ECE297:11 Lecture 3

Mathematical Background: Modular Arithmetic

General Notation

 \mathbf{Z} – integers

 \exists - there exists \exists ! - there exists unique

 \forall - for all

 \in - belongs to $\not\in$ - does not belong to

Divisibility

 $a \mid b$ a divides b a is a divisor of b

 $a \mid b$ iff $\exists c \in Z$ such that $b = c \cdot a$

 $a \mid b$ a does not divide b a is not a divisor of b

Prime vs. composite numbers

An integer $p \ge 2$ is said to be **<u>prime</u>** if its only *positive* divisors are 1 and p. Otherwise, p is called **<u>composite</u>**.

Greatest common divisor

Greatest common divisor of a and b, denoted by gcd(a, b),

is the largest positive integer that divides both a and b.

$$d = \gcd(a, b)$$
 iff

- 1) $d \mid a$ and $d \mid b$
- 2) if $c \mid a$ and $c \mid b$ then $c \le d$

Relatively prime integers

Two integers a and b are **relatively prime** or **co-prime**

if
$$gcd(a, b) = 1$$

Properties of the greatest common divisor

$$\gcd(a, b) = \gcd(a-kb, b)$$

for any $k \in \mathbb{Z}$

Quotient and remainder

Given integers a and n, n>0

 $\exists ! \ q, r \in \mathbf{Z}$ such that

$$a = q \cdot n + r$$
 and $0 \le r < n$

$$q -$$
quotient $q = \left| \frac{a}{n} \right| = a \text{ div } n$

Integers coungruent modulo n

Two integers a and b are $\underline{\textbf{congruent modulo n}}$

(<u>equivalent modulo n</u>)

written $\mathbf{a} \equiv \mathbf{b}$

iff

 $a \mod n = b \mod n$

or

 $a = b + kn, \ k \in \mathbb{Z}$

or

 $n \mid a - b$

Rules of addition, subtraction and multiplication modulo *n*

 $a + b \mod n = ((a \mod n) + (b \mod n)) \mod n$

 $a - b \mod n = ((a \mod n) - (b \mod n)) \mod n$

 $a \cdot b \mod n = ((a \mod n) \cdot (b \mod n)) \mod n$

Laws of modular arithmetic

Regular addition

$$a+b = a+c$$
iff
$$b=c$$

Regular multiplication

If
$$a \cdot b = a \cdot c$$

and $a \neq 0$
then
 $b = c$

Modular addition

$$a+b \equiv a+c \pmod{n}$$
iff
$$b \equiv c \pmod{n}$$

Modular multiplication

If
$$a \cdot b \equiv a \cdot c \pmod{n}$$

and $\gcd(a, n) = 1$
then
 $b \equiv c \pmod{n}$

Modular Multiplication: Example

$$18 \equiv 42 \pmod{8}$$
$$6 \cdot 3 \equiv 6 \cdot 7 \pmod{8}$$
$$3 \not\equiv 7 \pmod{8}$$

X	0	1	2	3	4	5	6	7
6 · x mod 8	0	6	4	2	0	6	4	2
X	0	1	2	3	4	5	6	7
$5 \cdot x \mod 8$	0	5	2	7	4	1	6	3

Euclid's Algorithm for computing gcd(a,b)

$$i q_i$$

$$r_i$$

$$r_{-2} = max(a, b)$$

$$-1 q_{-1}$$

$$r_{-1} = min(a, b)$$

$$0 q_0$$

$$r_0$$

$$q_1$$

 q_{t-1}

 r_1

$$r_{t-1} = \gcd(\mathbf{a}, \mathbf{b})$$
$$r_t = 0$$

$$r_{i+1} = r_{i-1} \mod r_i$$

$$q_i = \left| \frac{r_{i-1}}{r_i} \right|$$

$$r_{i+1} = r_{i-1} - q_i \cdot r_i$$

Euclid's Algorithm Example: gcd(36, 126)

$$r_i$$

$$r_{-2} = max(a, b) = 126$$

$$q_{-1} = 3$$
$$q_0 = 2$$

$$r_{-1} = min(a, b) = 36$$

$$r_0 = 18 = \gcd(36, 126)$$

$$1 q_1$$

$$r_1^0 = 0$$

$$r_{i+1} = r_{i-1} \mod r_i$$

$$q_i = \left| \frac{r_{i-1}}{r_i} \right|$$

$$r_{i+1} = r_{i-1} - q_i \cdot r_i$$

Multiplicative inverse modulo *n*

The multiplicative inverse of a modulo n is an integer [!!!] x such that

$$a \cdot x \equiv 1 \pmod{n}$$

The multiplicative inverse of a modulo n is denoted by a^{-1} mod n (in some books \bar{a} or a^*).

According to this notation:

$$a \cdot a^{-1} \equiv 1 \pmod{n}$$

Extended Euclid's Algorithm (1)

$$\begin{aligned} & r_{\mathbf{i}} = x_{\mathbf{i}} \cdot a + y_{\mathbf{i}} \cdot n \\ i & q_{i} & r_{i} & x_{i} & y_{i} \\ -2 & r_{.2} = n & x_{.2} = 0 & y_{.2} = 1 \\ -1 & q_{.1} = \left\lfloor \frac{n}{a} \right\rfloor & r_{.1} = a & x_{.1} = 1 & y_{.1} = 0 \\ 0 & q_{0} & r_{0} & x_{0} & y_{0} & \\ 1 & q_{1} & r_{1} & x_{1} & y_{1} & x_{i+1} = r_{i+1} - q_{i} \cdot r_{i} \\ \dots & \dots & \dots & \dots & \dots & y_{i+1} = y_{i-1} - q_{i} \cdot y_{i} \end{aligned}$$

$$\begin{aligned} & t^{-1} & q_{t-1} & r_{t-1} & x_{t-1} & y_{t-1} \\ t & r_{t} = 0 & x_{t} & y_{t} \end{aligned}$$

Extended Euclid's Algorithm (2)

$$r_{t-1} = x_{t-1} \cdot a + y_{t-1} \cdot n$$

$$r_{t-1} = x_{t-1} \cdot a + y_{t-1} \cdot n \equiv x_{t-1} \cdot a \pmod{\mathbf{n}}$$

If
$$r_{t-1} = \gcd(a, n) = 1$$
 then

$$x_{t-1} \cdot a \equiv 1 \pmod{n}$$

and as a result

$$x_{t-1} = a^{-1} \mod n$$

Extended Euclid's Algorithm for computing $z = a^{-1} \mod n$

$$X_{i}$$

$$x_{-2}=0$$

$$q_i = \left| \frac{r_{i-1}}{r_i} \right|$$

$$0 q_0$$

$$r_{-1} = a$$

$$x_{-1} = 1$$

$$r_{i+1} = r_{i-1} - q_i \cdot r$$

1
$$q_1$$

$$r_1^{\circ}$$

$$x_1$$

$$x_{i+1} = x_{i-1} - q_i \cdot x_i$$

$$t$$
-1 q_{t}

$$r_{t-1} = r_{t} = 0$$

$$r_{t-1}$$
 q_{t-1} $r_{t}=1$ $x_{t-1}=a^{-1} \mod n$

$$r_{t}=0$$
 $x_{t}=-n$

Note: If $r_{t-1} \neq 1$ the inverse does not exist

Extended Euclid's Algorithm Example $z = 20^{-1} \mod 117$

Check:

 $20 \cdot 41 \mod 117 = 1$