ECE 297:11 Lecture 17

\qquad

Mathematical background Groups, rings, and fields

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Evariste Galois (1811-1832)

Studied the problem of finding algebraic solutions for the general \qquad
equation of the degree ≥ 5, e.g.,
$f(x)=a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0$
Answered definitely the question which specific equations of a given degree have algebraic solutions
\qquad
On the way, he developed group theory,
one of the most important branches of modern mathematics.

Evariste Galois (1811-1832)

1829 Galois submits his results for the first time to the French Academy of Sciences Reviewer 1
Augustin-Luis Cauchy forgot or lost the communication
1930 Galois submits the revised version of his manuscript,
hoping to enter the competition for the Grand Prize
in mathematics
Reviewer 2
Joseph Fourier - died shortly after receiving the manuscript
1931 Third submission to the French Academy of Sciences
Reviewer 3
Simeon-Denis Poisson - does not understand the manuscript and rejects it.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Evariste Galois (1811-1832)

May 1832 Galois provoked into a duel
The night before the duel he writes a letter to his friend containing the summary of his discoveries.
The letter ends with a plea:
"Eventually there will be, I hope, some people who will find it profitable to decipher this mess."

May 30, 1832 Galois is grievously wounded in the duel and dies in the hospital the following day.

1843 Galois manuscript rediscovered by Joseph Liouville
1846 Galois manuscript published for the first time in a mathematical journal

Group

Example 1

$(\mathbf{Z}$ - set of integers, + addition) is an abelian group	
i) + is associative \quad e.g.,	$(5+7)+13=5+(7+13)$
ii) Identity element $=0$ $a+0=0+a=a$	
iii) Inverse of $a=-a$ e.g., $\quad 7+(-7)=0$ iv) + is commutative e.g., $\quad 5+8=8+5$	

Group

Example 2

(Z - set of integers, - multiplication) is NOT a group
\qquad
i) . is associative e.g., $(5 \cdot 7) \cdot 13=5 \cdot(7 \cdot 13)$ \qquad
ii) Identity element $=1 \quad a \cdot 1=1 \cdot a=a$
iii) No inverse of a for any $a \neq 1$ or -1
e.g., there is no integer x, such that $5 \cdot x=1$
\qquad
iv) . is commutative e.g., $5 \cdot 8=8 \cdot 5$ \qquad
\qquad

Group

Example 3

$\left(Z_{n}=\{0,1,2, \ldots, n-1\},+\bmod n: \operatorname{addition} m o d u l o n\right)$ is an abelian finite group of order n
i) $+\bmod n$ is associative
e.g., $(((5+7) \bmod 16)+13) \bmod 16=(5+((7+13) \bmod 16)) \bmod 16$
ii) Identity element $=0 \quad(0+a) \bmod n=(a+0) \bmod n=a$
iii) Inverse of $a=0 \quad$ for $a=0 \quad$ e.g., $\quad 7+(16-7)=$ $n-a$ otherwise $\quad 7+9 \bmod 16=0$
iv) $\quad+\bmod n$ is commutative e.g., $\quad 5+8 \bmod 16=8+5 \bmod 16$

Group

Example 4

$\left(\mathrm{Z}_{n}-\{0\}=\{1,2, \ldots, n-1\}, \bmod \mathrm{n}:\right.$ multiplication modulo $\left.n\right)$
is NOT a group if \boldsymbol{n} is composite
i) $\cdot \bmod n$ is associative
e.g., $(((5 \cdot 7) \bmod 16) \cdot 4) \bmod 16=(5 \cdot((7 \cdot 4) \bmod 16)) \bmod 16$
ii) Identity element $=1 \quad(a \cdot 1) \bmod n=(1 \cdot a) \bmod n=a$
iii) There is no inverse of \boldsymbol{a} for any \boldsymbol{a} e.g., there is no $\mathrm{x} \in \mathrm{Z}_{\mathrm{n}}-\{0\}$ that is not relatively prime with \boldsymbol{n} such that
$(2 \cdot x) \bmod 16=1$
iv) $\cdot \bmod n$ is commutative e.g., $(5 \cdot 8) \bmod 16=(8 \cdot 5) \bmod 16$
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Cyclic Group	
Example 6	
$\left(Z_{p}{ }^{*}=\{1,2, \ldots, p-1\}\right.$ where p is prime $\}$, $\bmod p:$ multiplication modulo p) is a cyclic group with $\varphi(p-1)$ generators	
For $\mathrm{p}=11, \mathrm{Z}_{p}{ }^{*}=\{1,2,3,4,5,6,7,8,9,10\}$	
There are $\varphi(10)=4$ generators	
In particular:	
$2^{1} \bmod 11=2$	$2^{6} \bmod 11=9$
$2^{2} \bmod 11=4$	$2^{7} \bmod 11=7$
$2^{3} \bmod 11=8$	$2^{8} \bmod 11=3$
$2^{4} \bmod 11=5$	$2^{9} \bmod 11=6$
$2^{5} \bmod 11=10$	$2^{10} \bmod 11=1$
2 is a generator (primitive element) of $\mathrm{Z}_{11}{ }^{*}$	

\qquad
\qquad
\qquad
\qquad
\qquad
$2^{7} \bmod 11=7$
$2^{3} \bmod 11=8 \quad 2^{8} \bmod 11=3$
$2^{9} \bmod 11=6$

2 is a generator (primitive element) of $\mathbf{Z}_{11}{ }^{*}$

Cyclic Group

Example 6-continued
\qquad
$3^{1} \bmod 11=3$
$3^{2} \bmod 11=9$
$3^{3} \bmod 11=5$
$3^{4} \bmod 11=4$
$3^{5} \bmod 11=1$
3 is NOT a generator of of $Z_{I I}{ }^{*}$
$\langle 3\rangle=\{3,9,5,4,1\}$ is a cyclic subgroup of $Z_{I I}{ }^{*}$ generated by 3
3 is an element of $Z_{I I}{ }^{*}$ of order 5
$|<3>|$: size of the subgroup generated by $3=$ order of $3=5$
\qquad

Size of the subgroup $=5 \mid \mathbf{1 0}=$ size of of the group

Test for a generator of a cyclic group

Size of the cyclic group $\mathrm{Z}_{11}{ }^{*}=10=2 \cdot 5$
Test for $\mathbf{a}=2$
$2^{10 / 2} \bmod 11=2^{5} \bmod 11=10 \neq 1$
$\mathbf{2}^{\mathbf{1 0 / 5}} \boldsymbol{\operatorname { m o d } 1 1}=2^{2} \bmod 11=4 \neq \mathbf{1}$
Result: 2 is a generator of $Z_{I I}{ }^{*}$
Test for $\mathbf{a}=3$
$\mathbf{3}^{10 / 2} \bmod 11=3^{5} \bmod 11=243 \bmod 11=\mathbf{1}$
$3^{10 / 5} \bmod 11=3^{2} \bmod 11=9 \neq 1$
Result: 3 is NOT a generator of $\mathrm{Z}_{11}{ }^{*}$

Ring

Example 7

(Z - set of integers, + addition, • multiplication) is a commutative ring
i) $(\mathrm{Z},+)$ is an abelian group with identity element 0
ii) - is associative e.g., $(5 \cdot 7) \cdot 13=5 \cdot(7 \cdot 13)$
iii) . has an identity element $=1 \quad a \cdot 1=1 \cdot a=a$
iv) . is distributive over +
e.g., $\quad 5 \cdot(7+13)=5 \cdot 7+5 \cdot 13$, and
$(5+7) \cdot 13=5 \cdot 13+7 \cdot 13$
v) . is commutative e.g., $\quad 5 \cdot 8=8 \cdot 5$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

No inverse of a if a is not relatively prime with n \qquad
e.g., there is no $x \in Z_{n}$, such that $2 \cdot x=1 \bmod 16$

Field

Example 11

$\left(\mathrm{Z}_{p}=\{0,1,2, \ldots, p-1\},+\bmod p:\right.$ addition modulo p, \qquad $\bmod p:$ multiplication modulo p)
\qquad
i) $\quad\left(\mathrm{Z}_{p},+\bmod p, \cdot \bmod p\right)$ is a commutative ring \qquad
ii) There is multiplicative inverse for all numbers from $\mathrm{Z}_{p}-\{0\}$
e.g., $\quad(2 \cdot 6) \bmod 11=1 \rightarrow 2^{-1} \bmod 11=6$
$(3 \cdot 4) \bmod 11=1 \rightarrow 3^{-1} \bmod 11=4$
$(5 \cdot 9) \bmod 11=1 \rightarrow 5^{-1} \bmod 11=9$
$(7 \cdot 8) \bmod 11=1 \rightarrow 7^{-1} \bmod 11=8$

Field

Example 12

$\left(\mathrm{Z}_{p}=\{0,1,2, \ldots, p-1\},+\bmod p:\right.$ addition modulo p, $\cdot \bmod p:$ multiplication modulo p) is a field of characteristic p

\qquad
\qquad
\qquad
\qquad

Sets of polynomials

$\mathbf{Z}[x]$ - polynomials with coefficients in \mathbf{Z},

$$
\text { e.g., } f(x)=-4 x^{3}+254 x^{2}+45 x+7
$$

$Z_{n}[x]$ - polynomials with coefficients in Z_{n}
\qquad
e.g., for $\mathrm{n}=15$

$$
f(x)=3 x^{3}+14 x^{2}+4 x+7
$$

$Z_{2}[x]$ - polynomials with coefficients in $\mathbf{Z}_{\mathbf{2}}$

$$
\text { e.g., } f(x)=1 x^{3}+0 x^{2}+1 x+1=x^{3}+x+1
$$

Polynomial rings

($\mathrm{Z}[\mathrm{x}]$, polynomial addition, polynomial multiplication)
($\mathrm{Z}_{\mathrm{n}}[\mathrm{x}]$, polynomial addition, polynomial multiplication) ($\mathrm{Z}_{2}[\mathrm{x}]$, polynomial addition, polynomial multiplication) \qquad For $\mathrm{Z}_{2}[\mathrm{x}]$
i) $\left(\mathrm{Z}_{2}[\mathrm{x}],+\right)$ is an abelian group with identity element 0
\qquad
ii) . is associative
e.g., $\left(\left(x^{2}+x+1\right) \cdot(x+1)\right) \cdot\left(x^{2}+1\right)=\left(x^{2}+x+1\right) \cdot\left((x+1) \cdot\left(x^{2}+1\right)\right)$
iii) - has an identity element $=1$
$\mathrm{f}(\mathrm{x}) \cdot 1 \bmod n=1 \cdot \mathrm{f}(\mathrm{x}) \bmod n=\mathrm{f}(\mathrm{x})$
iv) . is distributive over +
e.g., $\quad\left(x^{2}+x+1\right) \cdot\left((x+1)+\left(x^{2}+1\right)\right)=$ $\left(x^{2}+x+1\right) \cdot(x+1)+\left(x^{2}+x+1\right) \cdot(x+1)$

Finite sets of polynomials

$\mathbf{Z}_{2}[\mathbf{x}] / \mathbf{f}(\mathbf{x})$ - polynomials with coefficients in \mathbf{Z}_{2} of degree less than $n=\operatorname{deg} f(x)$
e.g., for $f(x)=x^{3}+x+1$

$\mathrm{g}_{7}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}+1$	$\mathrm{~g}_{3}(\mathrm{x})=\mathrm{x}+1$
$\mathrm{~g}_{6}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}$	$\mathrm{g}_{2}(\mathrm{x})=\mathrm{x}$
$\mathrm{g}_{5}(\mathrm{x})=\mathrm{x}^{2}+1$	$\mathrm{~g}_{1}(\mathrm{x})=1$
$\mathrm{~g}_{4}(\mathrm{x})=\mathrm{x}^{2}$	$\mathrm{~g}_{0}(\mathrm{x})=0$

$\mathbf{Z}_{p}[x] / f(x)$ - polynomials with coefficients in Z_{p} of degree less than $n=\operatorname{deg} f(x)$ \qquad
e.g., for $f(x)=x^{3}+x+1$, and $p=3$

$$
\begin{aligned}
& \mathrm{g}_{0}(\mathrm{x})=0 \\
& \ldots \\
& \mathrm{~g}_{\mathrm{M}-1}(\mathrm{x})=2 \mathrm{x}^{2}+2 \mathrm{x}+2
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Polynomial rings

$\left(\mathrm{Z}_{2}[\mathrm{x}] / \mathrm{f}(\mathrm{x})\right.$, polynomial addition $\bmod \mathrm{f}(\mathrm{x})$,
\qquad polynomial multiplication $\bmod \mathrm{f}(\mathrm{x})$)
$\left(\mathrm{Z}_{\mathrm{p}}[\mathrm{x}] / \mathrm{f}(\mathrm{x})\right.$, polynomial addition $\bmod \mathrm{f}(\mathrm{x})$, polynomial multiplication $\bmod f(x)$)

Polynomial addition:

$$
\left(x^{3}+x+1\right)+\left(x^{2}+1\right) \bmod \left(x^{4}+1\right)=x^{3}+x^{2}+x
$$

\qquad

Polynomial multiplication:

```
(x + x + 1) (x ( }\mp@subsup{}{}{2}+1)\operatorname{mod}(\mp@subsup{x}{}{4}+1)
=(\mp@subsup{x}{}{5}+\mp@subsup{y}{}{8}+\mp@subsup{x}{}{2})+(\mp@subsup{x}{}{6}+x+1)\operatorname{mod}(\mp@subsup{x}{}{4}+1)=
= }\mp@subsup{\textrm{x}}{}{5}+\mp@subsup{\textrm{x}}{}{2}+\textrm{x}+1\operatorname{mod}(\mp@subsup{\textrm{x}}{}{4}+1)
```

$=x \cdot\left(x^{4}+1\right)+x^{2}+1 \bmod \left(x^{4}+1\right)=x^{2}+1$

Finite fields

$f(x)$ is an irreducible polynomial of degree m
\qquad
$\mathrm{F}_{\mathrm{q}}=\mathrm{GF}\left(2^{m}\right)=\left(\mathrm{Z}_{2}[\mathrm{x}] / \mathrm{f}(\mathrm{x})\right.$, polynomial addition $\bmod \mathrm{f}(\mathrm{x})$, \qquad polynomial multiplication $\bmod f(x))$
where $\mathrm{q}=2^{m}$ \qquad
$\mathrm{F}_{\mathrm{q}}=\mathrm{GF}\left(\mathrm{p}^{m}\right)=\left(\mathrm{Z}_{\mathrm{p}}[\mathrm{x}] / \mathrm{f}(\mathrm{x})\right.$, polynomial addition $\bmod \mathrm{f}(\mathrm{x})$, polynomial multiplication $\bmod \mathrm{f}(\mathrm{x})$)
\qquad
where $\mathrm{q}=\mathrm{p}^{m}$
All non-zero elements have multiplicative inverses
\qquad
e.g., for $f(x)=x^{3}+x+1$, and $p=2$
$(x+1) \cdot\left(x^{2}+x\right) \bmod x^{3}+x+1=1 \rightarrow(x+1)^{-1} \bmod f(x)=x^{2}+x$

Number of primitive polynomials over \mathbf{Z}_{2} of degree \boldsymbol{m} \qquad

m	$\varphi\left(2^{\mathrm{m}}-1\right) / \mathrm{m}$	$\mathrm{f}(\mathrm{x})$
2	1	$x^{2}+\mathrm{x}+1$
3	2	$x^{3}+\mathrm{x}+1, \mathrm{x}^{3}+\mathrm{x}^{2}+1$
4	2	$x^{4}+\mathrm{x}+1, \mathrm{x}^{4}+\mathrm{x}^{3}+1$
5	6	$x^{5}+\mathrm{x}^{2}+1$, etc.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

```
    Test for a primitive polynomial
Test for f(x)= x4+x+1,f(x) irreducible
    Size of the cyclic group F F}\mp@subsup{}{q}{*}=\textrm{q}-1=\mp@subsup{2}{}{m}-1=15=3.
    x
    \mp@subsup{x}{}{15/3}\operatorname{mod}\mp@subsup{x}{}{4}+x+1=\mp@subsup{x}{}{2}+x\not=1
        Result: }x\mathrm{ is a generator of }\mp@subsup{F}{q}{}=\mp@subsup{Z}{2}{}[x]/f(x
Test for f(x)= x4+\mp@subsup{x}{}{2}+1,f(x) is reducible
    \mp@subsup{x}{}{4}+\mp@subsup{x}{}{2}+1=(\mp@subsup{x}{}{2}+x+1)(\mp@subsup{x}{}{2}+x+1)
    Result: (\mp@subsup{Z}{2}{}[x]/f(x),\cdot\operatorname{mod}f(x)) is not a group
```

