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Implementation of public key
cryptosystems

ECE297:11 Lecture 18

Diffie-Hellman
Alice Bob

A’s private key: xA

A’s public key:
yA = g

B’s private key: xB

B’s public key:
yB = g

Secret
derivation

Secret
derivation

xA xB

zAB = yB
xA =  g  

xBxA zBA = yA
xB =  g  

xAxB

g - generator of Zp
*



2

Elliptic Curve Diffie-Hellman
Alice Bob

A’s private key: xA

A’s public key:
QA = xA P

B’s private key: xB

B’s public key:
QB = xB P

Secret
derivation

Secret
derivation

ZAB = xA QB = xA (xB P) ZBA = xB QA = xB (xA P)

P - generator of E(GF(q))

Right-to-left binary 
exponentiation

Left-to-r ight binary 
exponentiation

Exponentiation:    y = ae mod n

e = (eL-1, eL-2, …, e1, e0)2

y = 1;
s = a;
for  i=0 to L-1

{
if (ei == 1)
y = y ⋅ s mod n;

s = s2 mod n;
}

y = 1;
for  i=L-1 downto 0

{
y = y2 mod n;
if (ei == 1)
y = y ⋅ a mod n;

}
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Right-to-left binary 
scalar  multiplication

Left-to-r ight binary 
scalar  multiplication

Scalar  Multiplication:    Y = k⋅⋅⋅⋅ P

k = (kL-1, kL-2, …, k1, k0)2

Y = Ο;
S = P;
for  i=0 to L-1

{
if (ki == 1)
Y = Y + S;

S = 2S;
}

Y = Ο;
for i=L-1 downto 0

{
Y = 2Y ;
if (ki == 1)
Y = Y + P;

}

Three Classes of Elliptic Curves

Elliptic curves built over

K = GF(p) K = GF(2m)

Polynomial basis
representation

Normal basis
representation

Fast in hardware

Arithmetic 
operations

present
in many libraries

Compact in hardware
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Elliptic Curve over  GF(p)

y2 = x3 + a x + b

Set of solutions (x, y) to the equation

where x, y ∈ GF(p)

a, b ∈ GF(p)

+ a special point called   the point at infinity  ΟΟΟΟ

4a3 + 27 b2 ≡ 0 (mod p)

Elliptic Curve over  GF(2n)

y2 + xy = x3 + a2 x2 + a6

Set of solutions (x, y) to the equation

where x, y ∈ GF(2n)

a2 ∈ { 0,1} , a6 ∈ GF(2n)

+ a special point called   the point at infinity  ΟΟΟΟ

Non-supersingular
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Elliptic Curve over  GF(2n)

y2 + a3y = x3 + a4 x + a6

Set of solutions (x, y) to the equation

where x, y ∈ GF(2n)

a3 , a4 , a6 ∈ GF(2n),   a3 ≠ 0

+ a special point called   the point at infinity  ΟΟΟΟ

Supersingular

MOV (Menezes-Okamoto-Vanstone) attack

• The elliptic curve discrete logarithm problem on E(GF(q))
can be reduced to the logarithm problem over  GF(qk)

• The logarithm problem over  GF(qk) can be solved
in subexponential time using the index calculus method

• Value of k
- small (< 7) for supersingular curves
- large for non-supersingular curves

• Non-supersingular curves more suitable for  
cryptographic transformations
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Addition of two points on the elliptic curve 
over  GF(p)      (1)

P = (x1, y1) Q = (x2, y2)

Case 1:

Case 2:

P + Ο = Ο +  P = P

x2=x1 and  y2 = -y1

P + Q = Ο

R = P + Q = (x3, y3)

Q = -P

Case 3:

x3 = λ2 - x1 - x2

y3 = λ (x1-x3) - y1

Addition of two points on the elliptic curve 
over  GF(p)      (2)

where

λ =   

Case 3a:        if   P ≠ Q

Case 3b:        if   P = Q

y2 - y1

x2 - x1
=  (y2 - y1) (x2 - x1)-1

λ =   
3x1

2 + a
2y1

=  (3x1
2 + a) (2y1)-1
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Addition of two points on the elliptic curve 
over  GF(p)      (3)

Case 3a:        if   P ≠ Q

Case 3b:        if   P = Q

2 multiplications in GF(p)
1 squaring in GF(p)
1 inverse in GF(p)
6 subtractions in GF(p)

2 multiplications in GF(p)
2 squarings in GF(p)
1 inverse in GF(p)
6 additions/subtractions in GF(p)

Addition of two points on the 
non-supersingular elliptic curve over  GF(2n)

P = (x1, y1) Q = (x2, y2)

Case 1:

Case 2:

P + Ο = Ο +  P = P

x2=x1 and  y2 = y1+ x1

P + Q = Ο

R = P + Q = (x3, y3)

Q = -P
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Case 3a:

x3 = λ2 + λ + x1 + x2 + a2

y3 = λ (x1-x3) - y1
where

λ =   
y1 + y2

x1 + x2
=  (y1 + y2) (x1 + x2)-1

if   P ≠ Q

Addition of two points on the 
non-supersingular elliptic curve over  GF(2n)

1 inversion in GF(2n)
2 multiplications in GF(2n)
1 squaring in GF(2n)

Number  of field operations:

Case 3b: if   P = Q

x3 = a6 (x1
-1)2 + x1

2

y3 = x1
2 + (x1 + y1 x1

-1) x3 + x3

Addition of two points on the 
non-supersingular elliptic curve over  GF(2n)

1 inversion in GF(2n)
3 multiplications in GF(2n)
2 squarings in GF(2n)

Number  of field operations:
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Notation

a    Multiplicand       ak-1ak-2 . . . a1 a0

x    Multiplier       xk-1xk-2 . . . x1 x0

p    Product (a ⋅ x)     p2k-1p2k-2 . . . p2 p1 p0

Basic Multiplication Equations

x =∑ xi
⋅ 2i

i=0

k-1

p = a ⋅ x

p = a ⋅ x =∑ xi
⋅ 2i = 

= x0a20 + x1a21 + x2a22 + … + xk-1a2k-1

i=0

k-1
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Shift/Add Algor ithms
Right-shift algor ithm

p = a ⋅ x = x0a20 + x1a21 + x2a22 + … + xk-1a2k-1

= (...((0 + x0a2k)/2 + x1a2k)/2 + ... + xk-1a2k)/2 =

k  times

=

p(0) = 0

p = p(k)

p(j+1) = (p(j) + xj a 2k) / 2 j=0..k-1

Shift/Add Algor ithms
Right-shift algor ithm: multiply-add

= (...((y2k + x0a2k)/2 + x1a2k)/2 + ... + xk-1a2k)/2 =

k  times

p(0) = y2k

p = p(k)

p(j+1) = (p(j) + xj a 2k) / 2 j=0..k-1

= y + x0a20 + x1a21 + x2a22 + … + xk-1a2k-1 = y + a ⋅ x
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Notation

z    Dividend     z2k-1z2k-2 . . . z2 z1 z0

d    Divisor       dk-1dk-2 . . . d1 d0

q    Quotient       qk-1qk-2 . . . q1 q0

s    Remainder       sk-1sk-2 . . . s1 s0

(s = z - dq)

Basic Equations of Division

z = q d  + s

s  < d 
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Unsigned Integer  Division Over flow

z = zH 2k + zL < d 2k

Condition for no overflow:

z = q d + s < (2k-1) d + d = d 2k

zH < d

Sequential Integer  Division
Basic Equations

s(0) = z

s(j) = 2 s(j-1) - qk-j (2k d)

s(k) = 2k s
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Sequential Integer  Division
Justification

s(1) = 2 z - qk-1 (2k d)
s(2) = 2(2 z - qk-1 (2k d)) - qk-2 (2k d)
s(3) = 2(2(2 z - qk-1 (2k d)) - qk-2 (2k d)) - qk-3 (2k d)

. . . . . .  

s(k) = 2(. . . 2(2(2 z - qk-1 (2k d)) - qk-2 (2k d)) - qk-3 (2k d) . . . 
- q0 (2k d) =

= 2k z - (2k d) (qk-1 2k-1 + qk-2 2k-2 + qk-3 2k-3 + … + q020) =
= 2k z - (2k d) q = 2k (z - d q) = 2k s

Montgomery Modular  Multiplication (1)

C = A ⋅⋅⋅⋅ B mod M

A

Integer  domain Montgomery domain

A’  = A ⋅ 2k mod M

B B’ = B ⋅ 2k mod M

C’ = MP(A’ , B’ , M) =
= A’  ⋅ B’ ⋅ 2-k mod M =
= (A ⋅ 2k) ⋅ (B ⋅ 2k) ⋅ 2-k mod M =
= A ⋅ B ⋅ 2k mod M 

C’   = C ⋅ 2k mod MC = A ⋅ B

A, B, M – k-bit numbers
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Montgomery Modular  Multiplication (2)

A’  = MP(A, 22k mod M, M)

C = MP(C’ , 1, M)

A A’

C C’

Montgomery Modular  Multiplication (3)

x2n-1 x0. . . x1
x2n-2 x2n-3 xn . . .

2k bits

X = A’B’

+ q0M

x2n-1 . . . x1
x2n-2 x2n-3 xn . . . 0

+ q1Mb

x2n-1 . . .x2n-2 x2n-3 00x2

. . . . . .

00. . .0C’

k bits

C’ 2k = X + zM
C’ 2k ≡ X = A’B’

C’  ≡≡≡≡ A’B’ 2-k


