ECE297:11 Lecture 18

Implementation of public key cryptosystems

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Elliptic Curve Diffie-Hellman

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Exponent Right-to-left binary exponentiation	$\begin{aligned} & =a^{e} \bmod n \\ & \begin{array}{c} \text { Left-to-right binary } \\ \text { exponentiation } \end{array} \end{aligned}$
$e=\left(e_{\text {L-1 }}, e_{\text {L- } 2}, \ldots, e_{1}, e_{0}\right)_{2}$	
```y=1; s=a; for i=0 to L-1 { if (e}\mp@subsup{e}{i}{}==1 y=y\cdots mod n; s=\mp@subsup{s}{}{2}\operatorname{mod}n; }```	```y=1; for i=L-1 downto 0 { y= y}\mp@subsup{y}{}{2}\operatorname{mod}\textrm{n} if ( }\mp@subsup{e}{i}{}==1\mathrm{ ) y=y\cdotamodn; }```

$\qquad$
$\qquad$
$\qquad$
$y=1 ;$
$s=a ; ~$
for $i=0$ to $\mathrm{L}-1$
if ( $e_{i}=1$ )
\{
$y=y^{2} \bmod \mathrm{n} ;$
$\qquad$
$y=y \cdot s \bmod n$,
$s=s^{2} \bmod n ;$
if $\left(e_{i}==1\right)$
$\qquad$
$\qquad$

## Scalar Multiplication: $\quad \boldsymbol{Y}=\boldsymbol{k} \cdot \boldsymbol{P}$

Right-to-left binary scalar multiplication	Left-to-right binary scalar multiplication
$k=\left(k_{\text {L-1 }}, k_{\text {L- } 2}, \ldots, k_{1}, k_{0}\right)_{2}$	
$Y=O$,	
$S=P ;$	$Y=O$,
for $i=0$ to L-1	for $i=\mathrm{L}-1$ downto 0
if ( $k_{i}==1$ )	$Y=2 Y$;
$Y=Y+\mathrm{S}$;	if ( $k_{i}==1$ )
$S=2 S$;	$Y=Y+P ;$
\}	\}

$\qquad$
$\qquad$
$Y=O$,
$S=P$;
for $i=0$ to $\mathrm{L}-1$
\{
if ( $k_{i}==1$ )
$Y=Y+\mathrm{S}$;
$S=2 S$;
\}
$Y=O$,
for $i=\mathrm{L}-1$ downto 0
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Three Classes of Elliptic Curves

Elliptic curves built over $\qquad$
$\qquad$
$\qquad$
Arithmetic operations present in many libraries

$\qquad$
$\qquad$
Fast in hardware
Compact in hardware $\qquad$

## Elliptic Curve over GF(p)

Set of solutions $(x, y)$ to the equation

$$
y^{2}=x^{3}+a x+b
$$

where

$$
x, y \in \operatorname{GF}(p)
$$

$a, b \in \mathrm{GF}(p) \quad 4 \mathrm{a}^{3}+27 \mathrm{~b}^{2} \not \equiv 0(\bmod \mathrm{p})$ $\qquad$

+ a special point called the point at infinity $\boldsymbol{O}$


## Elliptic Curve over GF( $\mathbf{2}^{\text {n }}$ )

## Non-supersingular

Set of solutions $(x, y)$ to the equation

$$
y^{2}+\mathrm{xy}=x^{3}+a_{2} x^{2}+a_{6}
$$

where
$x, y \in \mathrm{GF}\left(2^{n}\right)$
$a_{2} \in\{0,1\}, a_{6} \in \operatorname{GF}\left(2^{n}\right)$

+ a special point called the point at infinity $\boldsymbol{O}$


## Elliptic Curve over GF( $\mathbf{2}^{\text {n }}$ )

## Supersingular

Set of solutions $(x, y)$ to the equation

$$
y^{2}+a_{3} y=x^{3}+a_{4} x+a_{6}
$$

where
$x, y \in \operatorname{GF}\left(2^{n}\right)$
$a_{3}, a_{4}, a_{6} \in \mathrm{GF}\left(2^{n}\right), a_{3} \neq 0$

+ a special point called the point at infinity $\boldsymbol{O}$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## MOV (Menezes-Okamoto-Vanstone) attack

- The elliptic curve discrete logarithm problem on $\mathbf{E}(\mathbf{G F}(\mathbf{q})$ ) can be reduced to the logarithm problem over $\mathbf{G F}\left(\mathbf{q}^{k}\right)$
- The logarithm problem over GF ( $\mathbf{q}^{\mathbf{k}}$ ) can be solved in subexponential time using the index calculus method
- Value of $k$
- small (<7) for supersingular curves
- large for non-supersingular curves
- Non-supersingular curves more suitable for cryptographic transformations

Addition of two points on the elliptic curve

$$
\begin{gathered}
\text { over GF (p) } \\
\mathbf{P}=(\mathbf{1}) \\
\left.\mathbf{\mathbf { x } _ { 1 }}, \mathbf{y}_{1}\right) \quad \mathbf{Q}=\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right) \\
\mathbf{R}=\mathbf{P}+\mathbf{Q}=\left(\mathbf{x}_{3}, \mathbf{y}_{3}\right)
\end{gathered}
$$

Case 1:

$$
\mathrm{P}+O=O+\mathrm{P}=\mathrm{P}
$$

Case 2:

$$
\begin{gathered}
\mathrm{x}_{2}=\mathrm{x}_{1} \text { and } \mathrm{y}_{2}=-\mathrm{y}_{1} \\
\mathrm{P}+\mathrm{Q}=O \\
\mathrm{Q}=-\mathrm{P}
\end{gathered}
$$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Addition of two points on the elliptic curve <br> over GF(p)

$\qquad$
Case 3:

$$
\begin{aligned}
& \mathrm{x}_{3}=\lambda^{2}-\mathrm{x}_{1}-\mathrm{x}_{2} \\
& \mathrm{y}_{3}=\lambda\left(\mathrm{x}_{1}-\mathrm{x}_{3}\right)-\mathrm{y}_{1}
\end{aligned}
$$

$\qquad$
$\qquad$
where
$\qquad$
Case 3a: if $\mathrm{P} \neq \mathrm{Q}$

$$
\lambda=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}=\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{-1}
$$

$\qquad$
Case 3b: if $\mathrm{P}=\mathrm{Q}$
$\qquad$

$$
\lambda=\frac{3 \mathrm{x}_{1}{ }^{2}+a}{2 \mathrm{y}_{1}}=\left(3 \mathrm{x}_{1}{ }^{2}+a\right)\left(2 \mathrm{y}_{1}\right)^{-1}
$$

$\qquad$

## Addition of two points on the elliptic curve over GF(p) (3)

$\qquad$
Case 3a: if $\mathrm{P} \neq \mathrm{Q}$
2 multiplications in $\mathrm{GF}(\mathrm{p})$
1 squaring in $\mathrm{GF}(\mathrm{p})$
1 inverse in $\mathrm{GF}(\mathrm{p})$
6 subtractions in $\mathrm{GF}(\mathrm{p})$
Case 3b: if $\mathrm{P}=\mathrm{Q}$
2 multiplications in $\mathrm{GF}(\mathrm{p})$
2 squarings in GF(p)
1 inverse in GF(p)
6 additions/subtractions in $\mathrm{GF}(\mathrm{p})$

## Addition of two points on the

non-supersingular elliptic curve over GF( $2^{n}$ )

$$
\begin{gathered}
\mathbf{P}=\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right) \quad \mathbf{Q}=\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right) \\
\mathbf{R}=\mathbf{P}+\mathbf{Q}=\left(\mathbf{x}_{3}, \mathbf{y}_{3}\right)
\end{gathered}
$$

Case 1:

$$
\mathrm{P}+O=O+\mathrm{P}=\mathrm{P}
$$

Case 2:

$$
\begin{gathered}
\mathrm{x}_{2}=\mathrm{x}_{1} \text { and } \mathrm{y}_{2}=\mathrm{y}_{1}+\mathrm{x}_{1} \\
\mathrm{P}+\mathrm{Q}=O \\
\mathrm{Q}=-\mathrm{P}
\end{gathered}
$$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Addition of two points on the

 non-supersingular elliptic curve over GF( $2^{\text {n }}$ ) $\qquad$Case 3a:
if $\mathrm{P} \neq \mathrm{Q}$ $\qquad$
$\mathrm{x}_{3}=\lambda^{2}+\lambda+\mathrm{x}_{1}+\mathrm{x}_{2}+a_{2}$
$\mathrm{y}_{3}=\lambda\left(\mathrm{x}_{1}-\mathrm{x}_{3}\right)-\mathrm{y}_{1}$
where

$$
\lambda=\frac{y_{1}+y_{2}}{x_{1}+x_{2}}=\left(y_{1}+y_{2}\right)\left(x_{1}+x_{2}\right)^{-1}
$$

Number of field operations:
1 inversion in $\mathrm{GF}\left(2^{\mathrm{n}}\right)$
2 multiplications in $\mathrm{GF}\left(2^{\mathrm{n}}\right)$
1 squaring in $\mathrm{GF}\left(2^{\mathrm{n}}\right)$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Addition of two points on the non-supersingular elliptic curve over GF( $2^{\text {n }}$ )

Case 3b:
if $P=Q$
$\mathrm{x}_{3}=\mathrm{a}_{6}\left(\mathrm{x}_{1}{ }^{-1}\right)^{2}+\mathrm{x}_{1}{ }^{2}$
$y_{3}=x_{1}^{2}+\left(x_{1}+y_{1} x_{1}^{-1}\right) x_{3}+x_{3}$

## Number of field operations:

1 inversion in $\mathrm{GF}\left(2^{\mathrm{n}}\right)$
3 multiplications in $\mathrm{GF}\left(2^{\mathrm{n}}\right)$
2 squarings in $\mathrm{GF}\left(2^{\mathrm{n}}\right)$

## Notation

a Multiplicand
$a_{k-1} a_{k-2} \ldots a_{1} a_{0}$
x Multiplier $\quad \mathrm{x}_{\mathrm{k}-1} \mathrm{x}_{\mathrm{k}-2} \ldots \mathrm{x}_{1} \mathrm{x}_{0}$
$\mathrm{p} \quad$ Product $(\mathrm{a} \cdot \mathrm{x}) \quad \mathrm{p}_{2 \mathrm{k}-1} \mathrm{p}_{2 \mathrm{k}-2} \ldots \mathrm{p}_{2} \mathrm{p}_{1} \mathrm{p}_{0}$

## Basic Multiplication Equations

$\mathrm{p}=\mathrm{a} \cdot \mathrm{x} \quad \mathrm{x}=\sum_{\mathrm{i}=0}^{\mathrm{k}-1} \mathrm{x}_{\mathrm{i}} \cdot 2^{\mathrm{i}}$

$$
\begin{aligned}
p & =a \cdot x=\sum_{i=0}^{k-1} x_{i} \cdot 2^{i}= \\
& =x_{0} a 2^{0}+x_{1} a 2^{1}+x_{2} a 2^{2}+\ldots+x_{k-1} a 2^{k-1}
\end{aligned}
$$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

```
Shift/Add Algorithms
Right-shift algorithm
\[
\begin{aligned}
& \mathrm{p}=\mathrm{a} \cdot \mathrm{x}=\mathrm{x}_{0} \mathrm{a} 2^{0}+\mathrm{x}_{1} \mathrm{a} 2^{1}+\mathrm{x}_{2} \mathrm{a} 2^{2}+\ldots+\mathrm{x}_{\mathrm{k}-1} \mathrm{a} 2^{\mathrm{k}-1}= \\
& =(\ldots((0+\underbrace{\left.\left.\left.\mathrm{x}_{0} \mathrm{a} 2^{k}\right) / 2+\mathrm{x}_{1} \mathrm{a} 2^{k}\right) / 2+\ldots+\mathrm{x}_{\mathrm{k}-1} \mathrm{a}^{k}\right) / 2}_{\mathrm{k} \text { times }}= \\
& \mathrm{p}^{(0)}=0
\end{aligned}
\]
\[
\mathrm{p}^{(\mathrm{j}+1)}=\left(\mathrm{p}^{(\mathrm{j})}+\mathrm{x}_{\mathrm{j}} \mathrm{a} 2^{\mathrm{k}}\right) / 2 \quad \mathrm{j}=0 . . \mathrm{k}-1
\]
\[
\mathrm{p}=\mathrm{p}^{(\mathrm{k})}
\]
```

$\qquad$

$$
\begin{gathered}
\text { Shift/Add Algorithms } \\
\text { Right-shift algorithm: multiply-add } \\
\mathrm{p}^{(0)}=\mathrm{y}^{\mathrm{k}} \\
\mathrm{p}^{(j+1)}=\left(\mathrm{p}^{(j)}+\mathrm{x}_{\mathrm{j}} \mathrm{a} 2^{\mathrm{k}}\right) / 2 \quad \mathrm{j}=0 . . \mathrm{k}-1 \\
\mathrm{p}=\mathrm{p}^{(\mathrm{k})}
\end{gathered} \underbrace{=(\ldots((\mathrm{y} 2^{\mathrm{k}}+\underbrace{}_{\left.\left.\left.x_{0} \mathrm{a} 2^{\mathrm{k}}\right) / 2+\mathrm{x}_{1} \mathrm{a} 2^{\mathrm{k}}\right) / 2+\ldots+\mathrm{x}_{\mathrm{k}-1} \mathrm{a} 2^{\mathrm{k}}\right) / 2}=}_{\mathrm{k} \text { times }} \begin{aligned}
& =\mathrm{y}+\mathrm{x}_{0} \mathrm{a} 2^{0}+\mathrm{x}_{1} \mathrm{a} 2^{1}+\mathrm{x}_{2} \mathrm{a} 2^{2}+\ldots+\mathrm{x}_{\mathrm{k}-1} \mathrm{a} 2^{\mathrm{k}-1}=\mathrm{y}+\mathrm{a} \cdot \mathrm{x}
\end{aligned}
$$

		Notation	
z	Dividend	$\mathrm{z}_{2 \mathrm{k}-1} \mathrm{z}_{2 \mathrm{k}-2} \ldots \mathrm{z}_{2} \mathrm{z}_{1} \mathrm{z}_{0}$	
d	Divisor	$\mathrm{d}_{\mathrm{k}-1} \mathrm{~d}_{\mathrm{k}-2} \ldots \mathrm{~d}_{1} \mathrm{~d}_{0}$	
q	Quotient	$\mathrm{q}_{\mathrm{k}-1} \mathrm{q}_{\mathrm{k}-2} \ldots \mathrm{q}_{1} \mathrm{q}_{0}$	
s	Remainder   $(\mathrm{s}=\mathrm{z}-\mathrm{dq})$	$\mathrm{s}_{\mathrm{k}-1} \mathrm{~s}_{\mathrm{k}-2} \ldots \mathrm{~s}_{1} \mathrm{~s}_{0}$	

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Unsigned Integer Division Overflow

Condition for no overflow:

$$
\begin{gathered}
\mathrm{z}=\mathrm{qd}+\mathrm{s}<\left(2^{\mathrm{k}}-1\right) \mathrm{d}+\mathrm{d}=\mathrm{d} 2^{\mathrm{k}} \\
\mathrm{z}=\mathrm{z}_{\mathrm{H}} 2^{\mathrm{k}}+\mathrm{z}_{\mathrm{L}}<\mathrm{d} 2^{\mathrm{k}} \\
\mathrm{z}_{\mathrm{H}}<\mathrm{d}
\end{gathered}
$$

## Sequential Integer Division Basic Equations

$\qquad$
$\qquad$

$$
\begin{gathered}
s^{(0)}=\mathrm{z} \\
\mathrm{~s}^{(\mathrm{j})}=2 \mathrm{~s}^{(\mathrm{j}-1)}-\mathrm{q}_{\mathrm{k}-\mathrm{j}}\left(2^{\mathrm{k}} \mathrm{~d}\right) \\
\mathrm{s}^{(\mathrm{k})}=2^{\mathrm{k}} \mathrm{~s}
\end{gathered}
$$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

```
 Sequential Integer Division
 Justification
s(1)}=2\textrm{z}-\mp@subsup{\textrm{q}}{\textrm{k}-1}{(}(\mp@subsup{2}{}{\textrm{k}}\textrm{d}
s}\mp@subsup{}{}{(2)}=2(2\textrm{z}-\mp@subsup{\textrm{q}}{\textrm{k}-1}{}(\mp@subsup{2}{}{\textrm{k}}\textrm{d}))-\mp@subsup{\textrm{q}}{\textrm{k}-2}{}(\mp@subsup{2}{}{\textrm{k}}\textrm{d}
s}\mp@subsup{}{}{(3)}=2(2(2\textrm{z}-\mp@subsup{\textrm{q}}{\textrm{k}-1}{(}(\mp@subsup{2}{}{\textrm{k}}\textrm{d}))-\mp@subsup{q}{k-2}{(2
```



```
 - q}\mp@subsup{\textrm{q}}{0}{}(\mp@subsup{2}{}{\textrm{k}}\textrm{d})
 = 2k
 =2
```


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\mathrm{C}=\mathrm{A} \cdot \mathrm{B} \quad \longleftarrow$
$\mathrm{C}^{\prime}=\mathrm{C} \cdot 2^{\mathrm{k}} \bmod \mathrm{M}$ $\qquad$
$\qquad$

## Montgomery Modular Multiplication (2)

$\mathbf{A} \longrightarrow \mathbf{A}^{\prime}$

$$
\mathbf{A}^{\prime}=\mathbf{M P}\left(\mathbf{A}, 2^{2 k} \bmod \mathbf{M}, \mathbf{M}\right)
$$

$\mathbf{C} \longleftarrow \mathbf{C}^{\prime}$
$\mathbf{C}=\mathbf{M P}\left(\mathbf{C}^{\prime}, \mathbf{1}, \mathbf{M}\right)$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


