

Elliptic Curve Cryptosystems

Example: Elliptic curve $y^2 = x^3 + x + 1$ over GF(23)		
(0, 1) (0, 22) (1, 7) (1, 16) (3, 10) (3, 13) (4, 0) (5, 4) (5, 19)	(6, 4) (6, 19) (7, 11) (7, 12) (9, 7) (9, 16) (11, 3) (11, 20) (12, 4)	(12, 19) (13, 7) (13, 16) (17, 3) (17, 20) (18, 3) (18, 20) (19, 5) (19, 18) O
	28 points	

Generating a point of an elliptic curve (1)

1. Choose *x* e.g., *x*=3

- **2. Compute** $z = y^2 = x^3 + a x + b$ e.g., $z = 3^3 + 1 \cdot 3 + 1 \pmod{23} = 8$
- 3. If z = 0, then y=0 and there is only <u>one point</u>, (x,0), with the given *x* coordinate

Generating a point of an elliptic curve (2)

Otherwise

```
4. Verify whether there exists y such that z = y^2 \pmod{p}
using Euler's criterion, i.e., check whether
z^{(p-1)/2} = 1 \pmod{p}
```

(if this is the case z is called a *quadratic residue mod p*) e.g., $8^{(23-1)/2} \pmod{23} = 8^{11} \mod 23 =$

 $= (8^8 \mod 23)(8^2 \mod 23)(8^1 \mod 23) \pmod{23} =$ = 4 \cdot 18 \cdot 8 \(\mmod 23) = 1\)

If Euler's criterion is not met (i.e., $z^{(p-1)/2} \neq 1 \pmod{p}$, then there is <u>no point</u> of the given elliptic curve with the given *x* coordinate

Addition of two points on the elliptic curve
over GF(p) (1) $P = (x_1, y_1)$ $Q = (x_2, y_2)$
 $R = P + Q = (x_3, y_3)$ Case 1:P + O = O + P = PCase 2: $x_2 = x_1$ and $y_2 = -y_1$
P + Q = O
Q = -P

Addition of two points on the elliptic curve over GF(p) (2) Case 3: $\begin{array}{c} x_3 = \lambda^2 - x_1 - x_2 \\ y_3 = \lambda (x_1 - x_3) - y_1 \end{array}$ where Case 3a: if $P \neq Q$ $\lambda = \frac{y_2 - y_1}{x_2 - x_1} = (y_2 - y_1) (x_2 - x_1)^{-1}$ Case 3b: if P = Q $\lambda = \frac{3x_1^2 + a}{2y_1} = (3x_1^2 + a) (2y_1)^{-1}$

Example: Addition of points on the elliptic curve $y^2 = x^3 + x + 6$ over GF(11) P = (2, 7) 2P = P + P = (2, 7) + (2, 7) $\lambda = (3 \cdot 2^2 + 1) (2 \cdot 7)^{-1} \mod 11 =$ $= 2 \cdot 3^{-1} \mod 11 = 2 \cdot 4 \mod 11 = 8$ $x_3 = 8^2 - 2 - 2 \mod 11 = 9 - 2 - 2 \mod 11 = 5$ $y_3 = 8 (2 - 5) - 7 \mod 11 = 9 - 7 \mod 11 = 2$ 2P = (5, 2)

Example: Addition of points on the elliptic curve $y^2 = x^3 + x + 6$ over GF(11) P = (2, 7) 2P = (5, 2) 3P = P + 2P = (2, 7) + (5, 2) $\lambda = (2-7) (5-2)^{-1} \mod 11 =$ $= 6 \cdot 3 \mod 11 = 6 \cdot 4 \mod 11 = 2$ $x_3 = 2^2 - 2 - 5 \mod 11 = 4 - 2 - 5 \mod 11 = 8$ $y_3 = 2 (2 - 8) - 7 \mod 11 = 10 - 7 \mod 11 = 3$ 3P = (8, 3)

Scalar multiples of P		
P = (2, 7) 2P = (5, 2) 3P = (8, 3) 4P = (10, 2)	7P = (7, 2) 8P = (3, 5) 9P = (10, 9) 10P = (8, 8)	
4P = (10, 2) 5P = (3, 6) 6P = (7, 9)	10P = (6, 8) 11P = (5, 9) 12P = (2, 4) 13P = O	
Number of points on the curve = 13 P is a generator of the group of points on the elliptic curve		

Number of points on the curve #E(GF(p))= order of an elliptic curve = cardinality of an elliptic curve Hasse's Theorem $p+1-2\sqrt{p} \le \#E(GF(p)) \le p+1+2\sqrt{p}$

e.g.,

order of a curve over GF(11) $11+1 - 2\sqrt{11} \le \#E(GF(11)) \le 11+1+2\sqrt{11}$ $5.37 \le \#E(GF(11)) \le 18.63$

order of the curve $y^2 = x^3 + x + 6$ over GF(11) = 13

Digital Signature Algorithm Public and private key	
Public key	
$y = g^x \bmod p$	0 < y < p
	L - bit number

Elliptic Curve El-Gamal Encryption System parameters

May be shared by a group of users or belong to a single user; known to everybody

- **E** elliptic curve over GF(p) or $GF(2^m)$
- **P** generator of the group of points on the elliptic curve

El-Gamal Encryption Public and private key	
x - arbitrary number	$1 \le x \le p-2$
Public key	
$y = g^x \bmod p$	0 < y < p

Elliptic Curve El-Gamal Encryption Public and private key		
<i>x</i> - arbitrary number	$1 \leq x \leq \#E(GF(q))\text{-}1$	
Public key		
$\mathbf{Y} = x \mathbf{P}$		

El-Gamal: Encryption

1. Choose random message private key $1 \le k \le p-2$, relatively prime with p-1 (secret, different for each message)

Compute
 message public key r = g^k mod p

3. Compute

 $\boldsymbol{c} = y^k \cdot \boldsymbol{M} \bmod p$

 $C(M) = r \parallel c$

Menezes-Vanstone Elliptic Curve Cryptosystem

System parameters

May be shared by a group of users or belong to a single user; known to everybody

- ${\bf E}$ elliptic curve over $\operatorname{GF}(p)$ or $\operatorname{GF}(2^m)$
- **P** generator of the group of points on the elliptic curve

Menezes-Vanstone Elliptic Curve Cryptosystem Public and private key	
Private key	
<i>x</i> - arbitrary number	$1 \le x \le \#E(GF(q))\text{-}1$
Public key	
$\mathbf{Y} = x \mathbf{P}$	

Menezes-Vanstone Cryptosystem: Encryption		
1. Choose random message private key $1 \le k \le \#E$ (secret, different for each messa	(GF(q))-1, ge)	
 2. Compute message public key R = k P 	3. Form message block: (m_1, m_2)	
4. Compute		
$\boldsymbol{C} = k \mathbf{Y} = (\mathbf{c}_1, \mathbf{c}_2)$		
5. Compute		
$y_1 = c_1 m_1$ $y_2 = c_2 m_2$		
$C(m_1, m_2)$	$= \boldsymbol{R} \parallel \boldsymbol{y}_{l}, \boldsymbol{y}_{2}$	

