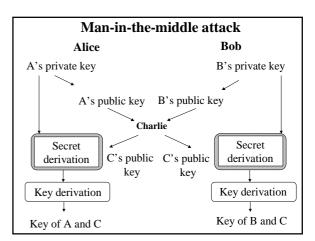
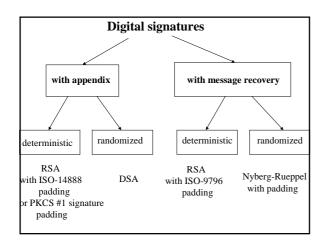
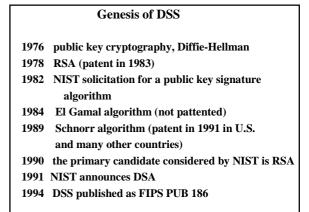
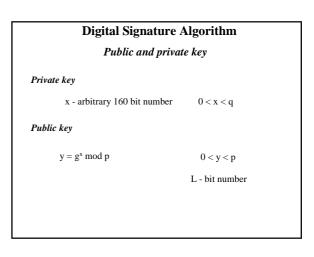
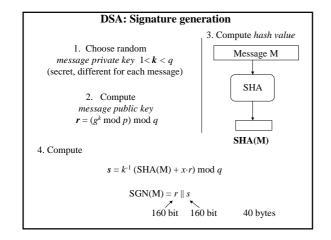

ECE 297:11 Lecture 14

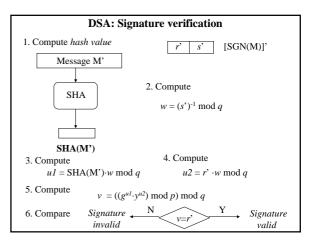

Survey of public key cryptosystems


Bases of the public cryptosystems security				
	Factorization	Discrete Logarithm	Elliptic Curve Discrete Logarithm	
Given:	$\mathbf{N} = \mathbf{p} \cdot \mathbf{q}$	$\mathbf{y} = \mathbf{g}^{x} \bmod \mathbf{p} =$ $= \underbrace{\mathbf{g} \cdot \mathbf{g} \cdot \mathbf{g} \cdot \dots \cdot \mathbf{g}}_{x \text{ times}}$	$\mathbf{Q} = \mathbf{x} \cdot \mathbf{P} = \\ = \underbrace{\mathbf{P} + \mathbf{P} + \dots + \mathbf{P}}_{\mathbf{X} \text{ times}}$	
		constants p, g	P - point of an elliptic curve	
Unknown:	p, q	x	x	


Most known public key cryptosystems					
	Based on the difficulty of				
	Factorization Discrete logarithm Elliptic curve discrete logarithm				
Signature	RSA	DSA, N-R	EC-DSA		
Encryption	RSA	El-Gamal	EC-El-Gamal		
Key agreement	RSA	Diffie-Hellman (DH)	EC-DH		







$\begin{tabular}{ll} \textbf{Digital Signature Algorithm} \\ \textbf{System parameters} \\ \textbf{May be shared by a group of users or belong to a single user;} \\ \textbf{known to everybody} \\ \textbf{q} - 160\text{-bit prime} \\ \textbf{p} - L\text{-bit prime, such that } q \mid p\text{-}1 \\ & \text{where } L = 512 + 64 \cdot k \\ \\ \textbf{g} = h^{(p-1)/q} \mod p \qquad & \text{where} \qquad 1 < h < p\text{-}1, \\ & \text{such that } g\text{>}1 \\ \\ \textbf{From Fermat's theorem} \\ \textbf{g}^q \mod p = h^{p\text{-}1} \mod p = 1 \\ & \text{g} - \text{generator of the cyclic group of order } q \\ & \text{in } Zp^* \\ \\ \end{tabular}$

DSA vs. RSA

Functionality

DSS cannot be used for encryption

Advantages

Disadvantages

export rules much less restrictive

additional algorithm must be standardized and implemented for key exchange

certain countries do not allow encryption

DSS can be combined with the Diffie-Hellman key exchange scheme

El-Gamal Encryption

System parameters

May be shared by a group of users or belong to a single user; known to everybody

 \mathbf{p} - prime

g - generator of the group Zp*

El-Gamal Encryption

Public and private key

Private key

x - arbitrary number

 $1 \le x \le p-2$

Public key

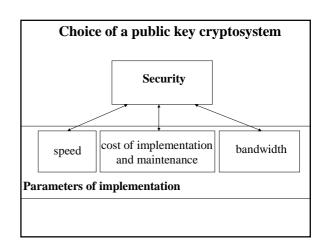
 $y = g^x \bmod p$

0 < y < p

El-Gamal: Encryption

1. Choose random message private key $1 \le k \le p-2$, relatively prime with p-1 (secret, different for each message)

> 2. Compute $message \ public \ key$ $r = g^k \mod p$


3. Compute

 $\boldsymbol{c} = y^k \cdot \boldsymbol{M} \bmod p$

 $C(M) = r \parallel c$

El-Gamal: Decryption

 $M = c \cdot (r^{x})^{-1} \bmod p$

Strategy of fair comparison

All algorithms have a variable key length

Best attacks specific for each cryptosystem

Security of various cryptosystems depends to a different extant on the key length

Comparison of implementation characteristics (in particular speed) under the assumption that selected key sizes guarantee the same security level

Best known attacks				
Basis of the cryptosystem Factorization security	T	Elliptic Curve crete Logarithm		
Best General known Number Field Sieve attack	General Number Field Sieve Parallel collision search	2. Parallel collision search		
Complexity subexponential of the attack:	subexponential exponential	exponential		

	Best known attacks				
Basis of the cryptosystem security	Factorization		Elliptic Curve Discrete Logarithm		
Cryptosystem	RSA	DSA, DH	EC-DSA EC-DH		
Security parameter	Modulus N	Length of the modulus p Size q of the subgroup generates	Size q of the subgroup generated by P		
Typical lengths of the security parameter (in bits)	768-2048	by g 1. 768-2048 2. 160 (for DS)	140-200 SA)		

Theoretical computational security of the best known attacks				
Basis of the cryptosystem security	tem			
Factorization	subexponential			
1 uctor izution	$\mathbf{L}_N[1/3,1.92] = exp((1.92+o(1))\cdot(\ln N)^{1/3}))\cdot(\ln \ln N)^{2/3})$			
	subexponential			
Discrete Logarithm	$\mathbf{L}_p[1/3,1.92] = exp((1.92+o(1))\cdot(\ln \boldsymbol{p})^{1/3}))\cdot(\ln \ln \boldsymbol{p})^{2/3})$			
	exponential			
Elliptic Curve $(\pi \cdot \mathbf{q} / 2)^{1/2}/r$				
Discrete Loga	rithm r - number of processors working in parallel			

Practical records					
Basis of the cryptosystem security	Factorization	Discrete Logarithm	Elliptic Curve Discrete Logarithm		
Number of bits of the security parameter	512	283?	108		
Challenges regarding breaking the cryptosystem	RSA Data Sec Challenge, 199	. –	Certicom challenge, 1997-		

	Practical implementations of attacks Discrete logarithm, DSA, DH					
Year	Number of bits of p	Number of decimal digits of p	Method	Estimated amount of computations		
1990	191	57	NFS-COS			
1996	248	74	NFS-DL			
1998	283	85	NFS-COS	31 MIPS-years		
1998 430 129 SNFS (p of the special form)						

Practical implementations of attacks Elliptic curve discrete logarithm problem, ECC-DSA, DH

Year	Curve	Number of bits of q	Number of decimal digits of q	Method	Number of group operations
II.1998	ECC2-89	89	27	ρ-Pollard	1.8 x 10 ¹³
I.1998	ECCp-89	89	27	ρ-Pollard	3.0×10^{13}
V.1998	ECC2K-95	95	29	ρ-Pollard	2.2 x 10 ¹³
III.1998	ECCp-97	97	30	ρ-Pollard	2.0 x 10 ¹⁴
IX.1999	ECC2-97	97	30	ρ-Pollard	1.0×10^{14}
IV. 2000	ECC2K -108	108	33	ρ-Pollard	2.0 x 10 ¹⁵

Elliptic Curve Cryptosystems - ECC

Advantages

- first true alternative for RSA
- several times shorter keys
- fast and compact implementations, in particular in hardware
- a family of cryptosystems, instead of a single cryptosystem

Elliptic Curve Cryptosystems - ECC

Disdvantages

- complex mathematical description
- short period of research on the cryptanalysis

Elliptic Curve Cryptosystems vs. RSA

Certicom ECC Security Builder Efficient software and hardware implementations ECC - "cryptography of the XXI century" RSA Data Security Inc. RSA ECC BSAFE Efficient software implementations ECC - cryptography for low-risk applications

Fact or myth?

RSA is much more secure because the factorization problem was studied much longer than elliptic curve discrete logarithm problem

Factorization problem studied intensively since the end of 70's

Elliptic curve discrete logarithm problem studied intensively since the beginning of 90's Studies on factorization before the era of computers and computer networks is irrelevant

Studies on attacks against discrete logarithms in GF(p)

conducted earlier.

Many of these attacks apply
to the elliptic curve discrete logarithms.

Progress in algorithms for solving the discrete logarithm problem

1997 N. Smart

7.04.98

1997 T. Satoh, K. Araki

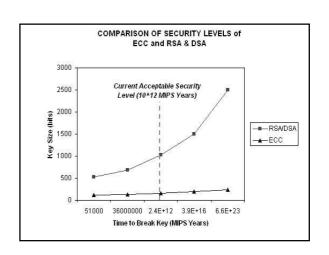
Fast algorithm for a special class of curves R. Gallant, R. Lambert, S. Vanstone; Certicom

8.04.98 M. Wiener i R. Zuccherato; Entrust

Algorithm speeding up computations $\sqrt{2}m$ times for Koblitz curves over $GF(2^m)$

For a randomly selected curve, neither attack applies

Workshops on Elliptic Curve Cryptography, since 1997


Sponsors: MasterCard, Mondex, etc.

Fact or myth?

Key length necessary to obtain the same level of security for RSA and Elliptic Curve Cryptosystems grows faster for RSA

True, if one takes into account only the **number of operations** necessary to conduct the attack

Untrue, if one takes into account much larger memory requirements for attacks against RSA

RAM requirements in the NFS factorization method

Number of bits of N	Memory in the first phase of the algorithm (clients)	Memory in the second phase of the algorithm (server)
428	64 MB	2 GB
512	160 MB	20 GB
1024	256 GB	~100 TB

Equivalent key sizes

according to Robert Silverman, RSA Inc., 1999

Assumption: The same amount of arithmetic operations

RSA/DSA	ECC	Symmetric ciphers	Number of arithmetic operations
512	119	56	1,7 x 10 ¹⁹
768	144	69	1.1×10^{23}
1024	163	79	1,3 x 10 ²⁶
2048	222	100	1,5 x 10 ³⁵
	I	I	I

Equivalent key sizes

according to Michael Wiener, Entrust Technologies

Basic assumption: The same number of instructions in MIPS-years

RSA/DSA	EC	Number of instructions w MIPS-years	
Software attack	Software Hardware attack attack		
1024	138	170	3×10^{11}

Equivalent key sizes according to Michael Wiener

Detailed assumptions (1)

Hardware attack based on ASICs:

- clock frequency 64 MHz
- 70 levels of pipelining
- cost \$16

Equivalent key sizes according to Michael Wiener

Detailed assumptions (2)

Number of PCs, $300 \ MHz$, necessary to break RSA-1024

230 PC-years

Number of ASICs necessary to break ECC-k

 $2^{k/2-51}$ ASIC-years

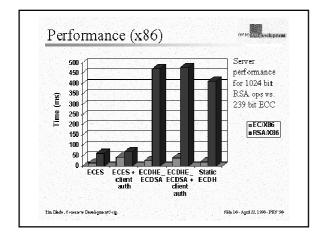
Equivalent key sizes according to Michael Wiener

Detailed assumptions (3)

Cost of access to a PC

\$250

Cost of an ASIC


\$16

1 PC-year ≈ 16 ASIC-years

k=170

Digital Signature Timings Pentium Pro, 200 MHz, Michael Wiener, Entrust				
	RSA-1024 DSA-1024 ECDSA-170			
Signature generation	43 ms	7 ms	5 ms	
Signature verification	0.6 ms	27 ms	19 ms	
Key generation	1100 ms	7 ms	7 ms	

Digital Signature Timings Pentium Pro, 180 MHz, Scott Contini, RSA DSI					
	RSA-1024 DSA-1024 ECDSA-170 (e=3)				
Signature generation	47 ms	28 ms	6 ms		
Signature verification	1 ms	52 ms	30 ms		

	Binary code size			
	RSA	DSA	EC-DSA	
Generation of system parameters	N/A	small	very large	
Key generation	medium	very small	very small	
Core operations	small	small	medium	
operations				

Which cryptosystem is the best? (1)

Secure electronic mail

- speed of operations is not critical, security and trust of customers are more important
- message encrypted using a symmetric key cryptosystem
 A key for a symmetric key cryptosystem encrypted
 once for each receiver

All operations performed by a sender A key for a symmetric key cryptosystem decrypted separately by each receiver

Load distributed among receivers

Advantage: RSA

Which cryptosystem is the best? (2)

Use in public key certificates

• each certificate and CRL are signed only once but verified hundreds of times

Advantage: RSA

Which cryptosystem is the best? (3)

Wireless communication

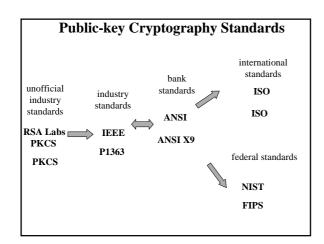
- large cost of transmission
- shorter keys in ECCs
- shorter signatures and certificates in ECCs and DSA
- shorter messages in the key agreement schemes based on ECCs

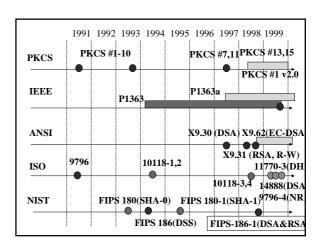
Advantage: ECC

Which cryptosystem is the best? (4) Hardware implementation

- \bullet small area of integrated circuits implementing ECC, in particular ECCs over $GF(2^m)$
- · faster decryption and key generation

Advantage: ECC


Which cryptosystem is the best? (5) Smart cards


ECCs

- smaller EEPROM requirements
- \bullet do not require an arithmetic cooprocessor (at least for a class of curves over $GF(2^m)$
- smaller requirements on the interface with a card reader
- allow to generate a key on the card

Advantage: ECC

Cryptographic standards

PKCS Public-Key Cryptography Standards Informal Industry Standards

developed by RSA Laboratories

in cooperation with Apple, Digital, Lotus, Microsoft, MIT, Northern Telecom, Novell, Sun

First, except PGP, formal specification of RSA and formats of messages.

	Industry standards - PKCS			
	factorization	discrete logarithm	Elliptic curve discrete logarithm	
encryption	PKCS #1 RSA		PKCS #13 new scheme	
signature	PKCS #1 (RSA i R-W)		PKCS #13 EC-DSA	
key agreement		PKCS #2 DH	PKCS #13 EC-DH1, 2 EC-MQV	

IEEE P1363

Working group of IEEE including representatives of major cryptographic companies and university centers from USA, Canada and other countries

Part of the Microprocessors Standards Committee

Modern, open style

Quaterly meetings + multiple teleconferences + + discussion list + very informative web page with the draft versions of standards

IEEE P1363

Combined standard including the majority of modern public key cryptography

Several algorithms for implementation of the same function

Tool for constructing other, more specific standards

Specific applications or implementations may determine a profile (subset) of the standard

	IEEE P1363			
	factorization	discrete logarithm	Elliptic curve discrete logarithm	
encryption	RSA with OAEP			
signature	RSA & R-W with ISO-14888 or ISO 9796	DSA, NR with ISO 9796	EC-DSA, EC-NR with ISO 9796	
key agreement		DH1 DH2 and MQV	EC-DH1, EC-DH2 and EC-MQV	

	IEEE P1363a			
	factorization	discrete logarithm	Elliptic curve discrete logarithn	
encryption	RSA with OAEP	new scheme	new scheme	
signature	RSA & R-W with ISO-14888 or ISO 9796	DSA, NR with ISO-9796	EC-DSA, EC-NR with ISO 9796	
key agreement	new scheme	DH1 DH2 & MQV	EC-DH1 EC-DH2 & EC-MQV	

ANSI X9 American National Standards Institute

Work in the subcommittee X9F developing standards for **financial institutions**

Standards for the wholesale
(e.g., interbank)
and retail transactions
(np. bank machines, smart card readers)

ANSI represents U.S.A. in ISO

	ANSI X9 Standards			
	factorization	discrete logarithm	Elliptic curve discrete logarithm	
encryption	X9.44 RSA			
signature	X9.31 (RSA & R-W)	X9.30 DSA	X9.62 EC-DSA	
key agreement		X9.42 DH1, DH2, MQV	X9.63 EC-DH1, 2 EC-MQV	

NIST FIPS

National Institute of Standards and Technology Federal Information Processing Standards

American Federal Standards

Required in the government institutions

Original algorithms developed in cooperation with the National Security Agency (NSA)

	NIST - FIPS			
	factorization	discrete logarithm	Elliptic curve discrete logarithm	
encryption				
signature	FIPS 186-1 RSA	FIPS 186 DSA		
key agreement				

American Standards						
	RSA DSA, DH EC-DSA EC-DH					
Federal		FIPS 186				
Banking	X9.31	X9.30 X9.42	X9.62 X9.63			
Industry	IEEE P1363 PKCS-1	IEEE P1363 PKCS-2	IEEE P1363 PKCS-13			

ISO International Organization for Standardization International standards Common standards with IEC International Electrotechnical Commission

ISO/IEC JTC1 SC 27

Joint Technical Committee 1, Subcommitte 27

Full members (21):

Australia, Belgium, Brazil, Canada, China, Denmark, Finland, France, Germany, Italy, Japan , Korea., Holland , Norway , Poland, Russia , Spain, Sweden, Switzerland , UK, USA

ISO: International Organization for Standardization					
Long and laborious process of the standard development					
	Study period				
	NP - New Proposal				
Minimum	WD - Working Draft				
3 years	CD - Committee Draft				
	DIS - Draft International Standard				
·	is - International Standard				
Review of the standard after 5 years = ratification, corrections or revocation					

	International standards ISO			
	factorization	discrete logarithm	Elliptic curve discrete logarithm	
encryption				
signature	ISO 9796-1 ISO 9796-2	ISO-14888-3 ISO 9796-4	ISO-14888-3 ISO 9796-4	
key agreement		ISO-11770-3	ISO-11770-3	

Secure key sizes			
	factorization	Discrete logarithm	Elliptic curve discrete logarithm
PKCS			
IEEE P1363			
ANSI X9	≥ 1024	≥ 1024	≥ 160
NIST FIPS		≥ 1024	
ISO			

Padding schemes				
	encryption	Signatures with appendix	Signatures with message recovery	
PKCS	OAEP PKCS #1	PKCS #1		
IEEE P1363	OAEP	ISO 14888	ISO 9796	
ANSI X9	OAEP	ISO 14888	ISO 9796	
NIST FIPS				
ISO		ISO 14888	ISO 9796	

Standard Internet Protocols Secure e-mail S/MIME v.2 RSA v.3 RSA, DSA, DH Secure WWW SSL v. 3.0 RSA, DSA, DH, proposed extension with ECCs Secure payment card protocols SET RSA, proposed extension with ECCs Virtual Private Networks

Patents - only U.S. and Canada		
RSA	DSA, DH	EC-DSA, EC-DH
Patent expired in 2000	DH Patent expired in 1997	No patents for cryptosystems themselves. Over 40 patent petitions regarding implementation details, <i>Certicom Inc.</i>

Summary

DH, \mathbf{EC} - \mathbf{DH}

IPSec

- RSA in common use, ECC struggle to enter the market
- New standards will support all three types of cryptosystems
- ECC particularly advantages in environments with limited bandwidth and storage (e.g., cellular telephones, pagers, smart cards)
- If there is no breakthrough in cryptanalysis the market will be shared among two (or three) classes of cryptosystems