ECE297:11 Lecture 3

Mathematical Background: Modular Arithmetic

Divisibility

$$
\left.\begin{array}{cc}
& a \mid b \\
& \\
& \\
& a \text { divides } b \\
\mathrm{a} \mid \mathrm{b} & \text { iff a divisor of } b
\end{array}\right] \quad \exists \mathrm{c} \in \mathrm{Z} \text { such that } \mathrm{b}=\mathrm{c} \cdot \mathrm{a} .
$$

Prime vs. composite numbers

An integer $p \geq 2$ is said to be prime if its only positive divisors are 1 and p. Otherwise, p is called composite.

Greatest common divisor

Greatest common divisor of \boldsymbol{a} and \boldsymbol{b}, denoted by $\operatorname{gcd}(\boldsymbol{a}, \boldsymbol{b})$, is the largest positive integer that divides both a and b.

$$
\begin{array}{ll}
d=\operatorname{gcd}(a, b) \text { iff } & \text { 1) } d \mid a \text { and } d \mid b \\
& \text { 2) if } c \mid a \text { and } c \mid b \text { then } c \leq d
\end{array}
$$

Relatively prime integers

Two integers a and b are relatively prime or co-prime

$$
\text { if } \operatorname{gcd}(a, b)=1
$$

Properties of the greatest common divisor

$\operatorname{gcd}(a, b)=\operatorname{gcd}(a-k b, b)$
for any $k \in \mathbf{Z}$

Quotient and remainder

Given integers a and $n, n>0$
$\exists!q, r \in \mathbf{Z} \quad$ such that

$$
a=q \cdot n+r \quad \text { and } \quad 0 \leq r<n
$$

q - quotient
$q=\left\lfloor\frac{a}{n}\right\rfloor=a \operatorname{div} n$
r - remainder
(of a divided by n)

$$
\begin{aligned}
r & =a-q \cdot n=a-\left\lfloor\frac{a}{n}\right\rfloor \cdot n= \\
& =a \bmod \boldsymbol{n}
\end{aligned}
$$

Integers coungruent modulo n

Two integers a and b are congruent modulo n (equivalent modulo n)
written $\mathbf{a} \equiv \mathbf{b}$
iff
$a \bmod n=b \bmod n$
or

$$
a=b+k n, k \in \mathbf{Z}
$$

or
$n \mid a-b$

Rules of addition, subtraction and multiplication modulo n

$a+b \bmod n=((a \bmod n)+(b \bmod n)) \bmod n$
$a-b \bmod n=((a \bmod n)-(b \bmod n)) \bmod n$
$a \cdot b \bmod n=((a \bmod n) \cdot(b \bmod n)) \bmod n$

Laws of modular arithmetic	
Regular addition	Modular addition
$\begin{gathered} a+b=a+c \\ \text { iff } \\ b=c \end{gathered}$	$\begin{gathered} a+b \equiv a+c(\bmod n) \\ \text { iff } \\ b \equiv c(\bmod n) \end{gathered}$
Regular multiplication	Modular multiplication
$\begin{aligned} & \text { If } a \cdot b=a \cdot c \\ & \text { and } a \neq 0 \\ & \text { then } \end{aligned}$	```If }a\cdotb\equiva\cdotc(mod n and gcd (a,n)=1 then```
$b=c$	$b \equiv c(\bmod \mathrm{n})$

Modular Multiplication: Example

$$
18 \equiv 42(\bmod 8)
$$

$$
6 \cdot 3 \equiv 6 \cdot 7(\bmod 8)
$$

$$
3 \not \equiv 7(\bmod 8)
$$

x	0	1	2	3	4	5	6	7
$6 \cdot x \bmod 8$	0	6	4	2	0	6	4	2
x	0	1	2	3	4	5	6	7
$5 \cdot x \bmod 8$	0	5	2	7	4	1	6	3

Euclid's Algorithm for computing $\operatorname{gcd}(\mathbf{a}, \mathbf{b})$

i	q_{i}	r_{i}
-2		$r_{-2}=\max (\mathrm{a}, \mathrm{b})$
-1	q_{-1}	$r_{-1}=\min (\mathrm{a}, \mathrm{b})$
0	q_{0}	r_{0}
1	q_{1}	r_{1}
\ldots	\ldots	\ldots
$t-1$	q_{t-1}	$r_{t-1}=\boldsymbol{g c d}(\mathbf{a}, \mathbf{b})$
t		$r_{t-1}=0$

i	Euclid's Algorithm Example: $\operatorname{gcd}(36,126)$		
	q_{i}	$r_{-2}=\max (\mathrm{a}, \mathrm{~b})=126$	$r_{i+1}=r_{i-1} \bmod r_{i}$
-1 0	$\begin{aligned} & q_{-1}=3 \\ & q_{0}=2 \end{aligned}$	$\begin{aligned} & r_{-1}=\min (\mathrm{a}, \mathrm{~b})=36 \\ & r_{0}=\mathbf{1 8}=\operatorname{gcd}(\mathbf{3 6}, \mathbf{1 2 6}) \end{aligned}$	$J 5$
1	q_{1}	$r_{1}=\mathbf{0}$	$\begin{aligned} & \boldsymbol{q}_{i}=\left\lfloor\frac{r_{i-1}}{r_{i}}\right\rfloor \\ & \boldsymbol{r}_{i+1}=r_{i-1}-q_{i} \cdot r_{i} \end{aligned}$

Multiplicative inverse modulo n

The multiplicative inverse of \boldsymbol{a} modulo \boldsymbol{n} is an integer [!!!] \boldsymbol{x} such that

$$
a \cdot x \equiv 1(\bmod n)
$$

The multiplicative inverse of a modulo n is denoted by $\boldsymbol{a}^{-1} \bmod \mathrm{n}\left(\right.$ in some books $\overline{\mathrm{a}}$ or $\left.\mathrm{a}^{*}\right)$.

According to this notation:

$$
a \cdot a^{-1} \equiv 1(\bmod n)
$$

	Exten	ed Eu $r_{i}=x$	clid's $\cdot a+y$		mm (1)
i	q_{i}	r_{i}	x_{i}	y_{i}	$\boldsymbol{q}_{i}=\boldsymbol{r}_{i-1}$
-2		$r_{-2}=n$	$x_{-2}=0$	$y_{-2}=1$	r_{i}
-1	$q_{-1}=\lfloor n / a\rfloor$	$r_{-1}=a$	$x_{-1}=1$	$y_{-1}=0$	
0	q_{0}	r_{0}	x_{0}	y_{0}	$r_{i+1}=r_{i-1}-q_{i} \cdot r_{i}$
1	q_{1}	r_{1}	x_{1}	y_{1}	$x_{i+1}=x_{i-1}-q_{i} \cdot x_{i}$
\ldots	\ldots	\ldots	\ldots	\ldots	$y_{i+1}=y_{i-1}-q_{i} \cdot y_{i}$
$t-1$	q_{t-1}	r_{t-1}	\boldsymbol{x}_{t-1}	y_{t-1}	
t		$r_{t}=0$	x_{t}	y_{t}	
$r_{t-1}=x_{t-1} \cdot a+y_{t-1} \cdot n$					

Extended Euclid's Algorithm (2)

$$
\begin{gathered}
r_{\mathrm{t}-1}=x_{\mathrm{t}-1} \cdot a+y_{\mathrm{t}-1} \cdot n \\
r_{\mathrm{t}-1}=x_{\mathrm{t}-1} \cdot a+y_{\mathrm{t}-1} \cdot n \equiv x_{\mathrm{t}-1} \cdot a(\bmod \mathrm{n})
\end{gathered}
$$

$$
\text { If } \quad r_{t-1}=\operatorname{gcd}(\mathbf{a}, \mathbf{n})=\mathbf{1} \quad \text { then }
$$

$$
x_{t-1} \cdot a \equiv 1(\bmod n)
$$

and as a result

$$
x_{t-1}=a^{-1} \bmod n
$$

Extended Euclid's Algorithm for computing $z=a^{-1} \bmod n$

\boldsymbol{i}	q_{i}	r_{i}	x_{i}	$\boldsymbol{q}_{\boldsymbol{i}}=\left\lfloor\frac{\boldsymbol{r}_{\boldsymbol{i} \mathbf{1}}}{\boldsymbol{r}_{\boldsymbol{i}}}\right\rfloor$ -2
	$r_{-2}=n$	$x_{-2}=0$		
-1	$q_{-1}=\lfloor n / a\rfloor$	$r_{-1}=a$	$x_{-1}=1$	
0	q_{0}	r_{0}	x_{0}	
1	q_{1}	r_{1}	x_{1}	$\boldsymbol{r}_{\boldsymbol{i + 1}}=\boldsymbol{r}_{\boldsymbol{i} \mathbf{1}}-\boldsymbol{q}_{\boldsymbol{i}} \cdot \boldsymbol{r}_{\boldsymbol{i}}$
	$\boldsymbol{x}_{\boldsymbol{i + 1}}=\boldsymbol{x}_{\boldsymbol{i}-\mathbf{1}}-\boldsymbol{q}_{\boldsymbol{i}} \cdot \boldsymbol{x}_{\boldsymbol{i}}$			

Note: If $r_{t-1} \neq 1$ the inverse does not exist

Extended Euclid's Algorithm
 Example $z=\mathbf{2 0}^{-1} \bmod 117$

i	q_{i}	r_{i}	x_{i}	$q_{i}=\frac{r_{i-1}}{r_{i}}$
-2		$r_{-2}=117$	$x_{-2}=0$	
-1	$q_{-1}=5$	$r_{-1}=20$	$x_{-1}=1$	$r_{i+1}=r_{i-1}-q_{i} \cdot r_{i}$
0	$q_{0}=1$	$r_{0}=17$	$x_{0}=-5$	$x_{i+1}=x_{i-1}-q_{i} \cdot x_{i}$
1	$q_{1}=5$	$r_{1}=3$	$x_{1}=6$	$x_{i+1}=x_{i-1} \quad q_{i} \quad x_{i}$
2	$q_{2}=1$	$r_{2}=2$	$x_{2}=-35$	
3	$q_{3}=2$	$r_{3}=1$	$x_{3}=41=20$	mod 117
4		$r_{4}=0$	$x_{4}=-117$	

Check:

$$
20 \cdot 41 \bmod 117=1
$$

