ECE 297:11 Lecture 5

64-bit Secret-Key Ciphers: IDEA & RC5

Modular Multiplication

Special Case (1)

a x mod
$$2^{k}+1 = (p_{H} 2^{k} + p_{L}) \mod (2^{k}+1) =$$

= $(p_{H} (2^{k}+1-1) + p_{L}) \mod (2^{k}+1) =$
= $p_{L} - p_{H} \mod (2^{k}+1) =$
= $\begin{cases} p_{L} - p_{H} & \text{if } p_{L} - p_{H} \ge 0 \\ p_{L} - p_{H} + (2^{k}+1) & \text{if } p_{L} - p_{H} < 0 \end{cases}$
= $p_{L} - p_{H} + \text{borrow}$
borrow = borrow from subtraction $p_{L} - p_{H}$

RC5 w/r/b					
w - word size in bits $w = 16, 32, 64$					
input/output block = $2 \text{ words} = 2 \cdot \text{w}$ bits					
Typical value: w=32 \Rightarrow 64-bit input/output block					
r - number of rounds					
b - key size in bytes $0 \le b \le 255$					
key size in bits = $8 \cdot b$ bits					
Recommended version: RC5 32/12/16					
64 bit block					
12 rounds 128 bit key					

RC5						
Encryption	Decryption					
$\mathbf{A} \parallel \mathbf{B} = \mathbf{M}$	$\mathbf{A} \parallel \mathbf{B} = \mathbf{C}$					
A = A + S[0] $B = B + S[1]$	for i= r downto 1 do { B= ((B-S[2i+1]) >>> A) \oplus A					
for i= 1 to r do { $A=(A\oplus B) <<< B + S[2i]$	$A = ((A - S[2i]) >> B) \oplus B$					
$B = (B \oplus A) <<< A + S[2i+1] \\ \}$	B = B - S[1] A = A - S[0]					
$C = A \parallel B$	$M=A\parallel B$					

RC5 - Resistance to differential and linear cryptanalysis							
Plaintext requirement							
# rounds	4	5	6	7	9	12	13
Differential Cryptanalysis	222	226	232	237	2 ⁴⁶	2 ⁶³	>264
Linear Cryptanalysis	237	247	257	>264			
Differential cryptanalysis cannot be applied to RC5 with #rounds \geq 13 Linear cryptanalysis cannot be applied to RC5 with #rounds \geq 7							

Resistance of modern ciphers against known attacks					
Proprietary ciphers built in application software	mostly insecure, seconds on PC				
Propriatery ciphers with unknown specification	uncertain, impossible to verify				
40-bit "international" version of ciphers	Keys recoverable using several hours with a small network of computers				
DES	Keys can be recovered within 24 hours using a specialized machine worth about \$300,000				
Triple DES, DESX, RC5, IDEA	All known attacks impractical				

State of research regarding the security of secret-key ciphers

- limited number (20-50) of researchers actively involved in cryptanalysis and design of new ciphers
- number of published ciphers > 50
- evaluations of the cipher strength given by designers typically unreliable

"Honest" cipher = the best known attack is an exhaustive key search attack

One can rely only on ciphers analyzed by a large group of qualified researchers