
1

Implementation of public key
cryptosystems

ECE297:11 Lecture 18

Diffie-Hellman
Alice Bob

A’s private key: xA

A’s public key:
yA = g

B’s private key: xB

B’s public key:
yB = g

Secret
derivation

Secret
derivation

xA xB

zAB = yB
xA = g

xBxA zBA = yA
xB = g

xAxB

g - generator of Zp
*

2

Elliptic Curve Diffie-Hellman
Alice Bob

A’s private key: xA

A’s public key:
QA = xA P

B’s private key: xB

B’s public key:
QB = xB P

Secret
derivation

Secret
derivation

ZAB = xA QB = xA (xB P) ZBA = xB QA = xB (xA P)

P - generator of E(GF(q))

Right-to-left binary
exponentiation

Left-to-r ight binary
exponentiation

Exponentiation: y = ae mod n

e = (eL-1, eL-2, …, e1, e0)2

y = 1;
s = a;
for i=0 to L-1

{
if (ei == 1)
y = y ⋅ s mod n;

s = s2 mod n;
}

y = 1;
for i=L-1 downto 0

{
y = y2 mod n;
if (ei == 1)
y = y ⋅ a mod n;

}

3

Right-to-left binary
scalar multiplication

Left-to-r ight binary
scalar multiplication

Scalar Multiplication: Y = k⋅⋅⋅⋅ P

k = (kL-1, kL-2, …, k1, k0)2

Y = Ο;
S = P;
for i=0 to L-1

{
if (ki == 1)
Y = Y + S;

S = 2S;
}

Y = Ο;
for i=L-1 downto 0

{
Y = 2Y ;
if (ki == 1)
Y = Y + P;

}

Three Classes of Elliptic Curves

Elliptic curves built over

K = GF(p) K = GF(2m)

Polynomial basis
representation

Normal basis
representation

Fast in hardware

Arithmetic
operations

present
in many libraries

Compact in hardware

4

Elliptic Curve over GF(p)

y2 = x3 + a x + b

Set of solutions (x, y) to the equation

where x, y ∈ GF(p)

a, b ∈ GF(p)

+ a special point called the point at infinity ΟΟΟΟ

4a3 + 27 b2 ≡ 0 (mod p)

Elliptic Curve over GF(2n)

y2 + xy = x3 + a2 x2 + a6

Set of solutions (x, y) to the equation

where x, y ∈ GF(2n)

a2 ∈ { 0,1} , a6 ∈ GF(2n)

+ a special point called the point at infinity ΟΟΟΟ

Non-supersingular

5

Elliptic Curve over GF(2n)

y2 + a3y = x3 + a4 x + a6

Set of solutions (x, y) to the equation

where x, y ∈ GF(2n)

a3 , a4 , a6 ∈ GF(2n), a3 ≠ 0

+ a special point called the point at infinity ΟΟΟΟ

Supersingular

MOV (Menezes-Okamoto-Vanstone) attack

• The elliptic curve discrete logarithm problem on E(GF(q))
can be reduced to the logarithm problem over GF(qk)

• The logarithm problem over GF(qk) can be solved
in subexponential time using the index calculus method

• Value of k
- small (< 7) for supersingular curves
- large for non-supersingular curves

• Non-supersingular curves more suitable for
cryptographic transformations

6

Addition of two points on the elliptic curve
over GF(p) (1)

P = (x1, y1) Q = (x2, y2)

Case 1:

Case 2:

P + Ο = Ο + P = P

x2=x1 and y2 = -y1

P + Q = Ο

R = P + Q = (x3, y3)

Q = -P

Case 3:

x3 = λ2 - x1 - x2

y3 = λ (x1-x3) - y1

Addition of two points on the elliptic curve
over GF(p) (2)

where

λ =

Case 3a: if P ≠ Q

Case 3b: if P = Q

y2 - y1

x2 - x1
= (y2 - y1) (x2 - x1)-1

λ =
3x1

2 + a
2y1

= (3x1
2 + a) (2y1)-1

7

Addition of two points on the elliptic curve
over GF(p) (3)

Case 3a: if P ≠ Q

Case 3b: if P = Q

2 multiplications in GF(p)
1 squaring in GF(p)
1 inverse in GF(p)
6 subtractions in GF(p)

2 multiplications in GF(p)
2 squarings in GF(p)
1 inverse in GF(p)
6 additions/subtractions in GF(p)

Addition of two points on the
non-supersingular elliptic curve over GF(2n)

P = (x1, y1) Q = (x2, y2)

Case 1:

Case 2:

P + Ο = Ο + P = P

x2=x1 and y2 = y1+ x1

P + Q = Ο

R = P + Q = (x3, y3)

Q = -P

8

Case 3a:

x3 = λ2 + λ + x1 + x2 + a2

y3 = λ (x1-x3) - y1
where

λ =
y1 + y2

x1 + x2
= (y1 + y2) (x1 + x2)-1

if P ≠ Q

Addition of two points on the
non-supersingular elliptic curve over GF(2n)

1 inversion in GF(2n)
2 multiplications in GF(2n)
1 squaring in GF(2n)

Number of field operations:

Case 3b: if P = Q

x3 = a6 (x1
-1)2 + x1

2

y3 = x1
2 + (x1 + y1 x1

-1) x3 + x3

Addition of two points on the
non-supersingular elliptic curve over GF(2n)

1 inversion in GF(2n)
3 multiplications in GF(2n)
2 squarings in GF(2n)

Number of field operations:

9

Notation

a Multiplicand ak-1ak-2 . . . a1 a0

x Multiplier xk-1xk-2 . . . x1 x0

p Product (a ⋅ x) p2k-1p2k-2 . . . p2 p1 p0

Basic Multiplication Equations

x =∑ xi
⋅ 2i

i=0

k-1

p = a ⋅ x

p = a ⋅ x =∑ xi
⋅ 2i =

= x0a20 + x1a21 + x2a22 + … + xk-1a2k-1

i=0

k-1

10

Shift/Add Algor ithms
Right-shift algor ithm

p = a ⋅ x = x0a20 + x1a21 + x2a22 + … + xk-1a2k-1

= (...((0 + x0a2k)/2 + x1a2k)/2 + ... + xk-1a2k)/2 =

k times

=

p(0) = 0

p = p(k)

p(j+1) = (p(j) + xj a 2k) / 2 j=0..k-1

Shift/Add Algor ithms
Right-shift algor ithm: multiply-add

= (...((y2k + x0a2k)/2 + x1a2k)/2 + ... + xk-1a2k)/2 =

k times

p(0) = y2k

p = p(k)

p(j+1) = (p(j) + xj a 2k) / 2 j=0..k-1

= y + x0a20 + x1a21 + x2a22 + … + xk-1a2k-1 = y + a ⋅ x

11

Notation

z Dividend z2k-1z2k-2 . . . z2 z1 z0

d Divisor dk-1dk-2 . . . d1 d0

q Quotient qk-1qk-2 . . . q1 q0

s Remainder sk-1sk-2 . . . s1 s0

(s = z - dq)

Basic Equations of Division

z = q d + s

s < d

12

Unsigned Integer Division Over flow

z = zH 2k + zL < d 2k

Condition for no overflow:

z = q d + s < (2k-1) d + d = d 2k

zH < d

Sequential Integer Division
Basic Equations

s(0) = z

s(j) = 2 s(j-1) - qk-j (2k d)

s(k) = 2k s

13

Sequential Integer Division
Justification

s(1) = 2 z - qk-1 (2k d)
s(2) = 2(2 z - qk-1 (2k d)) - qk-2 (2k d)
s(3) = 2(2(2 z - qk-1 (2k d)) - qk-2 (2k d)) - qk-3 (2k d)

.

s(k) = 2(. . . 2(2(2 z - qk-1 (2k d)) - qk-2 (2k d)) - qk-3 (2k d) . . .
- q0 (2k d) =

= 2k z - (2k d) (qk-1 2k-1 + qk-2 2k-2 + qk-3 2k-3 + … + q020) =
= 2k z - (2k d) q = 2k (z - d q) = 2k s

Montgomery Modular Multiplication (1)

C = A ⋅⋅⋅⋅ B mod M

A

Integer domain Montgomery domain

A’ = A ⋅ 2k mod M

B B’ = B ⋅ 2k mod M

C’ = MP(A’ , B’ , M) =
= A’ ⋅ B’ ⋅ 2-k mod M =
= (A ⋅ 2k) ⋅ (B ⋅ 2k) ⋅ 2-k mod M =
= A ⋅ B ⋅ 2k mod M

C’ = C ⋅ 2k mod MC = A ⋅ B

A, B, M – k-bit numbers

14

Montgomery Modular Multiplication (2)

A’ = MP(A, 22k mod M, M)

C = MP(C’ , 1, M)

A A’

C C’

Montgomery Modular Multiplication (3)

x2n-1 x0. . . x1
x2n-2 x2n-3 xn . . .

2k bits

X = A’B’

+ q0M

x2n-1 . . . x1
x2n-2 x2n-3 xn . . . 0

+ q1Mb

x2n-1 . . .x2n-2 x2n-3 00x2

.

00. . .0C’

k bits

C’ 2k = X + zM
C’ 2k ≡ X = A’B’

C’ ≡≡≡≡ A’B’ 2-k

