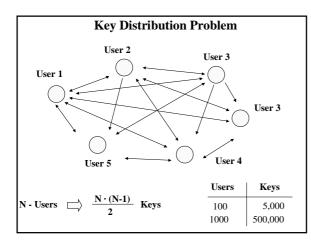
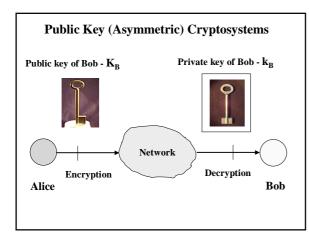
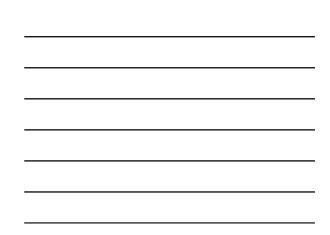

ECE297:11 - Lecture 2


Types of Cryptosystems

Implementation of Security Services

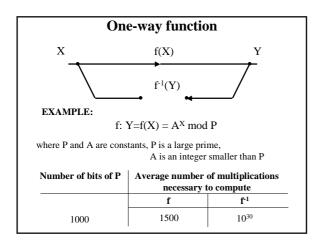
Secret-key vs. public-key ciphers

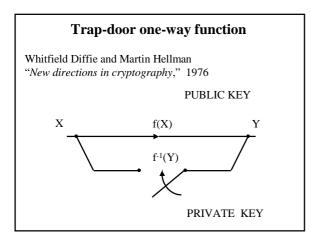

Digital Signature Problem

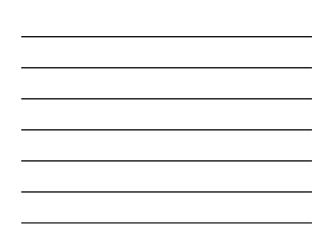

Both corresponding sides have the same information and are able to generate a signature

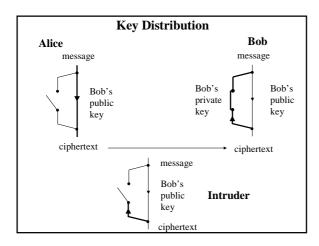
There is a possibility of the

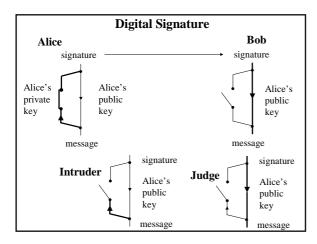
• receiver falsifying the message

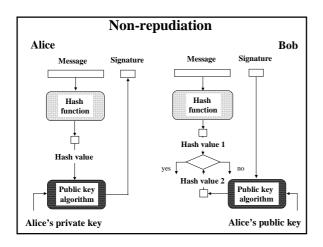

• sender denying that he/she sent the message

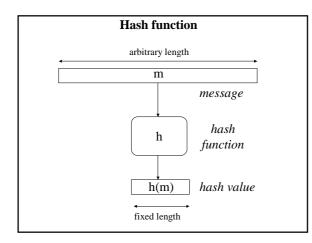



Classification of cryptosystems Terminology		
secret-key	public key	
symmetric	asymmetric	
symmetric-key		
classical		
conventional		



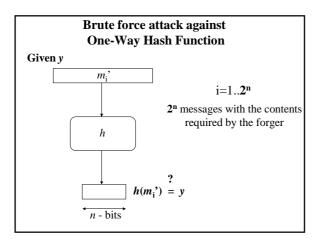






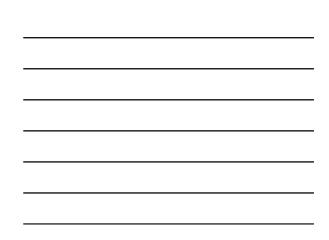
Implementation of Security Services

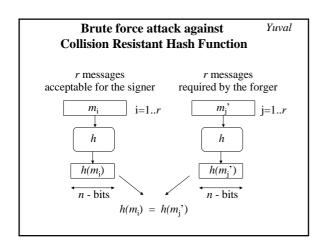
Hash functions Basic requirements


- 1. Public description, NO key
- 2. Compression

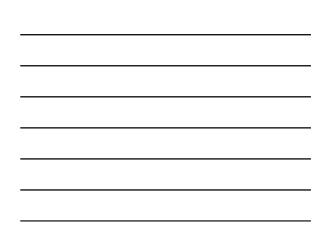
arbitrary length input \rightarrow fixed length output

3. Ease of computation


Hash functions	
Security requireme	nts
It is compu	itationally infeasible
Given To Find	
1. Preimage resistance $h(m)$	m
2. 2nd preimage resistance <i>m</i> and <i>h(m)</i>	$m' \neq m$, such that h(m') = h(m)
3. Collision resistance	$m' \neq m$, such that h(m') = h(m)



Creating multiple versions of the required message		
$I \left\{ \begin{array}{c} state \\ confirm \end{array} \right\} \left\{ \begin{array}{c} thereby \\ - \end{array} \right\} that \ I \left\{ \begin{array}{c} borrowed \\ received \end{array} \right\}$		
$ \begin{cases} \$10,000\\ ten thousand dollars \end{cases} from \begin{cases} Mr.\\ Dr. \end{cases} \begin{cases} Kris\\ Krzysztof \end{cases} $		
Gaj on $\begin{cases} June 4, \\ 06 / 04 \end{cases}$ 2002. This $\begin{cases} money \\ sum of money \end{cases}$		
$ \begin{cases} should \\ is required to \end{cases} be \begin{cases} returned \\ given back \end{cases} to \begin{cases} Mr. \\ Dr. \end{cases} Gaj $		
by the $\begin{cases} end \\ middle \end{cases}$ of $\begin{cases} June \\ July \end{cases}$.		



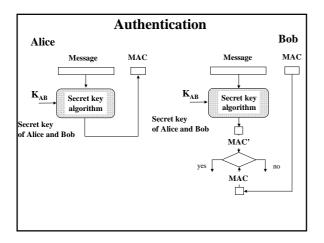
Message required by the forger		
$I \left\{ \begin{array}{c} state \\ confirm \end{array} \right\} \left\{ \begin{array}{c} thereby \\ - \end{array} \right\} that \ I \left\{ \begin{array}{c} borrowed \\ received \end{array} \right\}$		
$ \begin{cases} \$10,000\\ ten thousand dollars \end{cases} from \begin{cases} Mr.\\ Dr. \end{cases} \begin{cases} Kris\\ Krzysztof \end{cases} $		
Gaj on $\begin{cases} June 4, \\ 06 / 04 \end{cases}$ 2002. This $\begin{cases} money \\ sum of money \end{cases}$		
$ \begin{cases} should \\ is required to \end{cases} be \begin{cases} returned \\ given back \end{cases} to \begin{cases} Mr. \\ Dr. \end{cases} Gaj $		
by the $\begin{cases} end \\ middle \end{cases}$ of $\begin{cases} June \\ July \end{cases}$.		

Message acceptable for the signer
I $\begin{cases} \text{state} \\ \text{confirm} \end{cases}$ $\begin{cases} \text{thereby} \\ - \end{cases}$ that on $\begin{cases} \text{June 4,} \\ 06 / 04 \end{cases}$ 2001
$I \left\{ \begin{array}{c} borrowed \\ received \end{array} \right\} from \left\{ \begin{array}{c} Mr. \\ Dr. \end{array} \right\} \left\{ \begin{array}{c} Kris \\ Krzysztof \end{array} \right\} \ a \ \left\{ \begin{array}{c} book \\ manuscript \end{array} \right\}$
on ${fast \ efficient} {finplementations}$ of ${ciphers \ cryptosystems}$.
This $\left\{ \begin{array}{c} text \\ book \end{array} \right\} \left\{ \begin{array}{c} should \\ is required to \end{array} \right\}$ be $\left\{ \begin{array}{c} returned \\ given back \end{array} \right\}$
to $\left\{ \begin{matrix} Mr.\\ Dr. \end{matrix} ight\}$ Gaj by the $\left\{ \begin{matrix} end\\ middle \end{matrix} ight\}$ of $\left\{ \begin{matrix} November\\ December \end{matrix} ight\}$.

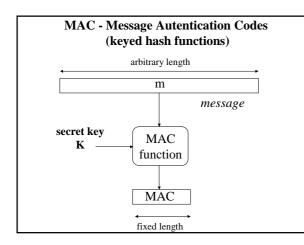
Birthday paradox

- How many students there must be in a class for there be a greater than 50% chance that
 - 1. one of the students shares the teacher's birthday (day and month)?
 - 2. any two of the students share the same birthday (day and month)?

Birthday paradox


How many students there must be in a class for there be a greater than 50% chance that

1. one of the students shares the teacher's birthday (day and month)?


~ 366/2 = 188

2. any two of the students share the same birthday (day and month)?

~√<u>366</u> ≈ 19

MAC functions Basic requirements

- 1. Public description, SECRET key parameter
- 2. Compression

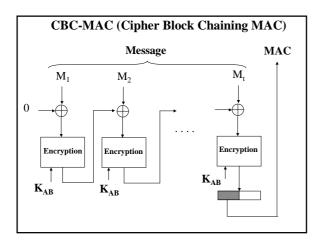
arbitrary length input \rightarrow fixed length output

3. Ease of computation

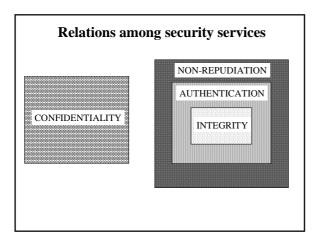
MAC functions

Security requirements

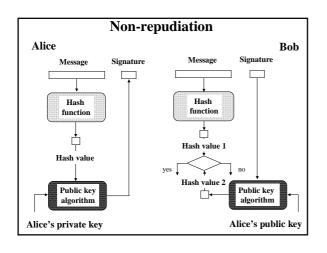
Given zero or more pairs

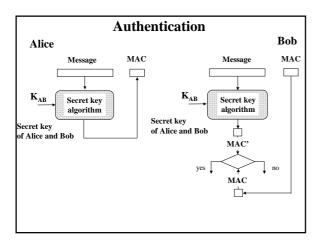

 m_i , MAC (m_i) i = 1..k

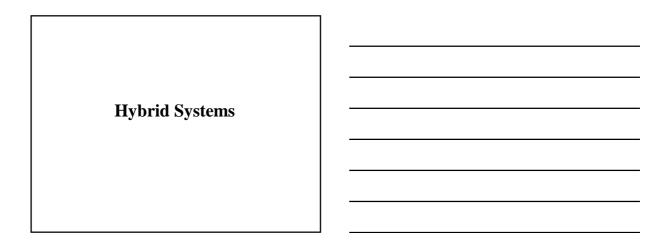
it is computationally impossible to find any new pair

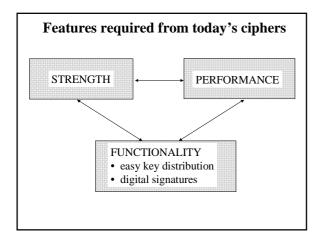

m', MAC(m')

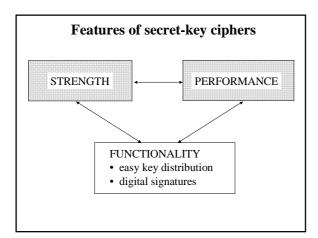
Such that

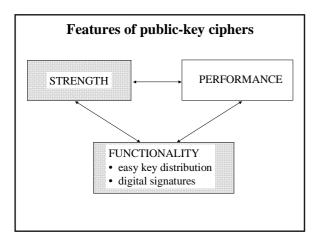

 $m' \neq m_i$ i = 1..k

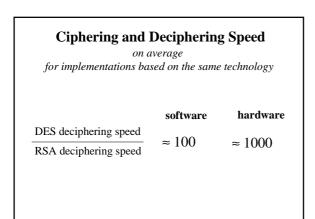


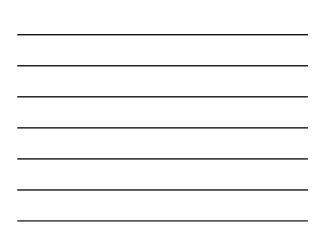


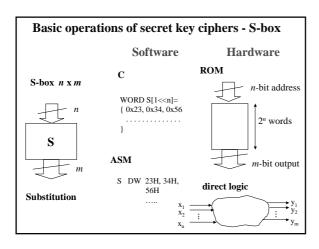


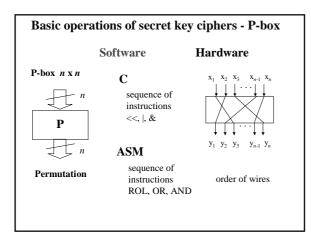


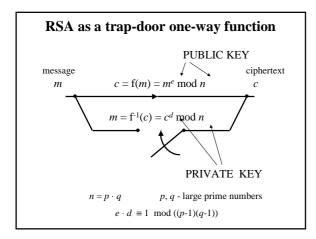


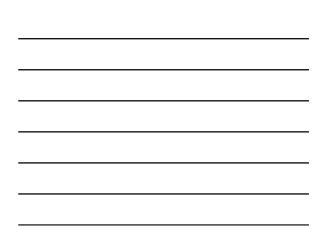


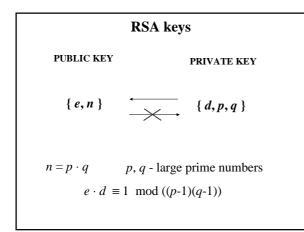


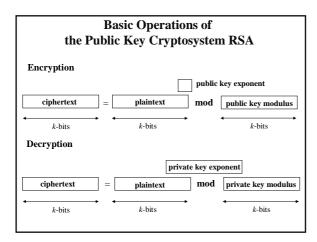


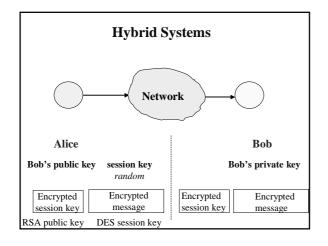


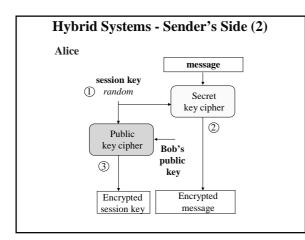


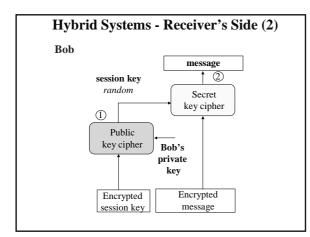


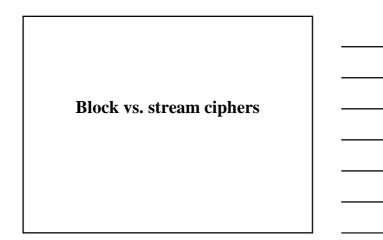


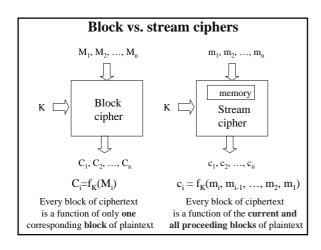


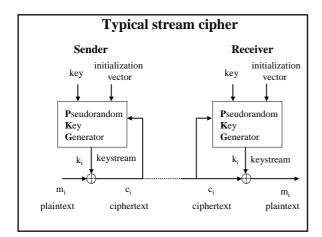


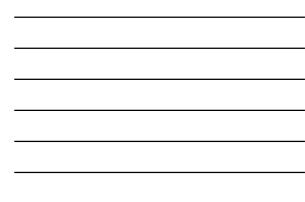


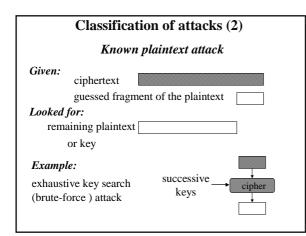












Evaluating the security of secret-key ciphers

Classification of attacks (1) Ciphertext-only attack		
<i>Looked for:</i> plaintext <i>or</i> key		
1 5 5	s of letters in the ciphertext most simple historical ciphers)	

Chosen ciphertext attack Given: Capability to decipher an arbitrarily chosen fragment of the ciphertext Looked for:	Classification of attacks (4) Chosen ciphertext attack			
Capability to decipher an arbitrarily chosen fragment of the ciphertext Looked for:				
	Capability to decipher an arbitrarily chosen fragment of the ciphertext	Encryption module key		