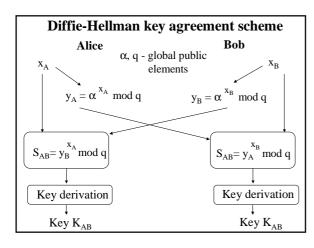
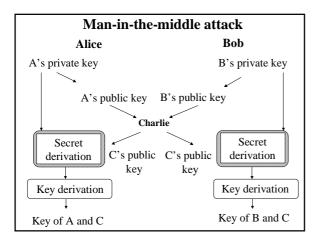
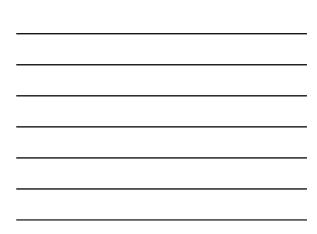

ECE 297:11 Lecture 14

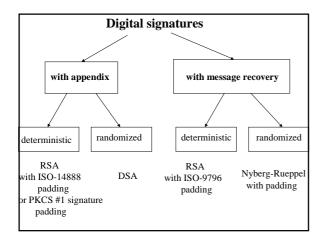
Survey of public key cryptosystems


Bases	Bases of the public cryptosystems security				
	Factorization	Discrete Logarithm	Elliptic Curve Discrete Logarithm		
Given:	$\mathbf{N} = \mathbf{p} \cdot \mathbf{q}$	$\mathbf{y} = \mathbf{g}^{x} \mod \mathbf{p} =$ $= \underbrace{\mathbf{g} \cdot \mathbf{g} \cdot \mathbf{g} \cdots \cdot \mathbf{g}}_{x \text{ times}}$	$\mathbf{Q} = \mathbf{x} \cdot \mathbf{P} =$ $= \underbrace{\mathbf{P} + \mathbf{P} + \dots + \mathbf{P}}_{\mathbf{x} \text{ times}}$		
		constants p, g	P - point of an elliptic curve		
Unknown:	p, q	x	x		

Most known public key cryptosystems							
	Ba	sed on the difficul	ty of				
	FactorizationDiscrete logarithmElliptic curve discrete logarithm						
Signature	RSA	DSA, N-R	EC-DSA				
Encryption	RSA	El-Gamal	EC-El-Gamal				
Key agreement	RSA	Diffie-Hellman (DH)	EC-DH				



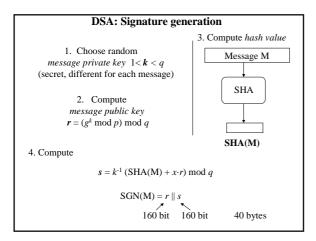


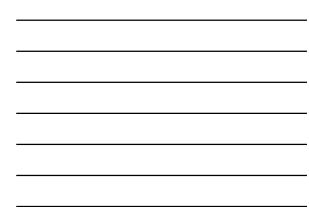


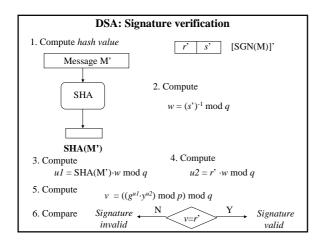
Genesis of DSS

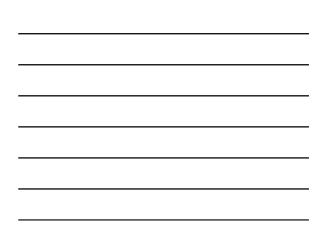
- 1976 public key cryptography, Diffie-Hellman
- 1978 RSA (patent in 1983)
- 1982 NIST solicitation for a public key signature algorithm
- **1984** El Gamal algorithm (not pattented)
- 1989 Schnorr algorithm (patent in 1991 in U.S. and many other countries)
- 1990 the primary candidate considered by NIST is RSA
- 1991 NIST announces DSA
- 1994 DSS published as FIPS PUB 186

Digital Signature Algorithm System parameters


May be shared by a group of users or belong to a single user; known to everybody **q** - 160-bit prime **p** - L-bit prime, such that **q** | **p**-1


where $L = 512 + 64 \cdot k$


$$\label{eq:g_basis} \begin{split} \mathbf{g} = \mathbf{h}^{(p-1)/q} \ \ mod \ p \qquad \qquad \text{where} \qquad 1 < \mathbf{h} < p\text{-}1, \\ & \text{such that } g\text{>}1 \end{split}$$


From Fermat's theorem $\begin{array}{l} g^q \mbox{ mod } p = h^{p\cdot 1} \mbox{ mod } p = 1 \\ g \mbox{ - generator of the cyclic group of order } q \\ \mbox{ in } Zp^* \end{array}$

Digital Signature	Digital Signature Algorithm					
Public and priva	Public and private key					
Private key						
x - arbitrary 160 bit number	0 < x < q					
Public key						
$y = g^x \mod p$	0 < y < p					
	L - bit number					

DSA vs. RSA

Functionality

DSS cannot be used for encryption

Advantages

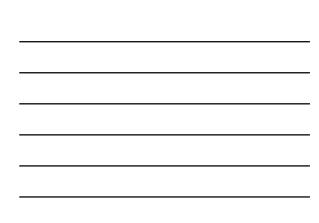
Disadvantages

export rules much less restrictive certain countries

do not allow encryption

additional algorithm must be standardized and implemented for key exchange

DSS can be combined with the Diffie-Hellman key exchange scheme


El-Gamal Encryption System parameters

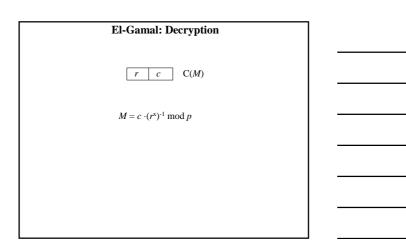
May be shared by a group of users or belong to a single user; known to everybody

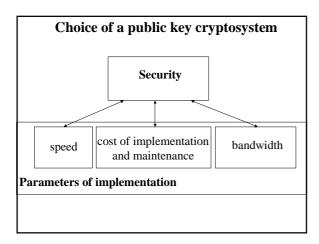
p - prime

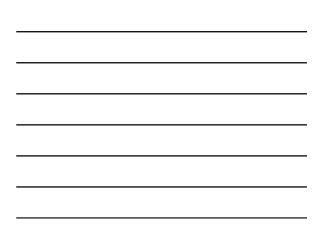
 ${\bf g}\,$ - generator of the group Zp^*

El-Gamal Encryption						
Public and pr	Public and private key					
Private key						
x - arbitrary number	$1 \le x \le p{\text -}2$					
Public key						
$y = g^x \bmod p$	0 < y < p					

El-Gamal: Encryption

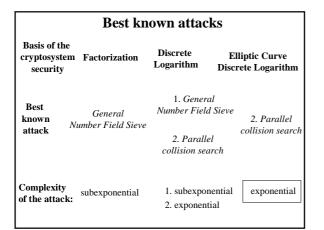

1. Choose random message private key $1 \le k \le p-2$, relatively prime with p-1 (secret, different for each message)


2. Compute message public key $r = g^k \mod p$

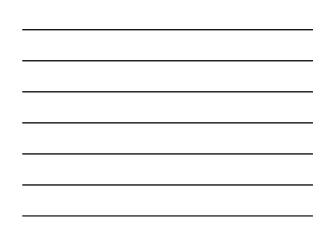

3. Compute

 $\pmb{c} = y^k \cdot \pmb{M} \bmod p$

 $\mathbf{C}(\mathbf{M}) = \pmb{r} \parallel \pmb{c}$


Strategy of fair comparison

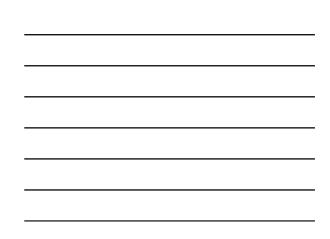
All algorithms have a variable key length


Best attacks specific for each cryptosystem

Security of various cryptosystems depends to a different extant on the key length

Comparison of implementation characteristics (in particular speed) under the assumption that selected key sizes guarantee the same security level

	Best known attacks						
Basis of the cryptosystem security	Factorization	Discrete Logarithm	Elliptic Curve Discrete Logarithm				
Cryptosystem	RSA	DSA, DH	EC-DSA EC-DH				
Security parameter	Modulus N	 Length of the modulus p Size q of the subgroup genera 	Size q of the subgroup generated by P				
Typical lengths of the security parameter (in bits)	768-2048	by g 1. 768-2048 2. 160 (for D	140-200 SA)				



Theore	etical computational security of the best known attacks			
Basis of the cryptosystem security	Complexity of the best known attack			
Factorization				
	$L_N[1/3, 1.92] = exp((1.92 + o(1)) \cdot (\ln N)^{1/3})) \cdot (\ln \ln N)^{2/3})$			
	subexponential			
Discrete Logarithm	$\mathbf{L}_{p}[1/3, 1.92] = exp((1.92 + o(1)) \cdot (\ln \boldsymbol{p})^{1/3})) \cdot (\ln \ln \boldsymbol{p})^{2/3})$			
	exponential			
Elliptic Cu	rve $(\pi \cdot q / 2)^{1/2}/r$			
Discrete Loga	rithm r - number of processors working in parallel			

Practical records						
Basis of the cryptosystem security	Factorization	Discrete Logarithm	Elliptic Curve Discrete Logarithm			
Number of bits of the security parameter	512	283?	108			
Challenges regarding breaking the cryptosystem	RSA Data Sec Challenge, 19	• –	Certicom challenge, 1997-			

Practical implementations of attacks Discrete logarithm, DSA, DH								
Year Number of decimal digits of p of p Method for computations								
1990	191	57	NFS-COS					
1996	248	74	NFS-DL					
1998	283	85	NFS-COS	31 MIPS-years				
1998 430 129 SNFS (p of the special form) SNFS								

	Practical implementations of attacks Elliptic curve discrete logarithm problem, ECC-DSA, DH						
Year Number of bits of q Number of decimal digits of q Number of group operation							
II.1998	ECC2-89	89	27	ρ-Pollard	1.8 x 10 ¹³		
I.1998	ECCp-89	89	27	ρ-Pollard	3.0 x 10 ¹³		
V.1998	ECC2K-95	95	29	ρ-Pollard	2.2 x 10 ¹³		
III.1998	ECCp-97	97	30	ρ-Pollard	2.0 x 10 ¹⁴		
IX.1999	ECC2-97	97	30	ρ-Pollard	1.0 x 10 ¹⁴		
IV. 2000	ECC2K -108	108	33	ρ-Pollard	2.0 x 10 ¹⁵		

Elliptic Curve Cryptosystems - ECC

Advantages

- first true alternative for RSA
- several times shorter keys
- fast and compact implementations, in particular in hardware
- a family of cryptosystems, instead of a single cryptosystem

Elliptic Curve Cryptosystems - ECC

Disdvantages

- complex mathematical description
- short period of research on the cryptanalysis

Elliptic Curve Cryptosystems vs. RSA					
Certicom	RSA Data Security Inc.				
ECC	RSA ECC				
Security Builder	BSAFE				
Efficient software and hardware implementations	Efficient software implementations				
ECC - "cryptography of the XXI century"	ECC – cryptography for low-risk applications				

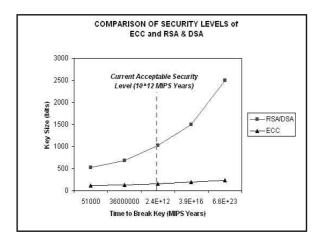
Fact or myth?

RSA is much more secure because the factorization problem was studied much longer than elliptic curve discrete logarithm problem

Factorization problem studied intensively since **the end of 70's**

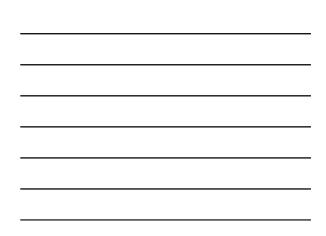
Elliptic curve discrete logarithm problem studied intensively since **the beginning of 90's** Studies on factorization **before the era** of computers and computer networks is irrelevant

Studies on **attacks against discrete** logarithms in GF(p) conducted earlier. Many of these attacks apply to the elliptic curve discrete logarithms.


Pro	gress in algorithms for solving the discrete logarithm problem
1997 1997	N. Smart T. Satoh, K. Araki Fast algorithm for a special class of curves
7.04.98 8.04.98	R. Gallant, R. Lambert, S. Vanstone; Certicom M. Wiener i R. Zuccherato; Entrust
	Algorithm speeding up computations $\sqrt{2}m$ times for Koblitz curves over $GF(2^m)$
Fo	or a randomly selected curve, neither attack applies
Wo	rkshops on Elliptic Curve Cryptography, since 1997
Sponsors	: MasterCard, Mondex, etc.

Fact or myth?

Key length necessary to obtain the same level of security for RSA and Elliptic Curve Cryptosystems grows faster for RSA


True, if one takes into account only the **number of operations** necessary to conduct the attack

Untrue, if one takes into account much larger memory requirements for attacks against RSA

RAM requirements in the NFS factorization method					
Memory in the Number of first phase of the s bits of N algorithm (clients)					
64 MB	2 GB				
160 MB	20 GB				
256 GB	~100 TB				
	e NFS factoriza Memory in the first phase of the algorithm (clients) 64 MB 160 MB				

Equivalent key sizes according to Robert Silverman, RSA Inc., 1999 Assumption: The same amount of arithmetic operations							
RSA/DSA ECC Symmetric ciphers Of arithmetic operations							
119	56	1,7 x 10 ¹⁹					
144	69	1,1 x 10 ²³					
163	79	1,3 x 10 ²⁶					
222	100	1,5 x 10 ³⁵					
	g to Robert The same of ECC 119 144 163	g to Robert Silverman, RSA The same amount of arith ECC Symmetric ciphers 119 56 144 69 163 79					

according to	Equivalen Michael Wie	•	Technologies
Basic assun	-	ame number PS-years	of instructions
RSA/DSA	EC	Number of instructions w MIPS-years	
Software attack	Software attack		
1024	138	3 x 10 ¹¹	

Equivalent key sizes according to Michael Wiener

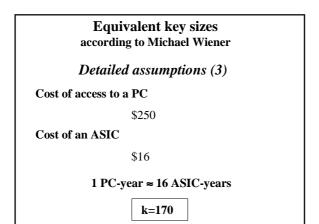
Detailed assumptions (1)

Hardware attack based on ASICs:

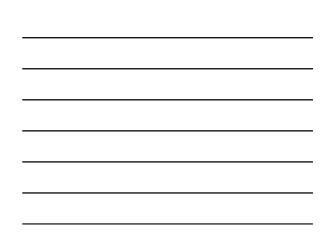
- clock frequency 64 MHz
- 70 levels of pipelining

• cost \$16

Equivalent key sizes according to Michael Wiener

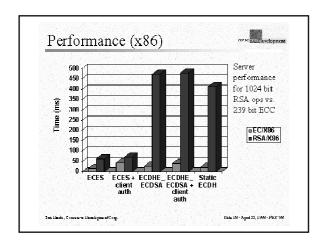

Detailed assumptions (2)

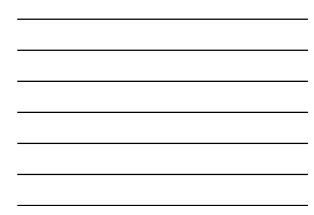
Number of PCs, 300 MHz, necessary to break RSA-1024

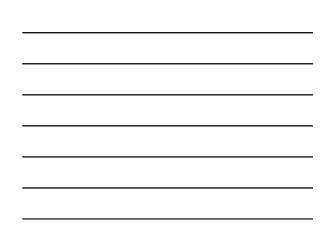

230 PC-years

Number of ASICs necessary to break ECC-k

2k/2-51 ASIC-years




Digital Signature Timings Pentium Pro, 200 MHz, Michael Wiener, Entrust							
	RSA-1024 (e=3) DSA-1024 ECDSA-1'						
Signature generation	43 ms	7 ms	5 ms				
Signature verification	0.6 ms	27 ms	19 ms				
Key generation	1100 ms	7 ms	7 ms				


Digital Signature Timings Pentium Pro, 180 MHz, Scott Contini, RSA DSI					
	RSA-1024 (e=3)	DSA-1024	ECDSA-170		
Signature generation	47 ms	28 ms	6 ms		
Signature verification	1 ms	52 ms	30 ms		

	Binary code size					
	RSA	DSA	EC-DSA			
Generation of system parameters	N/A	small	very large			
Key generation	medium	very small	very small			
Core operations	small	small	medium			

Which cryptosystem is the best? (1)

Secure electronic mail

• speed of operations is not critical, security and trust of customers are more important

• message encrypted using a symmetric key cryptosystem A key for a symmetric key cryptosystem encrypted once for each receiver

All operations performed by a sender A key for a symmetric key cryptosystem decrypted separately by each receiver

Load distributed among receivers

Advantage: RSA

Which cryptosystem is the best? (2) Use in public key certificates

• each certificate and CRL are signed only once but verified hundreds of times

Advantage: RSA

Which cryptosystem is the best? (3)

Wireless communication

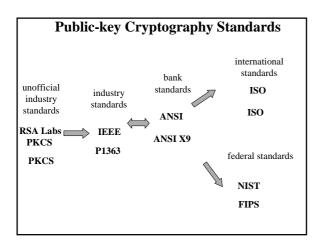
- large cost of transmission
- shorter keys in ECCs
- shorter signatures and certificates in ECCs and DSA
- shorter messages in the key agreement schemes based on ECCs

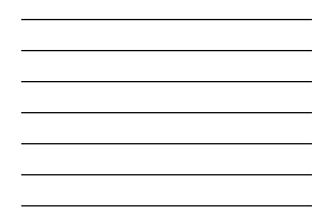
Advantage: ECC

Which cryptosystem is the best? (4) Hardware implementation

- small area of integrated circuits implementing ECC, in particular ECCs over GF(2^m)
- · faster decryption and key generation

Advantage: ECC


Which cryptosystem is the best? (5) Smart cards


ECCs

- smaller EEPROM requirements
- \bullet do not require an arithmetic cooprocessor (at least for a class of curves over $GF(2^m)$
- smaller requirements on the interface with a card reader
- allow to generate a key on the card

Advantage: ECC

Cryptographic standards

PKCS	PK	CS #1	-10		РКС	s #7,11	PKCS #13,15
IEEE			P136	3	P136	3a	PKCS #1 v2.
ANSI					X9.30	(DSA	X9. <u>62(EC-D</u>
ISO	9796			10118-1	,2	X9.	31 (RSA, R-W 11770-3(D
NIST		FIP	5 180(SHA-0)	FIPS 18	10118 30-1(SI	3,4 14888(D) IA-1) ⁹⁷⁹⁶⁻⁴ (N

PKCS Public-Key Cryptography Standards

Informal Industry Standards

developed by RSA Laboratories

in cooperation with

Apple, Digital, Lotus, Microsoft, MIT, Northern Telecom, Novell, Sun

First, except PGP, formal specification of RSA and formats of messages.

Industry standards - PKCS						
	factorization	discrete logarithm	Elliptic curve discrete logarithm			
encryption	PKCS #1 RSA		PKCS #13 new scheme			
signature	PKCS #1 (RSA i R-W)		PKCS #13 EC-DSA			
key agreement		PKCS #2 DH	PKCS #13 EC-DH1, 2 EC-MQV			

IEEE P1363

Working group of IEEE including representatives of major cryptographic companies and university centers from USA, Canada and other countries

Part of the Microprocessors Standards Committee

Modern, open style

Quaterly meetings + multiple teleconferences + + discussion list + very informative web page with the draft versions of standards

IEEE P1363

Combined standard including the majority of modern public key cryptography

Several algorithms for implementation of the same function

Tool for constructing other, more specific standards

Specific applications or implementations may determine a profile (subset) of the standard

	IEEE P1363			
	factorization	discrete logarithm	Elliptic curve discrete logarithm	
encryption	RSA with OAEP			
signature	RSA & R-W with ISO-14888 or ISO 9796	DSA, NR with ISO 9796	EC-DSA, EC-NR with ISO 9796	
key agreement		DH1 DH2 and MQV	EC-DH1, EC-DH2 and EC-MQV	

IEEE P1363a			
	factorization	discrete logarithm	Elliptic curve discrete logarithm
encryption	RSA with OAEP	new scheme	new scheme
signature	RSA & R-W with ISO-14888 or ISO 9796	DSA, NR with ISO-9796	EC-DSA, EC-NR with ISO 9796
key agreement	new scheme	DH1 DH2 & MQV	EC-DH1 EC-DH2 & EC-MQV

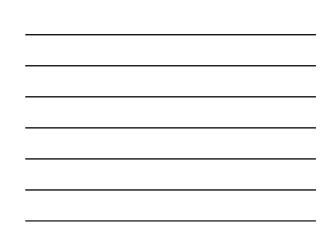
ANSI X9 American National Standards Institute

Work in the subcommittee X9F developing standards for **financial institutions**

Standards for the wholesale (e.g., interbank) and retail transactions (np. bank machines, smart card readers)

ANSI represents U.S.A. in ISO

	ANSI X9 Standards			
	factorization	discrete logarithm	Elliptic curve discrete logarithm	
encryption	X9.44 RSA			
signature	X9.31 (RSA & R-W)	X9.30 DSA	X9.62 EC-DSA	
key agreement		X9.42 DH1, DH2, MQV	X9.63 EC-DH1, 2 EC-MQV	


NIST FIPS National Institute of Standards and Technology Federal Information Processing Standards

American Federal Standards

Required in the government institutions

Original algorithms developed in cooperation with the National Security Agency (NSA)

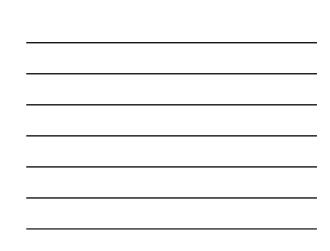
	NIST - FIPS			
	factorization	discrete logarithm	Elliptic curve discrete logarithm	
encryption				
signature	FIPS 186-1 RSA	FIPS 186 DSA		
key agreement				

American Standards						
RSA DSA, DH EC-DSA EC-DH						
Federal						
Banking	X9.31	X9.30 X9.42	X9.62 X9.63			
Industry	Industry IEEE IEEE IEEE P1363 P1363 P1363					
	PKCS-1	PKCS-2	PKCS-13			

ISO International Organization for Standardization

International standards

Common standards with **IEC** - International Electrotechnical Commission

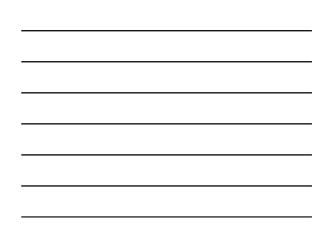

ISO/IEC JTC1 SC 27

Joint Technical Committee 1, Subcommitte 27

Full members (21):

Australia, Belgium, Brazil, Canada, China, Denmark, Finland, France, Germany, Italy, Japan , Korea., Holland , Norway , Poland, Russia , Spain, Sweden, Switzerland , UK, USA

ISO: Internatio	ISO: International Organization for Standardization		
Long and laborious process of the standard development			
	Study period		
	NP - New Proposal		
Minimum	WD - Working Draft		
3 years	CD - Committee Draft		
	DIS - Draft International Standard		
	• IS - International Standard		
Review of the standard after 5 years = ratification, corrections or revocation			



	International standards ISO			
	factorization	discrete logarithm	Elliptic curve discrete logarithm	
encryption				
signature	ISO 9796-1 ISO 9796-2	ISO-14888-3 ISO 9796-4	ISO-14888-3 ISO 9796-4	
key agreement		ISO-11770-3	ISO-11770-3	

Secure key sizes				
	factorization	Discrete logarithm	Elliptic curve discrete logarithm	
PKCS				
IEEE P1363				
ANSI X9	≥ 1024	≥ 1024	≥ 160	
NIST FIPS		≥ 1024		
ISO				

Padding schemes							
	encryption	Signatures with appendix	Signatures with message recovery				
PKCS	OAEP PKCS #1	PKCS #1					
IEEE P1363	OAEP	ISO 14888	ISO 9796				
ANSI X9	OAEP	ISO 14888	ISO 9796				
NIST FIPS							
ISO		ISO 14888	ISO 9796				

Standard Internet Protocols				
Secure e-mail				
S/MIME v.2	RSA			
v.3	RSA, DSA, DH			
Secure WWW				
SSL v. 3.0	RSA, DSA, DH, proposed extension with ECCs			
Secure payment ca	rd protocols			
SET	RSA, proposed extension with ECCs			
Virtual Private Networks				
IPSec	DH, EC-DH			

Patents - only U.S. and Canada					
RSA	DSA, DH	EC-DSA, EC-DH			
Patent expired in 2000	DH Patent expired in 1997	No patents for cryptosystems themselves. Over 40 patent petitions regarding implementation details, <i>Certicom Inc.</i>			

Summary

- RSA in common use, ECC struggle to enter the market
- New standards will support all three types of cryptosystems
- ECC particularly advantages in environments with limited bandwidth and storage (e.g., cellular telephones, pagers, smart cards)
- If there is no breakthrough in cryptanalysis the market will be shared among two (or three) classes of cryptosystems