ECE 297:11 - Lecture 1

Security Services

Basic Concepts of Cryptology

Need for *information security*

• widespread use of data processing equipment: *computer security*

• widespread use of computer networks and distributed computing systems: *network security*

On the basis of

- what you know (passwords, PINs)
- what you have (magnetic card, smart card)
- what you are (fingerprints, handprints, voiceprints, keystroke timing, signatures, retinal scanners)

Differences					
Handwritten signature	Digital signature				
6. Associated physically	6. Can be stored and				
with the document	transmitted				
	independently				
	of the document				
7. Almost identical	7. Function of the				
for all documents	document				
8. Usually at the last	8. Covers the entire				
page	document				

Security of unpublished ciphers					
Commercial pae built-in:	ckages cracking unpublished encryption schemes				
• N	IS Word, MS Excel, MS Money				
• V	Vord-Perfect, ProWrite, Data Perfect				
• [otus 1-2-3, Symphony, Quattro-Pro				
• P	aradox, Semantec's Q&A				
• P	KZip				
Time:	1-2 minutes				
Price:	~ \$200				
Companies:	Access Data				

Access Data – DNA:	Distributed Netw	vork Attac
• client-server applicat	tion	
• DNA client runs in the	he background, only	taking
unused processor tim	ne	
• performs an exhausti	ive key search on Off	<i>fice '97</i> and
Office 2000 encrypte	ed documents	
55 51		
Expected recovery times	(200 MHz, Intel ma	chines):
Expected recovery times Product	(200 MHz, Intel mad Maximum Time	chines): Expected
Expected recovery times Product 25 Client Network	(200 MHz, Intel mac Maximum Time 16 Days	chines): Expected 8 Days
Expected recovery times Product 25 Client Network 50 Client Network	(200 MHz, Intel max Maximum Time 16 Days 8 Days	chines): Expected 8 Days 4 Days
Expected recovery times Product 25 Client Network 50 Client Network 100 Client Network	(200 MHz, Intel mad Maximum Time 16 Days 8 Days 4 Days	chines): Expected 8 Days 4 Days 2 Days
Expected recovery times Product 25 Client Network 50 Client Network 100 Client Network 500 Client Network	(200 MHz, Intel max Maximum Time 16 Days 8 Days 4 Days 20 Hours	chines): Expected 8 Days 4 Days 2 Days 10 Hours

Breaking ciphers used in GSM (1) GSM - world's most widely used mobile telephony system 51% market share of all cellular phones, both analog and digital over 215 million subscribers in America, Europe, Asia, Africa, and Australia In the US, GSM employed in the "Digital PCS" networks of Pacific Bell, Bell South, Omnipoint, etc. Two voice *encryption algorithms*: A5/1 and A5/2 encrypt voice between the cellphone and the base station

Breaking ciphers used in GSM (3) Published attacks

A5/2

August 1999, Ian Goldberg and David Wagner, U.C. Berkeley

Number of operations in the attack ~ 2^{16}

A5/1

May 1999, Jovan Golic

Number of operations in the attack ~ 2^{40}

December 1999, Alex Biryukov and Adi Shamir

Less than **1 second** on a single PC with 128 MB RAM and two 73 GB hard disks. Based on the analysis of the A5/1 output during the first two minutes of the conversation.

Applications most suitable for hardware implementations

- hardware accelerators for security gateways and routers
- wireless communications
- universal smart cards for electronic commerce
- electronic wallet
- Certificate Authority center for registration of public keys
- key-escrow cryptography
- military devices
- high-grade security devices

Evolution of cryptography and cryptanalysis								
19	20	194	10	1970	198	0 1990	2000	
cryptography		1		D	ES RSA		ECC	
mathema	tics	statis	stics		numb	er theory		
engineering	rotor macl	hines	encip dev	hering vices	integrate circuit	ed software s packages	operating systems	
ryptanalysis				p	hysics	quantum cry	ptography	
mathematics sta	tistics	s peri	mutatio	on	nı	umber theory		
engineering c	ryptog bor	graphic nbs	compu	sp iters	ecial-purp machines	^{oose} supercom	puters compu networ	
				pl	hysics	quantum c	computing	

NSA

National Security Agency

(also known as "<u>No Such Agency</u>" or "<u>N</u>ever <u>Say A</u>nything")

Created in 1952 by president Truman

Goals:

- designing strong ciphers (to protect U.S. communications)
- breaking ciphers (to listen to non-U.S. communications)

Budget and number of employees kept secret Largest employer of mathematicians in the world Larger purchaser of computer hardware

RSA Security Inc.

- patents for RSA, RC5, RC6 and other cryptographic algorithms
- over 500 mln users of the basic cryptographic library BSAFE
- RSA Laboratory
- RSA Conference
- spin-off companies VeriSign - Public Key Infrastructure

