ECE297:11 Lecture 3

Mathematical Background: Modular Arithmetic

Divisibility							
	$a \mid b$ a divides b a is a divisor of b						
a b	iff $\exists c \in Z$ such that $b = c \cdot a$						
	$a \mid b$ a does not divide b a is not a divisor of b						

Prime vs. composite numbers

An integer $p \ge 2$ is said to be **prime** if its only *positive* divisors are 1 and *p*. Otherwise, p is called **composite**.

Greatest common divisor

Greatest common divisor of a and b, denoted by gcd(a, b),

is the largest positive integer that divides both a and b.

 $d = \gcd(a, b) \quad \text{iff} \quad 1) \quad d \mid a \quad \text{and} \ d \mid b$ 2) \quad \text{if} \quad c \mid a \quad \text{and} \ c \mid b \quad \text{then} \ c \leq d

Relatively prime integers

Two integers a and b are **relatively prime** or **co-prime**

if gcd(a, b) = 1

 $a + b \mod n = ((a \mod n) + (b \mod n)) \mod n$

 $a - b \mod n = ((a \mod n) - (b \mod n)) \mod n$

 $a \cdot b \mod n = ((a \mod n) \cdot (b \mod n)) \mod n$

Laws of modular arithmetic							
Regular addition	Modular addition						
a+b = a+c iff $b=c$	$a+b \equiv a+c \pmod{n}$ iff $b \equiv c \pmod{n}$						
Regular multiplication	Modular multiplication						
If $a \cdot b = a \cdot c$ and $a \neq 0$ then b = c	If $a \cdot b \equiv a \cdot c \pmod{n}$ and $gcd(a, n) = 1$ then $b \equiv c \pmod{n}$						

Modular Multiplication: Example											
$18 \equiv 42 \pmod{8}$ $6 \cdot 3 \equiv 6 \cdot 7 \pmod{8}$											
$3 \not\equiv 7 \pmod{8}$											
x	0	1	2	3	4	5	6	7			
$6 \cdot x \mod 8$	0	6	4	2	0	6	4	2			
х	0	1	2	3	4	5	6	7			
$5 \cdot x \mod 8$	0	5	2	7	4	1	6	3			

