ECE 297:11 Lecture 5

64-bit Secret-Key Ciphers: IDEA & RC5

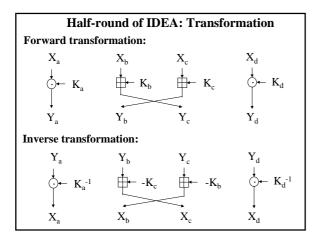
\mathbf{I}	DI	ΞA

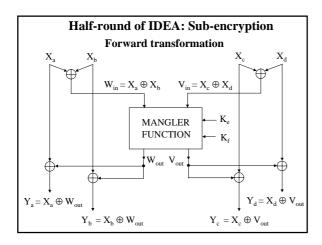
X. Lai, J. Massey ETH, 1990-91

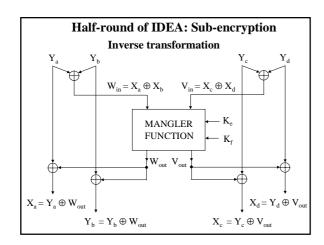
- 128-bit key (billion machines each checking billion keys per second still would require 10 trillion years, to check all keys
- used in PGP (Pretty Good Privacy) the most popular public domain program for secure e-mail
- constructed to provide an absolute resistance against differential cryptanalysis

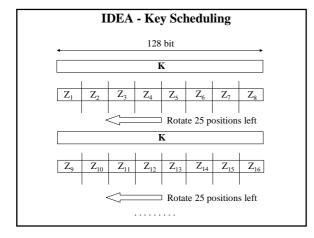
IDEA

Three basic operations:


 $\mathbf{Y} = \mathbf{X} \oplus \mathbf{K}$


 $Y = X + K \mod 2^{16}$ $Y = X \cdot K \mod (2^{16}+1)$


where 0 represents 2^{16}


Corresponding inverse operations:

 $X=Y\oplus K\quad X=Y+(\text{-}K) \text{ mod } 2^{16}\quad X=Y\cdot K^{\text{-}1} \text{ mod } (2^{16}+1)$

Implementing IDEA in Hardware

Modular Multiplication

Special Cases

$$a \ x \mod 2^k = p_L$$

$$a \ x \ mod \ 2^k + 1 = p_L - p_H - borrow$$

$$a \ x \ mod \ 2^k \text{-} 1 = p_L + p_H + carry$$

Modular Multiplication

Special Case (1)

$$\begin{array}{l} a\;x\;\;mod\;2^k+1\;=\;(p_H\;2^k+p_L)\;mod\;(2^k+1)\;=\\ &=\;(p_H(2^k+1\text{-}1)+p_L)\;mod\;(2^k+1)\;=\\ &=\;p_L\text{-}\;p_H\;\;mod\;(2^k+1)\;=\\ &=\left\{\begin{array}{ll} p_L\text{-}\;p_H\;\;&if\;\;p_L\text{-}\;p_H\!\geq0\\ p_L\text{-}\;p_H+(2^k\!+\!1)\;\;&if\;\;p_L\text{-}\;p_H\!<0\\ \end{array}\right.\\ &=\;p_L\text{-}\;p_H+borrow \end{array}$$

borrow = borrow from subtraction p_L - p_H

Modular Multiplication

Special Case (2)

$$\begin{array}{l} a\;x\;\; mod\; 2^{k}\text{-}1\; =\; (p_{H}\; 2^{k} + p_{L})\; mod\; (2^{k}\text{-}1)\; =\\ &=\; (p_{H}\; (2^{k}\; mod\; 2^{k}\text{-}1) + p_{L})\; mod\; (2^{k}\text{-}1) =\\ &=\; p_{H} + p_{L}\; mod\; (2^{k}\text{-}1) =\\ &=\; \left\{ \begin{array}{ll} p_{H} + p_{L} & \text{if} \;\; p_{H} + p_{L} < 2^{k}\text{-}1\\ p_{H} + p_{L}\text{-}(2^{k}\text{-}1) & \text{if} \;\; p_{H} + p_{L} \geq 2^{k}\text{-}1 \end{array} \right.\\ &=\; p_{L} + p_{H} + carry\\ &=\; carry = carry\; from\; addition\; p_{L} + p_{H} \end{array}$$

RC5

RC5 Ron Rivest, MIT, 1994	
(Ron's Code 5, Rivest's Cipher 5) • variable key length (40 bits in the former export version,	
128 bits to achieve the same strength as IDEA)	
• variable block size (depends on the processor word length)	
• variable number of rounds (determines resistance to linear and differential cryptanalysis; for 9 rounds this resistance is greater than for DES)	
• simplicity of description	
RC5	
One of the fastest ciphers	
Basic operation	
Rotation by a variable number of bits	
RC5 w/r/b	
w - word size in bits $w = 16, 32, 64$	
input/output block = $2 \text{ words} = 2 \cdot w$ bits	
Typical value:	
w=32 ⇒ 64-bit input/output block r - number of rounds	
b - key size in bytes $0 \le b \le 255$	
key size in bits = 8·b bits	
Recommended version: RC5 32/12/16	
64 bit block	
12 rounds 128 bit key	

RC5 **Decryption Encryption** $A \parallel B = C$ $A \parallel B = M$ for i= r downto 1 do A = A + S[0]B = B + S[1] $B \text{=} ((B \text{-} S[2i \text{+} 1]) >>> A) \oplus A$ for i = 1 to r do $A {=} \left((A - S[2i]) {>>>} B \right) \oplus B$ $A = (A \oplus B) \ll B + S[2i]$ $B = (B \oplus A) <<< A + S[2i+1]$ B = B - S[1]A = A - S[0] $C {=} \ A \parallel B$ $M \!\! = A \parallel B$

RC5 - Key Scheduling

k bits of the main key

 $2 \cdot r + 2$ round keys = $(2 \cdot r + 2) \cdot w$ bits

Two magic constants:

$$P_{w} = Odd ((e-2) \cdot 2^{w})$$

e - base of natural logarithms e = 2.7182...

$$Q_w = Odd ((\phi\text{-}1) \cdot 2^w)$$

$$\phi$$
 - golden ratio = $\frac{x}{y} = \frac{y}{x-y} = 1.6180...$

RC5 - Key Scheduling

Initialize

$$\begin{split} S[0] &= P_w \\ &\text{for } i \text{=0 to } t\text{-1 do} \\ &S[i] = S[i] + Q_w \end{split}$$

$$\begin{aligned} \textbf{Mix} \\ &i = j = 0 \\ &A = B = 0 \\ &\text{do } 3 \cdot max\{t, c\} \text{ times} \\ &\{ \\ &A = S[i] = (S[i] + A + B) <<< 3 \\ &B = L[j] = (L[j] + A + B) <<< (A + B) \\ &i = (i + 1) \text{ mod } t \\ &j = (j + 1) \text{ mod } c \end{aligned}$$

State of research regarding the security of secret-key ciphers

- limited number (20-50) of researchers actively involved in cryptanalysis and design of new ciphers
- \bullet number of published ciphers > 50
- evaluations of the cipher strength given by designers typically unreliable

"Honest" cipher = the best known attack is an exhaustive key search attack

One can rely only on ciphers analyzed by a large group of qualified researchers