitimate (not evasive/modified) or
adversarial (evasive/modified) programs. In addition, an attacker
can observe (or follows) the RHMD over time, i.e., have black-box
access to the RHMD, before choosing an evasion strategy, e.g., the
instruction injection method and where to inject the instructions.
These characteristics motivated us to formulate the RHMD system
as a repeated Bayesian Stackelberg Game (BSG) [31]. In a BSG,
the leader/defender (RHMD) starts the game by selecting a move (a
base detector). The user can observe a finite number of moves and
probabilistically learn the defender’s switching strategy. Therefore,
the defender has to choose a move (a base detector) that maximizes
the defender reward (detection accuracy and robustness) in this
game, given that the user (attacker) knows the defender strategy,
which can be formulated as finding the Stackelberg Equilibrium
in a Bayesian Game. We describe the formulation and show
our experimental results for the optimal-RHMD switching in the
following subsections.

8.1 Stackelberg Formulation of OPT-RHMD
Defender: The defender (RHMD) configuration space consist of
six base detectors, N={Instructions-5K, Instructions-10K, Memory-
5K, Memory-10K, Architectural-5K, Architectural-10K}, which cor-
respond to the best performing RHMDs in Section 7. Note that each
base detector name represents the feature vector and the detection
period used to build that detector. For the purpose of modeling, let
D
′

represent the RHMD. The RHMD follows a uniform random
probability distribution across the configuration space to select a
base detector n (∈ N) for detecting each input. Consequently, this
model selection policy creates an equal chance of choosing the
models that have low accuracy or high vulnerability to evasion,
resulting in potentially a sub-optimal switching strategy.
Users: Users of the RHMDs are divided into two groups: Legiti-
mate users (L ) and Adversary (A ), where L provide un-modified
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TABLE 1: Reward values of the defender, legitimate user, and adversarial user for various attacks; rewards in column L follows
(

RD
′
,

RL ) format and in column A follows (RD
′
, RA ) f ormat.

RHMD base detectors Legitimate user, L
Adversarial, A , attack on

Instructions−5K Instructions−10K Memory−5K Memory10K Architectural−5K Architectural−10K
Instructions−5K (94, 94) (2, 98) (4, 96) (81, 19) (80, 20) (77, 23) (80, 20)
Instructions−10K (96, 96) (7, 93) (2, 98) (83, 17) (84, 16) (78, 22) (82, 18)
Memory−5K (90, 90) (82, 18) (82, 18) (15, 85) (19, 81) (76, 24) (77, 23)
Memory−10K (90, 90) (84, 16) (85, 15) (17, 83) (14, 86) (72, 28) (71, 29)
Architectural−5K (84, 84) (87, 13) (87, 13) (80, 20) (83, 17) (5, 95) (5, 95)
Architectural−10K (85, 85) (87, 13) (88, 12) (86, 14) (83, 17) (7, 93) (4, 96)

input, i.e., not trying to evade the detection, while A tries to evade
detection by providing evasive malware. We use the notation un
to represent the evasive malware set that is created by the evasion
strategy u (∈U) using the model of base detector n (∈ N).

For every usage of a base detector, we calculate a reward value
for each player. (1) Interaction between D

′
and L : when D

′
and

L uses a base detector, they both get a reward, which is equal
to the accuracy of the detector, e.g., using a detector with 92%
accuracy gives a reward of 92 to both D

′
and L . (2) Interaction

between D
′

and A : For attacking a base detector n with attack
u, an adversary A gets a reward, which we model simply as
the expected success rate. Conversely, we assume the defender’s
reward is equal to its detection accuracy for that evasive malware
input. For instance, considering an attack success rate of 80%, the
attacker’s reward is 80 and the defender’s reward is 100−80 = 20,
although different weighting of reward is possible, for example, to
emphasize either detection or resilience. In our formulation, we
use RD

′

n,u, RL
n,u, and RA

n,u to denote the reward value of D
′
, L , and

A respectively. To generate the reward for each of the players, we
created an evasive malware set for each of the six RHMD base
detectors (N), using the attacker testing set. Next, we evaluated
the detection performance for each of the RHMD base detectors to
each of the evasive malware sets. The results are shown in Table 1.

Game formulation and optimization: The interaction between
defender (D

′
) and its users (L , A ) are modeled as Bayesian

Stackelberg game, where the defender plays first, i.e., choose
a base detector. Next comes the user (attacker) as the second
player, where A tries to maximize the defender’s loss function by
inputting evasive malware. In contrast, the defender’s goal is to
reduce the success rate of evasion, i.e., minimizing loss function
against A , and maintain high detection accuracy on non-evasive
programs, i.e., minimizing loss function against L , which is a
multi-objective optimization problem. The importance of each
objective can be modeled as the defender’s prediction of the user
(L or A ). Satisfying this multi-objective constraint is equivalent
to finding the Stackelberg equilibrium of the game. Authors in [32]
formulated the Mixed Integer Quadratic Program (MIQP), briefly
listed below, which yields the equilibrium point of the game.

Suppose, x, qL
u , and qA

u denotes the strategy vector of D
′
, L ,

and A , respectively. In addition, let us denote the rewards of the
defender selecting strategy detector n and the user selecting strategy
u as RD

′

n,u, RL
n,u, and RA

n,u, for D
′
, L , and A , respectively. Basically,

the strategy vector denotes the set of choices each player can make
and the goal of each player is to maximize the received rewords. Our
goal is to choose a strategy that maximizes the defender’s reward
while allowing the attacker to choose the most effective attack
strategy. In particular, we need to solve the following optimization
problem to calculate the defender’s optimal switching strategy:

max
x, q ∑

n∈N
(α · ∑

u∈U
RD

′

n,u xnqA
u +(1−α) ·RD

′

n,u xnqL
u ) (1)

s.t. ∑
n∈N

xn = 1 (2)

0≤ xn ≤ 1 ∀n ∈ N (3)

∑
u∈U

qy
u = 1; qy

u ∈ {0,1}, ∀y ∈ {A ,L } (4)

0 ≤ vy− ∑
n∈N

Ry
n,uxn ≤ (1−qy

a)M; ∀u ∈Uy, ∀y ∈ {A ,L } (5)

where α is the probability of the system being used by user
A , i.e., the input is evasive malware, and M is large positive
constant. Furthermore, the constraints in (2), (3), and (4) are
for guaranteeing that the probabilities assigned for a strategy
vector selection sum up to 1. The final constraint in (5) is for
an attacker’s optimization purpose, who wants to maximize its
reward (vy) against the defender’s selected strategy. To solve the
MIQP optimization problem, we utilized the calculated rewards
values in Table 1 and the Gurobi environment [33]. The resulting
selection strategy for the Opt-RHMD is shown in Figure 19, which
shows the best probability of selecting each of the 6 based detectors
compared to a uniform random selection. Note that the resulting
optimal selecting strategy uses only 4 of the 6 base detectors to
achieve high detection accuracy while maintaining robustness.
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Fig. 19: OPT-RHMD switching probability

8.2 Opt-RHMD Experimental Evaluation

Our first study examines the reverse engineering (Section 4.3)
effectiveness of Opt-RHMD. The results of this experiment are
presented in Figure 20. We reverse-engineer the detector using
all feature vectors as well as a combination of them (marked as

”combined” in the Figure). Consistent with the previous results
(Section 7), reverse-engineering the Opt-RHMD is substantially
more difficult, compared to reverse engineering both HMDs as well
as the most diverse RHMD in our experiments (Figure 17b).

Furthermore, based on the obtained reverse-engineered detector,
we use our evasion framework to inject instructions to evade it.
Given that the reverse-engineering becomes inaccurate in Opt-
RHMDs, the constructed evasive malware can no longer hide from
detection (Figure 21). In addition, given the optimized switching
between individual base detectors, Opt-RHMD can detect more
than 45% of the malware missed by the RHMD. Moreover, in the
case of evasive malware, opt-RHMD can detect more than 30% of
the evasive malware missed by RHMD.
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9 THEORETICAL BASIS FOR RHMD
This section provides theoretical support for the resilience of
RHMD for evasion based on probably approximately correct (PAC)
learnability theory [34]. In particular, we show that randomized
classification is inherently more difficult to reverse-engineer than a
deterministic classifier, even one with arbitrarily high complexity.

9.1 Learnability of Deterministic Classification

Consider a learning system (a defender) that uses a single classifier
to classify malware from normal programs. Consider another
reverse engineering learning system (an attacker) that uses past
classification data, e.g., by repeatedly querying the defender
classifier, to determine with high accuracy the nature of the defender
classifier.

Formally, let H be the class of possible classifiers (also
called hypothesis class) a learning system considers. Let P be
the probability distribution over instances (x,y), where x is an
input feature vector, and y is a label in {0,1}. We assume below
that y = h̄(x), i.e., a deterministic function that gives the true
label of x. For any h ∈ H, let e(h) = Prx∈P[h(x) 6= h̄(x)] be the
expected error of h w.r.t. P. We define eH = infh∈H e(h) as the
optimal (smallest) error achievable by any function h ∈ H. Let
D= {(x1,y1), ...,(xm,ym)} be a training data set of size m generated
according to P and D be the set of all possible D. A learning
algorithm is a function L : D → H which produces a classifier
ĥ ∈ H given a training set D.

Definition 1. A hypothesis class H is learnable if there is a learn-
ing algorithm L for H with the property that for any ε,δ ∈ (0,1/2)
and distribution P there exists a training sample size m0(ε,δ ), such
that for all m ≥ m0(ε,δ ), PrD∈D [e(L(D)) ≤ eH + ε] ≥ 1− δ , i.e.,
L will with probability at least (1−δ ) output a hypothesis ĥ ∈ H,
whose error on P is almost (eH + ε). H is efficiently learnable
if m0(ε,δ ) is polynomial in 1/ε and 1/δ , and L runs in time
polynomial in m, 1/ε and 1/δ . 1

1. This definition is taken, in a slightly extended form, from [34].

The definition above says that a hypothesis class H is efficiently
learnable (i.e., learning is easy) if we can compute with high
probability an approximately optimal candidate from this class
given a polynomial number of samples. The error bound (eH + ε)
for an approximately correct classifier ĥ ∈ H consists of two
components. ε becomes arbitrarily small and hence e(ĥ) approaches
eH when the number of training samples increases polynomially
w.r.t. 1/ε . The other component eH depends on the learning
bias [34] about H. That is the set of assumptions that the learner
makes (e.g., the type of classifiers and the underlying features).
With a good choice of H, eH can be arbitrary small; eH is zero if H
contains the true classifier h̄. We observed the implications of this
result in Section 4 when the correct feature and detection period
lead to the highest accuracy reverse engineered classifier.

The concept of PAC learnability applies to the learning tasks by
both the defender and the attacker, with one caveat: for the defender,
the goal is to correctly predict the true label of an instance (i.e.,
y = h̄(x)); while for the attacker, the goal is to correctly predict
the label of an instance assigned by the defender’s classifier (i.e.,
y = ĥ(x)). As shown in [16], efficient learning for h̄ by the defender
implies efficient learning for ĥ (called efficient reverse-engineering)
by the attacker. Suppose that the defender has learned ĥ from an
efficiently learnable H. Provided the attacker identifies the type and
features of the classifiers in H, then ĥ is contained in the hypothesis
class used by the attacker, and eH = 0, i.e., the distribution P
over (x, h̄(x) can be efficiently reverse-engineered with arbitrary
precision [16]. Without prior knowledge of H, the attacker can
tune its hypothesis class based on the error rate on the training data
collected over repeated queries.

These results support the reverse-engineering experiments in
Section 4. In particular, the analysis shows that reverse-engineering
a deterministic classifier is “easy” in practice regardless of the
complexity of the defender’s classifier. Increasing the complexity
of the defender’s classifier can make it more costly to reverse-
engineer it, but will not change the arms race’s outcome between
the defender and attacker with respect to the difficulty of evasion.

9.2 Learnability of Randomized Classification

We now consider a defender that uses randomized classification
such as the model used in RHMD. As before, consider a distribution
P over instances (x,y), with y = h̄(x) as the ground truth. Suppose
that we have n hypothesis classes Hi, all efficiently learnable. Let
ĥi ∈ Hi be the classifier learned from these classes, respectively,
with the corresponding error rate e(ĥi). Additionally, let 4i, j =
Prx∈P[ĥi(x) 6= ĥ j(x)] for all i, j: that is,4i, j measures the difference
between two classifiers ĥi(x) and ĥ j(x) over the data distribution.
Consider a space of policies parametrized by pi ∈ [0,1] with ∑i pi =
1, where we choose ĥi ∈ Hi with probability pi. Let ~p denote
the corresponding probability vector. Then, a policy ~p induces a
distribution Q~p over (x,z), where z = ĥi(x) with probability pi. The
defender will incur a baseline error rate of e~p(h) = Prx∈Q~p [ĥi(x) 6=
h̄(x)] = ∑i pie(ĥi) if there is no reverse-engineering effort.

Suppose the attacker observes a sequence of data points from
Q~p, and tries to efficiently learn the hypothesis class H = ∪iHi.
For any h ∈ H, let e~p(h) = Prx∈Q~p [h(x) 6= ĥi(x)] = ∑i pie(h), the
expected error of h w.r.t. Q~p, and we define e~p,H = infh∈H e~p(h)
as the optimal (smallest) error achievable by any function h ∈ H
under a policy ~p. Definition 1 naturally extends to the randomized
setting: in particular, the distribution P becomes Q~p and the error
bound (eH + ε) becomes (e~p,H + ε).
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Theorem 1. Suppose that each Hi is efficiently learnable, and
ĥi ∈ Hi be the classifier learned from these classes by a defender,
respectively, with the corresponding error rate e(ĥi). Then, any
distribution Q~p over (x,z) can be efficiently reverse engineered,
with e~p,H bounded by mini ∑ j 6=i pi4i, j ≤ e~p,H ≤ 2(maxi e(ĥi)). 2

This theorem shows that on the one hand, even with random-
ization, reverse-engineering is easy as long as all classifiers among
which the defender randomizes accurately predict the target - that is
maxi e(ĥi), the maximal error among the n classifiers, is arbitrarily
small. On the other hand, the attacker’s error depends directly on
the difference among the classifiers, which can be significant if at
least some of the classifiers are not very accurate, allowing them
to disagree more often. According to the error bound (e~p,H + ε),
even though ε becomes arbitrarily small as the number of queried
samples increases, the defender will inevitably suffer from an
error caused by e~p,H . This error can be high; for example, when
randomizing two classifiers of error 0.2 and 0.1 with p1 = p2 = 0.5,
e~p,H is in [0.15, 0.4]. In contrast, in the deterministic setting, eH
can be 0. For our experiments with the pool of six detectors we
measured the error to be around 25% on our testing dataset.

The above theorem also suggests a trade-off between the
accuracy of the defender under no reverse-engineering vs. the
susceptibility to being reverse-engineered: using low-accuracy but
high-diversity classifiers allow the defender to induce a higher
error rate on the attacker, but will also degrade the baseline
performance against the target. To combat reverse engineering
effort, we propose to randomize among a set of low-complexity,
low-accuracy classifiers (e.g., logistic regression), rather than
deploying a single high-complexity, high-accuracy classifier (e.g.,
deep neural network or random forest). The former is also more
suitable for a hardware implementation than the latter. Although
this low accuracy applies to the classification of each individual
period, we raise the overall accuracy of the detector by averaging
the decisions across multiple intervals.

9.3 Evasion Without Reverse Engineering

Fig. 22: Impact of Randomization on Evasion

Our threat model assumes that an attacker needs to reverse
engineer a detector before evading it. The theoretical resilience
claims on RHMDs rely on the difficulty of this reverse engineering.
In this section, we consider whether it is possible to evade the
detector without reverse engineering. To provide intuition, we
start with Figure 22, which shows the decision boundaries of
two diverse base detectors learned from hypothesis classes H1
and H2. The two decision boundaries are not mutually exclusive
(H1 malware regions are 2, 3 and H2 malware regions are 3,

2. This theorem is formed by combining Theorem 2.2 and Corollary 2.3
(with detailed proofs) from [16].

4). To fool both detectors, the malware has to move to region
1 which both detectors treat as normal. Note that these decision
boundaries represent hyperplanes in an n-dimensional feature space
for LR, and complex surfaces in the same space for NN. Therefore,
as we increase diversity the target area for evasion gets smaller.
Thus, provided that detectors are diverse, making random insertion
guesses is unlikely to succeed and expensive to validate. Note that
evasion must succeed continuously across consecutive detection
windows, which complicates attempts to incrementally evade the
detector.

This example also provides intuition on why randomization
complicates reverse engineering (as shown by Theorem 1). The
attacker has to suffer a significantly increased error (e~p,H ) if she
tries to learn a decision boundary from the same hypothesis classes
adopted by the defender. Otherwise, she has to learn a decision
boundary of a higher complexity class which requires exponentially
larger number of samples.

If the attacker knows precisely the configuration of the base
detectors of an RHMD, we verified that it is possible to evade it, for
example, by iteratively evading each. This approach incurs a high
overhead since instructions need to be injected to evade each of the
detectors. We do not consider this case as part of our threat model.
Resilience in this case may be achieved if we make the decision
boundary of the RHMD non-stationary. This can be accomplished
by having a large set of candidate features and periods, of which a
random subset is used for the RHMD at any given time. This is an
interesting area for future research.

10 RELATED WORK

In this section, we discuss related work organized into two main
parts. First, we review related work in malware anomaly detection.
In the second part, we discuss adversarial classification and some
important recent results in that domain. We show that these results
are consistent with our results both in terms of reverse engineering
and the use of randomization as a defense.

10.1 Malware Detection
In general, malware detection uses either static (focusing on the
structure of a program or system) or dynamic (analyzing the behav-
ior during execution) approaches. Static approaches can be evaded
using program obfuscation or simple code transformations [7]. On
the other hand, the advantage of dynamic malware detection is that
it is resilient to metamorphic and polymorphic malware [7] and can
even detect previously unknown malware. However, disadvantages
include false positives, and a high monitoring cost during run-time.

A number of works have looked at using low-level architecture
features for malware detection, such as frequency of opcodes use
in malware [35], evaluation of opcode sequence signatures [4],
[36] and opcode sequence similarity graphs [37], which consider
offline analysis. Further, Demme et al. [8] proposed collecting
performance counter statistics for programs and malware under
execution and used them to show that offline detection of malware
is effective. Then, a real-time hardware malware detector was built
by Ozsoy et al. [13]. Tang et al. [9] used unsupervised learning
to detect malware exploits, which will make the regular program
deviate from the baseline execution model. Kazdagli et al [11]
identified some pitfalls in training and evaluating HMDs for mobile
malware, and proposed several improvements to them.

Khasawneh et al. used ensemble learning to improve the
accuracy of HMDs [10]. Superficially, ensemble learning is similar
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to RHMD since it combines the output of multiple diverse detectors
to improve the detection performance. However, since ensemble
classifiers are deterministic, they can be reverse engineered and
evaded. In contrast, the stochastic switching between individual
detectors in RHMD makes both reverse-engineering and evasion
difficult with a difficulty that increases with the number and
diversity of the individual detectors. Smutz et al. also studied
the use of an ensemble for PDF malware detection [18]; when the
baseline detectors disagree, they consider this a possible indicator
of evasive malware.

10.2 Adversarial Classification
Several other studies have looked at attacking machine learning
models. Attacks can be classified into two types: poisoning and
evasion attacks [38]. In poisoning attacks, the adversary focuses on
injecting malicious samples in the training data as an attempt to
influence the accuracy of the model. For evasion attacks, similar
to our own, the adversary crafts input samples that aim to be
misclassified by the model. Several evasion attacks were studied
in the image classification field. An adversary can make changes
to an image’s pixels to cause the miss-classification of the image
but will not change the image’s visibility to the human eye [38].
Since images have high entropy, they can be easily manipulated
without changing the appearance of the image. On the other
hand, in the malware detection domain, manipulating malware
programs has different challenges since the malware functionality
needs to be preserved. Evasion attacks in contexts outside image
classification have also been considered. Such attacks are called
mimicry attacks [17]. Although recent studies [16], [39] have
provided theoretical grounds for randomization as a possible
solution in adversarial classification, practical algorithms have
yet to be developed for this problem.

Prior work proposed evasive attacks on PDF malware de-
tectors [40], [41]. These works consider static classifiers using
structural features present in the PDF image. In contrast, our
contribution targets detectors for a wide range of malware, and
we consider run-time anomaly detection using microarchitectural
features. Besides the different nature of the application, our work
makes a number of contributions relative to these papers, including
showing how to reverse engineer the classifiers, reverse-engineering
driven instruction injection to evade detection (they use random
modifications), exploring the impact of retraining, and providing
theoretical insights based on PAC theory into the structure of
the problem. Moreover, these studies do not explore resilient
classification. Furthermore, Dinakarrao et al. [42] proposed evasion
attacks on HMDs by utilizing a wrapper (running in another
thread) that runs along with the malware and executes a benign
workload to hide the malicious malware activities. This attack
works on Hardware Performance Counter (HPC) based HMDs
since HPCs are shared between threads. However, HMDs that
collect features from the hardware directly (such as the ones we
develop in this work) are thread specific; the features collected
are not impacted by other running threads and cannot be evaded
using this approach. Our developed attack strategies are general
(can evade any HMD detector) and do not require the presence of
a wrapper. The transferability of attacks between HMDs that are
built using different machine learning models was studied in [43].
In contrast, in this paper, we study the transferability of attacks
between HMDs that are built using different features.

Similar to the reverse engineering component of our work,
Tramèr et al. [44] were able to reverse-engineer machine learning

models against production Machine Learning-as-a-service (MLaaS)
providers. However, they assumed that they know the features
used by the target classifier. In addition, Shokri et al. [45] were
able to use reverse-engineered models to perform a membership
inference attack (given a data record and black-box access to a
model, determine if the record was in the model’s training dataset)
against MLaaS providers. In both works, they attempt reverse
engineering using random noise. We believe that this approach
does not work in our threat model since we do not have access
to the classifier confidence, and the classification is a continuous
process, which makes it difficult to assess incremental changes.

Most relevant to our work, Kuruvila et al. proposed a follow up
to our earlier RHMD work [19], which basically evaluated RHMDs
that uses a huge number of base detectors. In contrast, in this paper,
we show that the detection performance of RHMD can be improved
by formulating an optimization problem as a BSG.

11 CONCLUDING REMARKS

Recently proposed HMDs have demonstrated remarkable accuracy
in classifying malware using low-level features. If HMDs are
widely deployed, we must expect that attackers will attempt to
evade detection, as is the case in any adversarial setting. This paper
considers HMD detection in the presence of evasive malware in
detail. In particular, we showed that the attacker can accurately
reverse-engineer earlier proposed detectors. Moreover, once the
detector is reverse-engineered, we demonstrated simple evasive
techniques that can successfully hide malware from detection. We
also explored whether having detectors be retrained to capture
evasive malware once samples become known (similar to the
current practice of updating virus signatures) can be used to harden
detectors against evasive malware. For LR, such retraining was
not effective. In contrast, NN detectors could easily be retrained
to detect the evasive malware. However, after several rounds of
an evade-retrain game between the attacker and defender, the NN
classifier could no longer be effectively retrained.

In response to these limitations, we proposed resilient HMDs
(RHMD) that switch unpredictably between a diversity of detectors.
We showed that RHMDs can resist reverse-engineering and com-
plicate evasion. We further improve RHMD detection accuracy and
robustness by formulating the problem as a Bayesian Stackelberg
Game and solve it as a multi-objective optimization problem
to get an optimized switching strategy. In addition, We showed
both empirically, and from PAC learnability theory, that RHMDs
resilience increases with the number and diversity of the individual
detectors available to select from. With this class of resilient HMDs,
hardware malware detection becomes a promising direction as a
defense against the continued proliferation of malware.

Our threat model assumed that the attacker does not have
whitebox access to the RHMD: they do not apriori know the
detailed implementation of the RHMD. If they did, we showed
that, in theory the attacker can evade detection although at a cost
proportional to the number of detectors. Our future work will
explore how to defend RHMDs against these whitebox attacks.
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