
1

Elliptic Curve Cryptosystems

ECE297:11 Lecture 15

Elliptic Curve - General Equation

y2 + a1xy + a3y = x3 + a2x2 + a4x +a6

Set of solutions (x, y) to the equation

where x, y ∈ K

K is a field

+ a special point called   the point at infinity  ΟΟΟΟ

a1, a2, a3, a4, a5, a6 ∈ K
Values of ai limited
by constraints specific
to the field K

Three Classes of Elliptic Curves

Elliptic curves built over

K = GF(p) K = GF(2m)

Polynomial basis
representation

Normal basis
representation

Fast in hardware

Arithmetic 
operations

present
in many libraries

Compact in hardware



2

Elliptic Curve over  GF(p)

y2 = x3 + a x + b

Set of solutions (x, y) to the equation

where x, y ∈ GF(p)

a, b ∈ GF(p)

+ a special point called   the point at infinity  ΟΟΟΟ

4a3 + 27 b2 ≡ 0 (mod p)

Example: Elliptic curve y2 = x3 + x +1 over  GF(23)

(0, 1)
(0, 22)
(1, 7)
(1, 16)
(3, 10)
(3, 13)
(4, 0)
(5, 4)
(5, 19)

(6, 4)
(6, 19)
(7, 11)
(7, 12)
(9, 7)
(9, 16)
(11, 3)
(11, 20)
(12, 4)

(12, 19)
(13, 7)
(13, 16)
(17, 3)
(17, 20)
(18, 3)
(18, 20)
(19, 5)
(19, 18)
Ο

28 points

Generating a point of an elliptic curve (1)

1. Choose   x       
e.g., x=3

2. Compute   z = y2 = x3 + a x + b
e.g.,   z = 33 + 1⋅3 + 1 (mod 23) = 8

3. I f z = 0, then y=0 and there is only one point, (x,0),
with the given x coordinate



3

4. Ver ify whether  there exists y such that   z = y2 (mod p)
using Euler ’s cr iter ion, i.e., check whether

z(p-1)/2 = 1  (mod p)
(if this is the case z is called a quadratic residue mod p)
e.g., 8(23-1)/2 (mod 23) = 811 mod 23 =

= (88 mod 23)(82 mod 23)(81 mod 23) (mod 23) = 
=        4          ⋅ 18         ⋅ 8  (mod 23) = 1

Generating a point of an elliptic curve (2)

Otherwise

I f Euler ’s cr iter ion is not met (i.e., z(p-1)/2 ≠≠≠≠ 1  (mod p),
then there is no point of the given elliptic curve with
the given x coordinate

5. I f Euler ’s cr iter ion is met, then there are 
two points with a given x coordinate  

(x, y1) and (x, y2)

I f p ≡≡≡≡ 3 (mod 4) then
y1 and y2 can be computed from the equation

y1 = +z(p+1)/4 (mod p)
y2 = -z(p+1)/4 (mod p) ≡≡≡≡ p- z(p+1)/4 (mod p) = 

= p - y1

Otherwise

E.g., 23 ≡ 3 mod 4
y1 = 8(23+1)/4 mod 23 = 86 mod 23 = 13
y2 = -13 ≡ 23 - 13 = 10

Generating a point of an elliptic curve (3)

Addition of two points on the elliptic curve 
over  GF(p)      (1)

P = (x1, y1) Q = (x2, y2)

Case 1:

Case 2:

P + Ο = Ο +  P = P

x2=x1 and  y2 = -y1

P + Q = Ο

R = P + Q = (x3, y3)

Q = -P



4

Case 3:

x3 = λ2 - x1 - x2
y3 = λ (x1-x3) - y1

Addition of two points on the elliptic curve 
over  GF(p)      (2)

where

λ =   

Case 3a:        if   P ≠ Q

Case 3b:        if   P = Q

y2 - y1

x2 - x1
=  (y2 - y1) (x2 - x1)-1

λ =   
3x1

2 + a
2y1

=  (3x1
2 + a) (2y1)-1

Example: Addition of points on the elliptic curve
y2 = x3 + x + 6   over  GF(11)

P = (2, 7)

2P = P + P = (2, 7) + (2, 7)

λ = (3 ⋅ 22 + 1) (2 ⋅ 7)-1 mod 11 = 
= 2 ⋅ 3-1 mod 11 =  2 ⋅ 4 mod 11 = 8

x3 = 82 - 2 - 2 mod 11 =  9 - 2 - 2 mod 11 = 5
y3 = 8 (2 -5) - 7 mod 11 = 9 - 7 mod 11    = 2

2P = (5, 2)

Example: Addition of points on the elliptic curve
y2 = x3 + x + 6   over  GF(11)

P = (2, 7)    2P = (5, 2)

3P = P + 2P = (2, 7) + (5, 2)

λ = (2-7) (5-2)-1 mod 11 = 
= 6 ⋅ 3 mod 11 =  6 ⋅ 4 mod 11 = 2

x3 = 22 - 2 - 5 mod 11 =  4 - 2 - 5 mod 11 = 8
y3 = 2 (2 - 8) - 7 mod 11 = 10 - 7 mod 11 = 3

3P = (8, 3)



5

Scalar  multiples of P

P = (2, 7)
2P = (5, 2)
3P = (8, 3)
4P = (10, 2)
5P = (3, 6)
6P = (7, 9)

7P = (7, 2)
8P = (3, 5)
9P = (10, 9)

10P = (8, 8)
11P = (5, 9)
12P = (2, 4)
13P = Ο

Number  of points on the curve = 13
P is a generator  of the group of points on the elliptic curve

Number of points on the curve  #E(GF(p))
= order  of an elliptic curve 
= cardinality of an elliptic curve

Hasse’s Theorem

p+1- 2√p ≤ #E(GF(p))  ≤ p+1+ 2√p

e.g., 

order of a curve over GF(11)

11+1 - 2√11 ≤ #E(GF(11)) ≤ 11+1+ 2√11

5.37  ≤ #E(GF(11)) ≤ 18.63

order of the curve y2 = x3 + x + 6 over GF(11)  = 13

Number of points on the curve  #E(GF(p))

Exact number #E(GF(p)) can be computed using
Schoof’s algor ithm

Complexity: (log p)8

To prevent the Pohlig-Hellman method of computing
elliptic curve discrete logar ithm:

#E(GF(p)) must have a large pr ime divisor

“Large”  currently means  ∼ 1040



6

Right-to-left binary 
exponentiation

Left-to-r ight binary 
exponentiation

Exponentiation:    y = ae mod n

e = (eL-1, eL-2, …, e1, e0)2

y = 1;
s = a;
for  i=0 to L-1
{

if (ei == 1)
y = y ⋅ s mod n;

s = s2 mod n;
}

y = 1;
for  i=L-1 downto 0
{
y = y2 mod n;
if (ei == 1)
y = y ⋅ a mod n;

}

Right-to-left binary 
scalar  multiplication

Left-to-r ight binary 
scalar  multiplication

Scalar  Multiplication:    Y = k⋅⋅⋅⋅ P

k = (kL-1, kL-2, …, k1, k0)2

Y = Ο;
S = P;
for  i=0 to L-1
{

if (ki == 1)
Y= Y+ S;

S = 2S;
}

Y = Ο;
for i=L-1 downto 0
{

Y= 2Y ;
if (ki == 1)

Y= Y + P;
}

Diffie-Hellman
Alice Bob

A’s private key: xA

A’s public key:
yA = g

B’s private key: xB

B’s public key:
yB = g

Secret
derivation

Secret
derivation

xA xB

zAB = yB
xA =  g  

xBxA zBA = yA
xB =  g  

xAxB

g - generator of Zp
*



7

Elliptic Curve Diffie-Hellman
Alice Bob

A’s private key: xA

A’s public key:
QA = xA P

B’s private key: xB

B’s public key:
QB = xB P

Secret
derivation

Secret
derivation

ZAB = xA QB = xA (xB P) ZBA = xB QA = xB (xA P)

P - generator of E(GF(q))

Digital Signature Algor ithm
System parameters

q - 160-bit prime
p - L-bit prime, such that q | p-1      

where L = 1024 + 64·k

g = h(p-1)/q mod p                       where      1 < h < p-1, 
such that g>1 

From Fermat’s theorem
gq mod p = hp-1 mod p = 1

g - generator of the cyclic group of order q
in Zp*

May be shared by a group of users or belong to a single user;
known to everybody

Elliptic Curve Digital Signature Algor ithm ECDSA

System parameters

P - point of order q on the elliptic curve E

May be shared by a group of users or belong to a single user;
known to everybody

E - elliptic curve over GF(p) or GF(2m)



8

Digital Signature Algor ithm

Public and private key

Private key

x - arbitrary 160 bit number 0 < x < q

Public key

y = gx mod p

L - bit number

0 < y < p

Public and private key

Private key

x - arbitrary number 0 < x < q

Public key

Y = x P

Elliptic Curve Digital Signature Algor ithm

DSA: Signature generation

1.  Choose random
message private key 1< k < q

(secret, different for each message)

2.   Compute 
message public key
r = (gk mod p) mod q

Message M

SHA

SHA(M)

3. Compute hash value

4. Compute

s = k-1 (SHA(M) + x·r) mod q

SGN(M) = r || s

160 bit 160 bit 40 bytes



9

ECDSA: Signature generation

1.  Choose random
message private key 1< k < q

(secret, different for each message)

2.   Compute 
message public key
R = k P
r :  x-coordinate of R

Message M

SHA

SHA(M)

3. Compute hash value

4. Compute

s = k-1 (SHA(M) + x·r) mod q

SGN(M) = r || s

DSA: Signature ver ification

Message M’

SHA

SHA(M’)

[SGN(M)]’r’ s’1. Compute hash value

2. Compute

w = (s’ )-1 mod q

3. Compute
u1 = SHA(M’)·w mod q

4. Compute

u2 = r’  ·w mod q

5. Compute
v = ((gu1·yu2) mod p) mod q

6. Compare v=r’
Y Signature

valid

NSignature
invalid

ECDSA: Signature ver ification

Message M’

SHA

SHA(M’)

[SGN(M)]’r’ s’1. Compute hash value

2. Compute

w = (s’ )-1 mod q

3. Compute
u1 = SHA(M’)·w mod q

4. Compute

u2 = r’  ·w mod q

5. Compute V = u1 P + u2 Y 

6. Compare v=r’
Y Signature

valid

NSignature
invalid

v is the x-coordinate of V



10

El-Gamal Encryption
System parameters

p - prime

g  - generator of the group Zp*

May be shared by a group of users or belong to a single user;
known to everybody

Elliptic Curve El-Gamal Encryption
System parameters

May be shared by a group of users or belong to a single user;
known to everybody

P - generator of the group of points
on the elliptic curve 

E - elliptic curve over GF(p) or GF(2m)

Public and private key

Private key

x - arbitrary number 1 ≤ x ≤ p-2

Public key

y = gx mod p 0 < y < p

El-Gamal Encryption



11

Public and private key

Private key

x - arbitrary number 1 ≤ x ≤ #E(GF(q))-1

Public key

Y = x P

Elliptic Curve El-Gamal Encryption

El-Gamal: Encryption

1.  Choose random
message private key 1 ≤ k ≤ p-2,
relatively prime with p-1
(secret, different for each message)

2.   Compute 
message public key
r = gk mod p

3. Compute

c = yk ⋅ M mod p

C(M) = r || c

Elliptic Curve El-Gamal: Encryption

1.  Choose random
message private key 1 ≤ k ≤ #E(GF(q))-1,
(secret, different for each message)

2.   Compute 
message public key
R =  k P

3. Compute

C = k Y + M mod p

C(m) = R || C

M = (m, n)

3. Compute

m - message
n - y-coordinate

corresponding
to the x-coordinate m



12

El-Gamal: Decryption

C(M)r c

M = c ⋅(rx)-1 mod p

Justification:

c ⋅(rx)-1 mod p = yk ⋅ M ⋅((gk)x)-1 = yk ⋅ M ⋅((gx)k)-1  =
= yk ⋅ M ⋅(yk)-1 = M

Elliptic Curve El-Gamal: Decryption

C(m)R C

M = C - x R

m: x-coordinate of M

Justification:

C - x R = (k Y + M) - x R = (k Y + M) - x k P =
= (k Y + M) - k (x P) = k Y + M - k Y = M

Menezes-Vanstone Elliptic Curve Cryptosystem

System parameters

May be shared by a group of users or belong to a single user;
known to everybody

P - generator of the group of points
on the elliptic curve 

E - elliptic curve over GF(p) or GF(2m)



13

Public and private key

Private key

x - arbitrary number 1 ≤ x ≤ #E(GF(q))-1

Public key

Y = x P

Menezes-Vanstone Elliptic Curve Cryptosystem

Menezes-Vanstone Cryptosystem: Encryption

1.  Choose random
message private key 1 ≤ k ≤ #E(GF(q))-1,
(secret, different for each message)

2.   Compute 
message public key
R =  k P

4. Compute

C = k Y = (c1, c2)

C(m1, m2) = R || y1, y2

3. Form message block:
(m1, m2)

5. Compute

y1 = c1 m1

y2 = c2 m2

Menezes Vanstone Cryptosystem : Decryption

C(m1, m2)

C = x R = (c1, c2)

Justification:

x R = x k P = k (x P) = k Y = C

R y1 y2

m1 = c1
-1  y1

m2 = c2 
-1 y2


