ECE297:11 Lecture 13 RSA – implementation issues & countermeasures against known attacks Number of bits vs. number of decimal digits $10^{\text{#digits}} = 2^{\text{#bits}}$ $\#digits = (log_{10} \ 2) \cdot \#bits \approx 0.30 \cdot \#bits$ 256 bits = 77 D384 bits = 116 D512 bits = 154 D768 bits = 231 D1024 bits = 308 D2048 bits = 616 DHow to perform exponentiation efficiently? $Y = X^E \ mod \ N \ = X \cdot X \cdot X \cdot X \cdot X \cdot X \ldots \cdot X \cdot X \ mod \ N$ E-times E may be in the range of $2^{1024} \approx 10^{308}$ Problems: 1. huge storage necessary to store M^{e} before reduction 2. amount of computations infeasible to perform

Solutions:

1. modulo reduction after each multiplication

200 BC, India, "Chandah-Sûtra"

2. clever algorithms

$\begin{array}{c} \textbf{Right-to-left binary exponentiation} \\ \textbf{Y} = \textbf{X}^E \ \textbf{mod} \ \textbf{N} \end{array}$

$$E = (e_{L-1}, e_{L-2}, ..., e_1, e_0)_2$$

$$S{:} \hspace{0.2cm} X \hspace{0.2cm} X^2 \hspace{0.2cm} \text{mod} \hspace{0.1cm} N \hspace{0.2cm} X^4 \hspace{0.2cm} \text{mod} \hspace{0.1cm} N \hspace{0.2cm} X^8 \hspace{0.2cm} \text{mod} \hspace{0.1cm} N \hspace{0.2cm} \dots \hspace{0.2cm} X^2^{L\text{-}1} \hspace{0.2cm} \hspace{0.2cm} \text{mod} \hspace{0.1cm} N$$

E:
$$\mathbf{e}_0$$
 \mathbf{e}_1 \mathbf{e}_2 \mathbf{e}_3 ... \mathbf{e}_{L-1}

$$\begin{array}{ll} Y = & X^{e_0} \cdot \left(X^2 \bmod N \right)^{e_1} \cdot \left(X^4 \bmod N \right)^{e_2} \cdot \left(X^8 \bmod N \right)^{e_3} \cdot \ldots \\ & \left(X^a \right)^b = X^{ab} & X^a \cdot X^b = X^{a+b} \end{array} \quad \Big| \end{array}$$

$$Y = X e_0 + 2 \cdot e_1 + 4 \cdot e_2 + 8 \cdot e_3 + 2^{L-1} \cdot e_{L-1} \mod N =$$

$$= X^{\sum_{i=0}^{L-1}} e_i \cdot 2^i$$

$$= X^E \mod N$$

$\label{lem:Right-to-left} \textbf{Right-to-left binary exponentiation: Example}$

$Y = 3^{19} \mod 11$

$$E = 19 = 16 + 2 + 1 = (10011)_2$$

$$S{:} \quad X \qquad X^2 \bmod N \qquad \quad X^4 \bmod N \qquad \quad X^8 \bmod N \qquad \quad X^{16} \ \bmod N$$

$$3 \quad 3^2 \mod 11 = 9 \quad 9^2 \mod 11 = 4 \quad 4^2 \mod 11 = 5 \quad 5^2 \mod 11 = 3$$

$$Y = X \cdot X^2 \mod N \cdot 1 \cdot 1 \cdot X^{16} \mod N = 3 \cdot 9 \cdot 1 \cdot 1 \cdot 3 \mod 11$$

$$(27 \ mod \ 11) \cdot 3 \ mod \ 11 = 5 \cdot 3 \ mod \ 11 = 4$$

Left-to-right binary exponentiation Y = X^E mod N

$$E = (e_{L-1}, e_{L-2}, ..., e_1, e_0)_2$$

$$E: \qquad e_{L\text{-}1} \qquad e_{L\text{-}2} \qquad e_{L\text{-}3} \qquad \dots \quad e_1 \qquad \quad e_0$$

$$Y = ((...(((1^2 \cdot X^{e_{L-1}})^2 \cdot X^{e_{L-2}})^2 \cdot X^{e_{L-3}})^2 \qquad)^2 \cdot X^{e_1})^2 \cdot X^{e_0} \bmod N$$

$$(X^a)^b = X^{ab} \qquad \qquad X^a \cdot X^b = X^{a+b}$$

$$Y = X \overset{(e_{L\cdot 1} \cdot 2 + e_{L\cdot 2}) \cdot 2 + e_{L\cdot 3}) \cdot 2 + \ldots + e_1) \cdot 2 + e_0}{\mod N} \ =$$

$$= X \overset{2^{L \cdot 1} \cdot e_{L \cdot 1} + \, 2^{L \cdot 2} \cdot e_{L \cdot 2} + \, 2^{L \cdot 3} \cdot e_{L \cdot 3} + \ldots + 2 \cdot e_1 + e_0}{\text{mod } N} \overset{\sum\limits_{i=0}^{L \cdot 1} e_i \cdot 2^i}{}$$

 $Y = (X^8 \cdot X)^2 \cdot X \mod N = X^{19} \mod N$

$Y = X^E \mod N$ **Exponentiation:** Right-to-left binary Left-to-right binary exponentiation exponentiation $E = (e_{L\text{-}1},\,e_{L\text{-}2},\,...,\,e_{1},\,e_{0})_{2}$ Y = 1: S = X;for i=L-1 downto 0 for i=0 to L-1 $Y = Y^2 \mod N;$ $if (e_i == 1)$ $Y = Y \cdot S \mod N;$ $if(e_i == 1)$ $Y = Y \cdot X \mod N;$ $S = S^2 \mod N$;

Exponentiation Example: $Y = 7^{12} \mod 11$ Right-to-left binary Left-to-right binary exponentiation exponentiation $12 = (1\ 1\ 0\ 0)_2$ 2 1 0 1 0 0 2 4 5 1 2 3 0 0 1 1 3 7 5 9 3 5 $\begin{aligned} \mathbf{S}_{\text{before}} & \text{- S before round i is computed} \\ \mathbf{S}_{\text{after}} & \text{- S after round i is computed} \end{aligned}$

Time of exponentiation

 $t_{EXP}(e,\,L,\,k) = \# modular_multiplications(e,\,L) \cdot t_{MULMOD}(k)$

e, L	#modular_multiplications
e=3	2
$e = F_4 = 2^{2^4} + 1$	17
large random L-bit e	$L + \#ones(1) \approx \frac{3}{2} \cdot L$

 $t_{\mbox{\scriptsize MULMOD}}(k)$ - time of a single modular multiplication of two k-bit numbers modulo a k-bit number

SOFTWARE

HARDWARE

 $\underline{t_{\text{MULMOD}}}(\mathbf{k}) = c_{\text{sm}} \cdot \mathbf{k}^2$

 $t_{MULMOD}(k) = c_{hm} \cdot k$

Algorithms for Modular Multiplication

Multiplication

Multiplication combined with modular reduction

• Paper-and-pencil $\theta(k^2)$

 $\theta(k^{3/2})$

 $\theta(k^2)$

Modular Reduction

• classical

 $\lg_2 n \le \lambda$

 $\theta(k^2)$

• Barrett complexity same as multiplication used

• Selby-Mitchell $\theta(k^2)$

Paper-and-Pencil Algorithm of Multiplication

1 word = l bytes = λ bits A₁ A₀ A

A_{n-1} A_{n-2} $X = \begin{bmatrix} B_{n-1} & B_{n-2} \end{bmatrix}$ B₁ B₀ B Assertion:

C _{2n-1} C _{2r}	-2	C _{n+1}	C _n	C_{n-1}	C _{n-2}	 C ₁	C ₀	C

	SOFTWARE	HARDWARE
Modular Multiplication	$c_{sm} \cdot k^2$	$c_{hm} \cdot k$
Modular Exponentiation	$c_{sme} \cdot k^2 \cdot L$	$c_{hme} \cdot k \cdot L$

	of the RSA opera nction of the key	
	SOFTWARE	HARDWARE
Encryption/ Signature verification with a small exponent e	c _{se} ⋅k²	c _{he} ·k
Decryption / Signature generation	$\mathbf{c}_{\mathrm{sd}} \!\cdot \mathbf{k}^3$	$c_{hd} \cdot k^2$
Key Generation	$c_{sk} \cdot k^4/log_2 k$	$c_{hk} \cdot k^3 / log_2 k$
Factorization (breaking RSA)	$\exp(c_{sf} \cdot k^{1/3} \cdot (\ln k)^{2/3})$	

Effect of the increase in the computer speed on the speed of encryption and decryption in RSA

Decryption using Chinese Remainder Theorem

Time of decryption without and with Chinese Remainder Theorem

SOFTWARE

Without CRT

 $t_{DEC}(k) = t_{EXP}(random e, k, L=k) = c_s \cdot k^3$

With CRT

 $t_{DEC-CRT}(k) \approx 2 \cdot t_{EXP}(random~e,~k/2,~L=k/2) = 2 \cdot c_s \cdot (\frac{k}{2})^3 = \frac{1}{4} \ t_{DEC}(k)$

HARDWARE

Without CRT

 $t_{DEC}(k) = t_{EXP}(random \ e, \ k, \ L=k) = c_h \ \cdot k^2$

With CRT

 $t_{\text{DEC-CRT}}(k) \approx t_{\text{EXP}}(\text{random e, k/2, L=k/2}) = c_{\text{h}} \cdot (\frac{k}{2})^2 = \underbrace{\frac{1}{4} t_{\text{DEC}}(k)}$

Chinese Remainder Theorem

Let

$$\mathbf{N} = \mathbf{n}_1 \cdot \mathbf{n}_2 \cdot \mathbf{n}_3 \cdot \ldots \cdot \mathbf{n}_M$$

and

for any i, j
$$gcd(n_i, n_i) = 1$$

Then, any number $0 \le A \le N-1$ can be represented uniquely by

$$A \boldsymbol{\longleftrightarrow} (a_1 = A \ mod \ n_1, \ a_2 = A \ mod \ n_2, \ \ldots, \ a_M = A \ mod \ n_M)$$

A can be reconstructed from $(a_1,\,a_2,\,...,\,a_M)$ using equation

$$\mathbf{A} = \sum_{i=1}^{M} (\mathbf{a}_i \cdot \mathbf{N}_i \cdot \mathbf{N}_{i}^{-1} \operatorname{mod} \mathbf{n}_i) \operatorname{mod} \mathbf{N} \quad \text{where} \quad N_i = \frac{N}{n_i} = \\ = n_1 \cdot n_2 \cdot ... \cdot n_{i-1} \cdot n_{i+1} \cdot ... \cdot n_{M}$$

Chinese Remainder Theorem for $N=P\cdot Q$

$$N = P \cdot Q$$
 $gcd(P, Q) = 1$

 $M \leftrightarrow (M_p = M \mod P, M_Q = M \mod Q)$

$$M = M_P \cdot \frac{N}{P} \cdot \left[\left[\frac{N}{P} \right]^{-1} mod \ P \right] \ + \ M_Q \cdot \frac{N}{Q} \cdot \left[\left[\frac{N}{Q} \right]^{-1} mod \ Q \right] \ mod \ N$$

$$= M_P \cdot Q \cdot ((Q^{\text{-}1}) \ mod \ P) \ + M_Q \cdot P \cdot ((P^{\text{-}1}) \ mod \ Q) \ mod \ N =$$

$$= M_P \cdot \ R_Q + M_Q \cdot \ R_P \ mod \ N$$

$Concealment \ of \ messages \ in \ the \ RSA \ cryptosystem$

Blakley, Borosh, 1979

There exist messages that are not changed by the RSA encryption!

For example:

$$\begin{array}{ll} M{=}1 & C = 1^e \bmod N = 1 \\ M{=}0 & C = 0^e \bmod N = 0 \\ M{=}n{-}1{\equiv}{-}1 \bmod N & C = (-1)^e \bmod N = -1 \end{array}$$

Every M such that

$$M_p = M \mod p \in \{1, 0, -1\}$$

 $M_q = M \mod q \in \{1, 0, -1\}$

$$\begin{split} C_p &= C \bmod p = M^e \bmod p = M_p^e \bmod p = M_p \\ C_q &= C \bmod q = M^e \bmod q = M_q^e \bmod q = M_q \end{split}$$

Concealment of messages in the RSA cryptosystem

Blakley, Borosh, 1979

At least 9 messages not concealed by RSA!

Number of messages not concealed by RSA:

$$\sigma = (1 + \gcd(e\text{-}1, p\text{-}1)) \cdot (1 + \gcd(e\text{-}1, q\text{-}1))$$

A. e=3 $\sigma=9$

B.
$$gcd(e-1, p-1) = 2$$
 and $gcd(e-1, q-1) = 2$

 $\sigma = 9$

C.
$$gcd(e-1, p-1) = p-1$$
 and $gcd(e-1, q-1) = q-1$ $\sigma = p \cdot q = N$

It is possible that all messages remain unconcealed by RSA!

Generation of the RSA keys Typically e = 3 or $e = 2^{16} + 1$ $e = 2^{16} + 1$ e = 3 or e = 3 or $e = 2^{16} + 1$ e = 3 or $e = 2^{16} + 1$ e = 3 or e = 3 or $e = 2^{16} + 1$ e = 3 or e = 3 or e = 3 or $e = 2^{16} + 1$ e = 3 or e = 3 or $e = 2^{16} + 1$ e = 3 or e = 3 or $e = 2^{16} + 1$ e = 3 or $e = 3 \text{$

 $d = e^{-1} \bmod (P-1) \cdot (Q-1)$

 $N = P \cdot Q$

RSA – countermeasures against known attacks

If $d < N^{1/4}$	
a < N	
N	
d	
d can be mathematically reconstructed from e and N	
a can be mane mane and resonance and re	
Countermeasure:	
Choose e , p , and q first	
Compute $d = e^{-1} \mod (p-1)(q-1)$	
Check if $d > N^{1/4}$	
	1
Recovering RSA-encrypted messages without a private key (1)	
Recovering RSA-encrypted messages without a private key (1)	
Guessing a set of possible messages	
IRS ────────────────────────────────────	
_	
E public_key_of_FBI(name of the congress	
member who committed a tax fraud)	
journalist E (name1)	
journalist $E_{public_key_of_FBI}(name1)$ $E_{public_key_of_FBI}(name2)$	
public_key_of_FBI (Harrie2)	
$E_{public_key_of_FBI}$ (nameN)	
	1
Recovering RSA-encrypted messages without a private key (2)	
Recovering RSA-encrypted messages without a private key (2)	
Small e and small messages	
e=3	
$m < N^{1/3}$	
$c = m^3 \bmod N = m^3 \xrightarrow{1/3} m$	
Hastad's attack	
e=3, m send to three different people	
$P_{U1} = (3, N_1)$ m ³ mod N ₁ CRT	
$\begin{array}{cccc} P_{U1} = (3, N_1) & \text{in } & \text{ind} & N_1 & \text{CRT} \\ P_{U2} = (3, N_2) & \text{m}^3 & \text{mod} & N_2 & \longrightarrow & \text{m}^3 & \text{mod} & N_1 N_2 N_3 = \text{m}^3 & \longrightarrow & \text{m} \end{array}$	
$P_{U3} = (3, N_3)$ m ³ mod N ₃	
1	

Wiener's attack

Padding for signatures with appendix PKCS #1 for signatures 00 01 FF FF FF FF 00 h(m) at least 8 bytes ISO-14888 6 BBBBBBBBBBB A 33CC for SHA-1 31CC for RIPEMD-160 Superencryption attack Simmons, Norris, 1977 $C_0 = C$ $C_1 = C_0^e \mod N$ $C_2 = C_1^e \mod N$ $C_{k-1} = C_{k-2}^{e} \mod N$ $C_{k} = C_{k-1}^{e} \mod N = C_{0} = C$ $M = C_{k-1}$ because $M^e \mod N = C$ Superencryption attack Simmons, Norris, 1977 Typically, number of iterations very large if p and q chosen at random Additional protection may be achieved if: p-1 has a large prime factor r_p q-1 has a large prime factor r_q r_p -1 has a large prime factor t_p r_q -1 has a large prime factor t_q $e^{(rp-1)/tp} \bmod r_p \neq 1$ $e^{(rq-1)/tq} \bmod r_q \neq 1$ For these conditions

of iterations, $k \ge t_p \cdot t_q$

Strong primes

Gordon algorithm, based on CRT, allows to generate strong primes

time to generate a strong prime = $1.2 \cdot \text{time}$ to generate a regular prime

Only 20 % increase in time

Strong primes ${\it Most\ of\ the\ large\ primes\ generated\ \underline{\it at\ random}\ are\ strong\ anyway!}$ p-1 k - bits < k/α bits fraction of k-bit numbers α whose largest prime factor Largest prime has less than k/α bits factor of p-1 2 31% 3 5% # bits of n $\alpha =$ 4 0.5% # bits of the largest 0.035% prime factor 0.0000001%

Factoring methods General purpose Special purpose ${\it Time\ of\ factoring\ depends}$ Time of factoring is much shorter if N or factors of N only on the size of Nare of the special form ECM - Elliptic Curve Method GNFS - General Number Field Sieve Pollard's p-1 method QS - Quadratic Sieve Cyclotomic polynomial method Continued Fraction Method (historical) SNFS - Special Number Field Sieve

Special purpose factoring methods Condition for a speed-up Name One of the factors of N is smaller than 40-45 decimal digits ECM - Elliptic Curve Method N has a prime factor p such that p-1 is B-smooth with respect to some relatively small bound BPollard's p-1 method p-1 is B-smooth if $p\text{-}1 = p_1^{\text{el}} p_2^{\text{e2}} \cdot \ldots \cdot p_k^{\text{ek}}, \text{ where } p_i < B \text{ for all } i$ Cyclotomic polynomial method N has a prime factor p such that p+1 is B-smooth with respect to some relatively small bound BSpecial Number Field Sieve - SNFS N is of the form r^e - s for small r and |s|RSA for paranoids Rationale Shamir 1995 Size of N(k) $500 \text{ bits } \rightarrow 5000 \text{ bits}$ $150\,\mathrm{D} \quad \to \ 1500\,\mathrm{D}$ $t_{DEC} = c\!\cdot\! k^3$ Time of decipherment increases 10 times (500→5000) t DEC increases 1000 times $(1 \text{ s} \rightarrow 16 \text{ min})$ RSA for paranoids Solution (1) Shamir 1995 Choose p - 500 bits q - 4500 bits N - 5000 bits (k=5000)Security:

As resistant as classical RSA with k=5000 against general purpose factoring. Sufficiently resistant against known special purpose methods.

	RSA for par		
	Solution	(2)	Shamir 1995
Make			
	$M \in (0, p-1)$	500 bits	
	$e \in (20, 100)$	5-7 bits	
	$d \in (0, \varphi(\mathrm{N}))$	5000 bits	
Ciphering:	Dec	iphering:	
$C = M^e \mod N$	M_p	$= C_p^{dp} \mod p$	$= M \bmod p = M$
	whe	$C_p = C \text{ m}$	od p
		$d_p^r = d \operatorname{mo}$	
Efficiency:		•	
•		: De	1 A:41- 1- 500
Time of deciph	ering the same as	ın regular RS	SA with $k=500$