
Monotonic-HMDs: Exploiting Monotonic Features
to Defend Against Evasive Malware

Md Shohidul Islam∗§, Behnam Omidi∗, Khaled N. Khasawneh∗
∗ECE Dept., George Mason University, email: {mislam20, bomidi, kkhasawn}@gmu.edu

§CSE Dept., Dhaka University of Engineering & Technology, Gazipur

Abstract—Machine learning-based hardware malware detec-
tors (HMDs) offer a potential game-changing advantage in
defending systems against malware. However, HMDs suffer from
adversarial attacks; they can be effectively reverse-engineered
and subsequently be evaded, allowing malware to hide from
detection. Adversarial evasion attacks requires adding benign
features to the program execution to be able to evade detection.
Against these attacks, in this paper, we propose Monotonic-
HMDs, which are HMDs built using monotonic features to de-
fend against adversarial evasion attacks. Specifically, Monotonic-
HMDs are build using monotonic malicious features only. Thus,
Monotonic-HMDs ensures that an adversary cannot evade the
detection by simply adding benign features to the malware
programs since they are not used in the Monotonic-HMD model.
In addition, adding malicious features will only increase the
probability of detecting the input program as malware. Our
experimental results demonstrate that Monotonic-HMDs offer
effective defense against adversarial attacks without sacrificing
significant detection accuracy, which can be interpreted as a
cost for security in classifying malware. Importantly, our results
shows that for evasive malware that can completely evade current
HMDs, the proposed Monotonic-HMDs achieve 83% detection
accuracy and maintain this accuracy even under more aggressive
attacks. Moreover, Monotonic-HMDs reduce the inference time,
i.e., time to perform one detection, by 61.11%. Furthermore,
the hardware implementation results of the Monotonic-HMDs
shows that Monotonic-HMDs offers area and power consumption
savings compared to current HMDs.

Index Terms—Adversarial machine learning, monotonic mod-
els, malware detection

I. INTRODUCTION

Malware attacks are among the growing security threats to
modern computing systems. While manufacturers are contin-
uously making efforts in building secure systems, the number
of system vulnerabilities are still overwhelming. Sophisticated
attackers exploit these vulnerabilities and develop numerous
types of malware to fulfill their malicious goals [15], [19].
While preventing malware from compromising the system
is impossible, protecting systems from malware attacks re-
quires detection, which is mainly accomplished using two
approaches: static and dynamic detection. Static approach
basically detects malware by matching their signatures with
previously stored database; however, this technique becomes
ineffective in detecting obfuscated/metamorphic/polymorphic
malware and zero-day attacks whose signatures have not yet
been encountered [12]. Overcoming these challenges leads to
the concept of dynamic detection, which does not rely on
malware signature. Instead, dynamic approach detects malware

by monitoring their run-time behaviour, which makes the
technique robust in detecting unseen signatures []. However,
dynamic detection, when done with software implementation,
poses significant overhead on system performance and power.

To make the continuous dynamic detection more efficient, a
new implementation technique has emerged called Hardware
Malware Detectors (HMDs) [1], [6], [9], [10], [13], [14], [17],
[18]. HMDs are essentially machine learning classifiers that
detect malware as computational anomaly by using lower-level
hardware features. Research shows that HMDs can be built
using various hardware features including executed instruction
traces, memory access patterns, or other architectural events
(e.g., cache miss rates, branch miss rates, etc) collected
through Hardware Performance Counters (HPC), which are
available in all modern computers. HMDs receive popularity
in industries too; the SnapDragon processor of Qualcomm
appears to be using hardware features to detect malware
attacks; however, the technical details are not published [16].
HMDs offer great advantage as they can detect malware
by staying always ‘on’ with small-to-no impact on system
performance and power [14], [15].

However, attackers are always in pursuit of gaining upper
hand by adapting malware so that they can bypass malware de-
tectors. As a results several works [2], [4], [7] showed that it is
indeed possible to craft evasive malware that can evade HMDs’
detection while continuing their intended malicious activities.
These evasive malware attacks assume black-box access to the
HMDs, i.e., attackers do not know the victim HMDs model
internals (e.g., model architecture, hyper-parameters, weight,
bias, etc). But attackers can query the victim HMDs by supply-
ing inputs and observing model outputs. Due to unavailability
of victim model parameters, black-box approach takes two
steps: (1) reverse engineering the victim HMDs, which builds
(trains) proxy models, (2) generate evasive malware based on
proxy models. There exists another threat model called white-
box attack, which assume that attackers have access to victim
HMDs model parameters, and thus attackers follow only the
second step – generating evasive malware based on the exact
victim HMDs model.

To defend HMDs from evasive malware attacks it was
shown that retraining HMDs with evasive malware samples is
limited [7], i.e., it is still possible to evade the re-trained HMD.
Furthermore, randomization based defenses, called evasion-
resilient hardware malware detectors (RHMDs) [7], were
proven to be effective against black-box attacks. Specifically,

RHMDs is an HMD organization that uses multiple diverse de-
tectors and randomly switches between them at inference time,
i.e., run-time. Such random switching of the base detectors
at inference time leads to unpredictable decision boundaries,
which makes the reverse engineering harder in case of black-
box attack scenario. Consequently, attackers have hard time
in building proxy models and generating evasive malware
samples. Nonetheless, RHMDs are found to be vulnerable to
white-box attacks as the attackers have exact knowledge of
the victim HDMs models and can exploit them in generating
evasive malware samples [7]. Moreover, building multiple
base detectors in RHMDs requires huge dataset and diverse
features, leading to increased complexity in their hardware
implementation.

In this paper, we introduce Monotonic-HMDs to harden
HMDs against evasive malware. Our approach is based on
the observation that adversaries target the benign features,
i.e., features that contribute to increase the probability of
detecting the input as benign, by adding more of them to
craft evasive samples of the malware that can evade detection.
Therefore, Monotonic-HMDs models use malicious features
only for detection, i.e., features that contribute to increase the
probability of detecting the input as malicious/malware. As a
result, adding or subtracting benign features from the malware
will have no effect on the detection since the benign features
are not used for detection. Furthermore, Monotonic-HMDs not
only uses malicious features for detection, but also imposes
monotonic constraints on them so that the HMDs’ detection
is an increasing function of the malicious features value. As
a result, adding more malicious features to the malware, will
only results in increasing the probability of the input being a
malware. This is a strong security advantage since an adversary
who can only increase the feature values (but not decrease
them) cannot make perturbations to the malware that fool
the HMD into detecting malware as benign programs. As
a consequence, to fool the Monotonic-HMDs, an adversary
must reduce the number of malicious features in the malware,
which would effect the malicious functionality of the malware.
For example, cache side-channel attacks requires continuously
accessing the cache to be able to extract sensitive information
from the victim and reducing the frequency of the cache access
reduce the success rate of the attack [5], [21].

While Monotonic-HMDs are not a perfect defense against
evasion, we hope that Monotonic-HMDs raises the bar. In
particular, since evading Monotonic-HMDs, even under the
white-box attack scenario, can’t be done through simple eva-
sion automated techniques [2], [4], [7] and requires advanced
domain expertise and non-trivial efforts from the adversary.

The key contributions of this paper are as follows:
• We propose Monotonic-HMDs as a defence against eva-

sive malware attacks. Our security analysis shows that
Monotonic-HMDs are robust against against both black-
box and white-box attacks scenarios.

• We evaluate the Monotonic-HMDs model overhead, in
terms of inference performance and model size. Our
case study results shows that Monotonic-HMDs has 2.5X

faster inference and 12.01% memory space saving com-
pared to regular HMDs.

• We evaluate the hardware complexity of integrating
Monotonic-HMDs into an open core. Our evaluation
shows that Monotonic-HMDs require significantly lower
hardware resources compared to regular HMDs and re-
duce power consumption.

II. DATA SET & FEATURES COLLECTION

This section explains how we collected features and built
our dataset comprising benign programs and malware pro-
grams. We executed 600 benign programs of numerous types
such as text editing tools, browser programs, system programs,
SPEC 2006 benchmarks, notepad++, Acrobat Reader, Winrar,
etc. As for malware programs, we downloaded 3000 malware
samples of different types, including Password Stealers (PWS),
Backdoor, Trojan, Worm, Rogue, from a malware database
that is called MalwareDB [22]. The malware as well as
the benign programs were executed on a 32-bit Windows
7 virtual machine. Note that in order to allow the malware
to run freely and perform their intended malicious activities
we disabled Windows security and Firewall services. While
running benign programs, we interacted with them manually
to get a representative results. In contrast, we observed that
malware programs did not require user interaction in order to
perform their malicious activities. To collect dynamic profiling
information and low-level hardware features of a running
program, we used Intel Pin instrumentation tool [11]. Dynamic
traces of a running program were collected for a duration of
5000 system calls or 15 million committed instructions, after
the warm-up period. The collected features are based on the
executed instructions frequency, similar to [7].

Finally, we divided the dataset into victim training (50%),
attacker training (25%), and testing (25%). Here, victim train-
ing refers to the dataset that was used to train the victim
HMDs, attacker training dataset was used to train proxy
models for reverse engieering, and testing dataset was used
for inference and measuring the effectiveness of reverse engi-
neering. In order to avoid bias in the dataset, we distributed
different malware types evenly across these datasets.

III. ADVERSARIAL ATTACKS ON HMDS: THE THREAT
MODEL

In this section, we describe in details our baseline HMD
(i.e., victim HMD) and the threat model considered. In partic-
ular, this paper assumes two attack scenarios (black-box and
white-box attack) and we will show that the current imple-
mentation of HMDs is vulnerable to both attack scenarios.

A. Victim HMD

A typical victim HMD is machine learning classifier built
with low-level hardware features in order to classify malware
and benign programs. We train a victim HMD using a lo-
gistic regression classifier with low-level hardware features
representing dynamic profiling of the benign and malware
program. The steps involved in the victim HMD training are

shown in Figure 1. In particular, we train a regularized logistic
regression that uses ‘liblinear’ algorithm for optimizing cost
function based on `2 penalization, maximum iteration of 2000,
and tolerance of 0.0001. We use victim training dataset for
training the baseline HMD and testing dataset to measure
detection performance. Figure 2 shows the performance of
our baseline HMD (victim HMD) using different performance
metrics such as accuracy (% of total program samples cor-
rectly classified), sensitivity (% of malware samples correctly
classified), specificity (% of regular program samples correctly
classified), precision (% of predicted malware labels that are
actually malware), and F1-score (harmonic mean of sensitivity
and precision). We choose logistic regression for its simplicity,
yet state-of-the-art performance, low cost and complexity
of its hardware implementation. Note that the victim HMD
will be used as our baseline HMD throughout the remaining
experiments.

Dataset
preprocessing

1
Feature
selection

2
Train victim

HMDs

3

e.g., normalization e.g., 50 features used

Fig. 1. Steps involved in training victim HMDs.

Accuracy Sensitivity Specificity Precision F1 score
0

20
40
60
80

100

P
er

ce
nt

ag
e

(%
)

Fig. 2. Baseline HMD (vicitm HMD) detection performance.

B. The threat model

As stated earlier, we assume two threat models; black-box
and white-box attacks. In this section, we explain how we
generate these attacks and subsequently show that the current
generation of HMDs are vulnerable to both of these attacks
scenarios. Figure 3 shows the steps involved in generating
attacks. In particular, in black-box attacks the attacker starts
from step 1, while in the white-box attack scenario the attacker
starts from step 2.

Inference on
evasive malware

samples

Generate
adversarial evasive
malware samples

2Reverse
engineer the
victim HMDs

3

e.g., FGSM techniquee.g., proxy model

1

Fig. 3. Steps involved in generating attack.

(1) Black-box attack (reverse-engineering HMDs): In this
threat model, we assume that attackers have black-box ac-
cess to the HMD, which means that attackers can query

the HMD and observe the detection/classification output. In
addition, attackers do not know the HMD model’s internal
architecture or hyperparameters. However, generating evasive
malware samples require HMD model information, otherwise
the problem becomes NP-Hard [20]. Therefore, attackers need
to reverse-engineer the victim HMD and build a substitute
(proxy) model that can be used to generate evasive malware
samples that can evade the victim HMD detection. For this
purpose, attackers first prepare a dataset consisting of malware
and benign programs; then the dataset is used to query the
victim HMD, which produces corresponding output labels.
Next, the dataset and the labels predicted by victim HMD
are used to train a substitute model that we call the reverse-
engineered HMD. At this stage, it is important to measure the
reverse-engineering effectiveness, which implies how success-
ful the reverse-engineering is, i.e., similarity between reverse-
engineered HMD and the victim HMD detection behaviour. To
measure the reverse-engineering effectiveness, attackers build
another dataset (that we call a validation set, which should
be different from the training dataset), which is used to query
both the victim HMD and reverse-engineered HMD. Finally,
the percentage of matched detection results, i.e., output labels,
for both the reverse-engineered HMD and the victim HMD
represents the reverse engineering effectiveness.

To show that current HMDs can be reverse-engineered, we
used the attacker training dataset and query the victim HMD
(described in Section III-A). Then the dataset and predicted
labels were used to train a new logistic regression classifier,
which is our reverse engineered model. We used testing
dataset to evaluate the reverse engineering effectiveness. Our
experimental result shows a reverse engineering effectiveness
of 97%, which indicates that it is possible to reverse engineer
the current generation of HMDs. After reverse engineering, the
attacker use the reverse-engineered HMD to generate evasive
malware programs, following steps 2 and 3 of Figure 3; these
two steps are detailed in the white-box attack description.
However, for black-box attacks, the reverse-engineered HMD
is used in the second step instead of victim HMD.

The black-box attack success rate is measured through
the transferability metric, which is the percentage of evasive
malware that is generated to evade the reverse-engineered
HMD that can also evade the victim HMD. To measure the
black-box attacks transferability, we used the testing dataset
to create the evasive malware samples. Figure 4 shows the
transferability results while increasing the attack intensity,
i.e., amount of added instructions. The results shows that
the success rate of the black-box attack, i.e., percentage of
malware that can evade the victim HMD’s detection, increases
while increasing the attack intensity.
(2) White-box attack (generating evasive malware): While
the black-box attack scenario assumes that attacker does not
know the victim HMD architecture and hyperparameters, the
white-box attack scenario assumes that the attacker knows
the victim HMD architecture and hyperparameters. Thus, it is
more difficult to defend against white-box attack scenarios [7].

To develop evasive malware samples that can by-pass

HMDs detection, attacker have to add perturbations to the
malware features, which requires identifying the features that
need to be perturbed and embedding those features into
malware program.

In our experiments, we identify the target features by
using a slightly modified Fast Gradient Sign Method (FGSM)
algorithm [3], which is primarily introduced for image classi-
fication domain. Original FGSM allows bi-directional feature
perturbation, i.e., image features can be increased or decreased.
However, we slightly modify FGSM by imposing constraints
that allow unidirectional feature perturbation, i.e., features can
be only increased. We need such modification since HMDs’
features follow a positive continuous distribution, i.e., cannot
have a negative value. As a results the only way to develop
evasive malware samples is by inserting features into malware
program. Assuming x to be the input to HMD, y be the
corresponding output, and L(θ, x, y) be the loss function;
then the features that need to be perturbed are identified by
the gradient of the loss function. Note that our features are
executed instruction mixes, as described in Section II. Once
the features (instructions) are identified, we embed them in
malware programs by following an approach similar to [7]. We
cannot directly insert instructions into malware programs since
our malware samples are only binary executable; also, we do
not have access to their source code nor can we decompile
them as they are obfuscated. Therefore, we followed an
alternative approach by (i) constructing the dynamic control
flow graph (DCFG) of each malware using Intel Pin tool, and
(ii) inserting required instructions into each basic block of the
DCFG. While inserting instructions, we make sure that they
do not alter the state of the program, i.e., malware can perform
their intended malicious activities.

0 1 2 3 4 5
of instructions injected per basic block

0

20

40

60

80

100

%
of

m
al

w
ar

e
d

et
ec

te
d

White-box Transferability (black-box)

Fig. 4. Adversarial evasion attacks effectiveness on current HMDs

It is expected that inserting instructions would turn the
malware into evasive, which would evade victim HMD from
detection, resulting in a drop in the HMD detection accuracy.
At this stage, we evaluate the effectiveness of white-box and
black-box attacks by developing evasive samples based on the
testing dataset, and the results are shown in Figure 4. As we
can see, inserting one instruction per basic-block drops the
victim HMD malware detection from 92% to 67% in case of
white-box attack, and proxy HMD malware detection drops
from 89% to 71% in case of black-box attack. Furthermore,

inserting more and more instructions per basic-block decreases
the malware detection rates. Therefore, the obtained results
confirm that the current generation of HMDs are vulnerable
to white-box attack.

IV. MONOTONIC-HMDS

In this section, we first define monotonic classifier. Sub-
sequently, we discuss the rationale behind using monotonic
model to harden HMDs against adversarial evasion attacks.
Finally, we describe how we constructed our Monotonic-
HMDs.
Monotonic classifier: Monotonic classifier are classifiers that
imposes monotonicity constraints on a model; a function
f : x −→ y is called increasingly monotonic if x ≤
x

′
=⇒ f(x) ≤ f(x

′
). Likewise, consider f as an m − ary

classifier that operates on d − dimensional feature vector
x1, x2, x3, . . . , xd, i.e., f : x ∈ Rd −→ y ∈ Nm; also suppose
that xi and x

′

i are two different values of i− th feature, where
i ∈ {1, 2, 3, . . . , d}. Then classifier f is increasingly mono-
tonic if xi ≤ x

′

i implies f(x1, x2, . . . , xi, xi+1, . . . , xd) ≤
f(x1, x2, . . . , x

′

i, xi+1, . . . , xd). In other words, monotonicity
constraint for classifier ensures that increasing a feature value
will only increase the model’s output value.
Monotonic-HMDs against adversarial evasion attacks: To
develop evasive malware samples that can evade HMDs’ detec-
tion, attackers usually target benign features that have positive
correlation with the output of the HMD being a benign. Thus,
by simple increasing their value, i.e., adding more of them into
the malware, the malware can evade detection. The rational
behind targeting benign features is that it is easy to manipulate
without changing the malicious functionality of the malware.
As a result, all previously proposed adversarial attacks target
increasing the benign features values to craft evasive malware
samples [2], [4], [7], [8].

Furthermore, attackers usually seek to have their attacks be
misclassified as benign; conversely, there is less incentive to
make benign applications be misclassified as attacks. There-
fore, we explore taking advantage of this fundamental asym-
metry in both the features and the attacker goals, to construct
a monotonic classifier. Specifically, monotonic classifier can
enforce monotonic constraints such that increasing the value
of a feature would result in a higher probability of getting
detected. Therefore, to build such a classifier, we first need
to identify the benign features that can be an easy target for
the attackers to create evasive malware. After identifying the
benign features, we train monotonic constrained models using
the selected features only. Consequently, if the attacker tries
to change any feature, increasing the feature value will only
result in higher chance of being detected.
Monotonic-HMDs construction: Figure 5 explains how we
constructed Monotonic-HMDs. At first, we train a logistic
regression classifier using the dataset described in Section II.
Then we identify the malicious and benign features; ma-
licious features contribute to the HMDs decision making
toward detecting a running process as malware, and benign
features contribute to the probability of a process being benign.

+

7
8

1
2
3
4
5
6

9
10
11
12

Feature weight

Bias

Fe
at

ur
e

in
de

x

+

Monotonic
HMDs

Regular
HMDs

Malicious? Malicious?

Fig. 5. Monotonic-HMDs

As such, features having positive weights are identified as
malicious, and features with negative weights are identified
as benign; we denote malicious features by fmalicious and
benign features as fbenign in Figure 5. As shown in Figure 5,
Monotonic-HMDs discard benign features but comprise only
the malicious features and bias. Specific to our evaluation, the
total number of features in our dataset is 50. After training a
logistic regression classifier using the 50 features, the classifier
contains 25 positive weights, i.e, malicious features, and 25
negative weights, i.e., benign features. Since we construct
the Monotonic-HMD using the malicious features only, the
resulting classifier, i.e., Monotonic-HMD, will use less number
of features compared to the regular HMDs. Therefore, we will
study the Monotonic-HMD detection performance, speed, and
model size (Section V) as well as their hardware implemen-
tation overhead (Section VI).

V. EXPERIMENTAL EVALUATION

In this section, we first perform security evaluation of the
proposed Monotonic-HMDs. Subsequently, we evaluate the
Monotonic-HMD’s detection performance and implementation
overhead. Specifically, we study their detection accuracy,
sensitivity, inference speed, and model size. Accuracy shows
how many programs the HMD correctly labeled out of all
programs; sensitivity shows how many malware the HMD
correctly classified out of all programs that were labeled as
malware, e.g., sensitivity = x% indicates that x% evasive mal-
ware samples were detected and 100− x% malware samples
evaded the HMDs from detection.

0 2 4 6 8 10 12 14 16 18

Feature perturbation

0

20

40

60

80

100

P
er

ce
nt

ag
e

×10

Accuracy (Monotonic-HMD)

Accuracy (Regular-HMD)

Sensitivity (Monotonic-HMD)

Sensitivity (Regular-HMD)

Fig. 6. Performance of Monotonic-HMD and regular HMD

Figure 6 shows the detection accuracy and sensitivity for
various attack intensity. As stated earlier, evasive malware
samples are generated by perturbing features; thus, amount
of feature perturbation indicates attack intensity— feature
perturbation = 0 means their is not perturbations to any
features and thus, the malware is not evasive and any higher
perturbation indicates more aggressive attack. Looking at no-
attack scenario, i.e., non-evasive malware, regular HMD shows
86% accuracy and 92% sensitivity, whereas monotonic HMD
shows 83% accuracy and 95% sensitivity, i.e., monotonic
HMD loses 3% accuracy but gains 3% on sensitivity; this is
because monotonic HMDs discard benign features, as shown
in Figure 5.

As the attack intensity increases, regular HMD accuracy
and sensitivity continuously drops, which is caused by the
positive correlation between the benign features, i.e., perturbed
features, and the HMD’s output being benign. Thus, larger
proportion of evasive malware samples are able to evade
regular HMD as we increase the attack intensity. And 0%
sensitivity at feature perturbation of 180 indicates that the
regular HMDs are completely fooled, where all the malware
samples evaded from detection.

On the other hand, the monotonic-HMD maintain the stable
accuracy and sensitivity despite increasing attack intensity,
which means feature perturbation cannot confuse or evade
monotonic HMDs. This is due to the attacks strategies pro-
posed in previous works [2], [4], [7], [8].

TABLE I
SPEED AND SIZE COMPARISON OF MONOTONIC-HMDS AND REGULAR

HMDS

Inference time Model size
Regular HMDs 0.36 (µs) 1024 (Bytes)

Monotonic-HMDs 0.14 (µs) 901 (Bytes)
Savings by Monotonic-HMDs 61.11% 12.01%

In addition, we evaluate the monotonic-HMDs detection
speed and model size. Table I shows that regular HMDs take
0.36 (µs) for detecting one sample, whereas monotonic-HMDs
take only 0.14 (µs), indicating 61.11% reduction in inference
time. Moreover, monotonic-HMDs reduce the memory space
needed to store the model since the model size of monotonic-
HMDs is 12.01% less compared to regular HMDs. Overall,
monotonic HMDs ensures faster malware detection with re-
duce model size since it has less features, i.e., only use the
malicious features.

VI. HARDWARE IMPLEMENTATION EVALUATION

We extended the open-source x86 processor (AO486),
which is a 32-bit in-order pipelined implementation of the Intel
80486 ISA, once with regular-HMD and once with the pro-
posed Monotonic-HMDs, to evaluate the hardware implemen-
tation overhead of the Monotonic-HMD implementation. Both
HMDs (Monotonic-HMDs and regular-HMDs) were added to
the end of the CPU pipeline, e.g., after the commit stage, and
were synthesized on Xilinx Virtex-7 VC707 Evaluation Board

by Vivado 2017.4. The hardware implementation overhead
results are shown in Table II. The results demonstrated that
Monotonic-HMDs offers both area and power savings, around
50% in our case study, compared to regular HMDs.

TABLE II
HMDS’ EFFECT ON CORE

Regular-HMDs Monotonic-HMDs
Logic Cells +0.28% +0.136%

Power Usage +0.08% +0.042%

VII. DISCUSSION

We investigate the use of the emerging monotonic models
for HMDs as a defense against adversarial evasion attacks. The
addition of monotonic constraint allows the HMDs to leverage
malicious features rather than benign features in their detection
model. Thus, previously proposed attacks [2], [4], [7], which
depend on targeting the benign features by increasing their
presence in the malware program to evade detection, can
not evade monotonically constraint HMDs. Nonetheless, as
a cost for security, an overall degradation of 3% in detection
accuracy is observed when using monotonically-constrained
HMDs, i.e., Monotonic-HMDs, compared to regular HMDs
under no evasions attempt.

Furthermore, while Monotonic-HMDs are robust against
previously proposed attacks [2], [4], [7], [8], we believe future
attacks that target the malicious features only are possible and
can evade Monotonic-HMDs. However, such future attacks
would require advanced domain expertise and non-trivial ef-
forts by the attacker because the evasion strategy should be
malware specific so that the malicious functionality is not
effected. Nonetheless, we hope that Monotonic-HMDs raises
the bar for adversary to evade detection since simple evasion
strategies are no longer possible.

VIII. CONCLUDING REMARKS

In this work, we proposed Monotonic-HMDs as a de-
fence against adversarial evasive malware attack. We construct
Monotonic-HMDs by imposing monotonicity constraints on
regular HMDs model and features. We showed that at attack
intensity where current HMDs are completely fooled and
evaded, Monotonic-HMDs achieve and maintain high robust-
ness accuracy, turning it immune to evasion attack. Moreover,
Monotonic-HMDs offer 2.57× faster malware detection and
reduce model size by 12.01% compared to current generation
of HMDs. Furthermore, our hardware implementation shows
that Monotonic-HMDs offer 50% savings in area and power
usage, over regular HMDs, due to including reduced number
of features in the model.

REFERENCES

[1] DEMME, J., MAYCOCK, M., SCHMITZ, J., TANG, A., WAKSMAN,
A., SETHUMADHAVAN, S., AND STOLFO, S. On the feasibility of
online malware detection with performance counters. ACM SIGARCH
Computer Architecture News 41, 3 (2013), 559–570.

[2] DINAKARRAO, S. M. P., AMBERKAR, S., BHAT, S., DHAVLLE, A.,
SAYADI, H., SASAN, A., HOMAYOUN, H., AND RAFATIRAD, S. Ad-
versarial attack on microarchitectural events based malware detectors.
In DAC (2019), ACM, p. 164.

[3] GOODFELLOW, I. J., SHLENS, J., AND SZEGEDY, C. Explaining
and harnessing adversarial examples. arXiv preprint arXiv:1412.6572
(2014).

[4] ISLAM, M. S., KURUVILA, A. P., BASU, K., AND KHASAWNEH,
K. N. Nd-hmds: Non-differentiable hardware malware detectors against
evasive transient execution attacks. In ICCD (2020), IEEE, pp. 537–544.

[5] KAYAALP, M., KHASAWNEH, K. N., ESFEDEN, H. A., ELWELL, J.,
ABU-GHAZALEH, N., PONOMAREV, D., AND JALEEL, A. Ric: Relaxed
inclusion caches for mitigating llc side-channel attacks. In DAC (2017),
IEEE, pp. 1–6.

[6] KAZDAGLI, M., HUANG, L., REDDI, V., AND TIWARI, M. EMMA:
A new platform to evaluate hardware-based mobile malware analyses.
CoRR abs/1603.03086 (2016).

[7] KHASAWNEH, K. N., ABU-GHAZALEH, N., PONOMAREV, D., AND
YU, L. Rhmd: evasion-resilient hardware malware detectors. In MICRO
(2017), IEEE, pp. 315–327.

[8] KHASAWNEH, K. N., ABU-GHAZALEH, N. B., PONOMAREV, D., AND
YU, L. Adversarial evasion-resilient hardware malware detectors. In
ICCAD (2018), IEEE, pp. 1–6.

[9] KHASAWNEH, K. N., OZSOY, M., DONOVICK, C., ABU-GHAZALEH,
N., AND PONOMAREV, D. Ensemble learning for low-level hardware-
supported malware detection. In RAID (New York, NY, USA, 2015),
Springer-Verlag New York, Inc., pp. 3–25.

[10] KHASAWNEH, K. N., OZSOY, M., DONOVICK, C., GHAZALEH, N. A.,
AND PONOMAREV, D. V. Ensemblehmd: Accurate hardware malware
detectors with specialized ensemble classifiers. IEEE Transactions on
Dependable and Secure Computing (2018).

[11] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER, A.,
LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZELWOOD, K. Pin:
building customized program analysis tools with dynamic instrumenta-
tion. In Acm sigplan notices (2005), vol. 40, ACM, pp. 190–200.

[12] MOSER, A., KRUEGEL, C., AND KIRDA, E. Limits of static analysis
for malware detection. In ACSAC (2007), IEEE, pp. 421–430.

[13] OZSOY, M., DONOVICK, C., GORELIK, I., ABU-GHAZALEH, N., AND
PONOMAREV, D. Malware-aware processors: A framework for efficient
online malware detection. In HPCA (2015), IEEE, pp. 651–661.

[14] OZSOY, M., KHASAWNEH, K. N., DONOVICK, C., GORELIK, I., ABU-
GHAZALEH, N., AND PONOMAREV, D. V. Hardware-based malware
detection using low level architectural features.

[15] PATEL, N., SASAN, A., AND HOMAYOUN, H. Analyzing hardware
based malware detectors. In DAC (2017), ACM, p. 25.

[16] Qualcomm smart protect technology, 2016. Last Accessed July
2016 from https://www.qualcomm.com/products/snapdragon/security/
smart-protect.

[17] SAYADI, H., HOUMANSADR, A., RAFATIRAD, S., HOMAYOUN, H.,
ET AL. Comprehensive assessment of run-time hardware-supported
malware detection using general and ensemble learning. In ICCF (2018),
ACM, pp. 212–215.

[18] SAYADI, H., PATEL, N., PD, S. M., SASAN, A., RAFATIRAD, S., AND
HOMAYOUN, H. Ensemble learning for effective run-time hardware-
based malware detection: A comprehensive analysis and classification.
In DAC (2018), IEEE, pp. 1–6.

[19] TANG, A., SETHUMADHAVAN, S., AND STOLFO, S. J. Unsupervised
anomaly-based malware detection using hardware features. In RAID
(2014), pp. 109–129.

[20] VOROBEYCHIK, Y., AND LI, B. Optimal randomized classification in
adversarial settings. In Proceedings of the 2014 international conference
on Autonomous agents and multi-agent systems (2014), International
Foundation for Autonomous Agents and Multiagent Systems.

[21] YOUNIS, Y. A., KIFAYAT, K., SHI, Q., AND ASKWITH, B. A new prime
and probe cache side-channel attack for cloud computing. In 2015 IEEE
International Conference on Computer and Information Technology;
Ubiquitous Computing and Communications; Dependable, Autonomic
and Secure Computing; Pervasive Intelligence and Computing (2015),
IEEE, pp. 1718–1724.

[22] YUVAL NATIV, LAHAD LUDAR, F. theZoo - the most awesome free
malware database on the air, 2015. Available online (last accessed,
November 2019): https://thezoo.morirt.com.

https://www.qualcomm.com/products/snapdragon/security/smart-protect
https://www.qualcomm.com/products/snapdragon/security/smart-protect
https://thezoo.morirt.com

	Introduction
	Data set & features collection
	Adversarial attacks on HMDs: The threat model
	Victim HMD
	The threat model

	Monotonic-HMDs
	Experimental Evaluation
	Hardware Implementation Evaluation
	Discussion
	Concluding Remarks
	References

