ECE297:11 Lecture 13

RSA - implementation issues \& countermeasures against known attacks

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Number of bits vs. number of decimal digits
$10^{\# \text { digits }}=2^{\# \mathrm{~b} \text { its }}$
\#digits $=\left(\log _{10} 2\right) \cdot \#$ bits $\approx 0.30 \cdot \#$ bits

256 bits $=77 \mathrm{D}$
384 bits $=116 \mathrm{D}$
512 bits $=154$ D
768 bits $=231 \mathrm{D}$
1024 bits $=308 \mathrm{D}$
2048 bits $=616$ D

How to perform exponentiation efficiently?

$\mathrm{Y}=\mathrm{X}^{\mathrm{E}} \bmod \mathrm{N}=\mathrm{X} \cdot \mathrm{X} \cdot \mathrm{X} \cdot \mathrm{X} \cdot \mathrm{X} \ldots \cdot \mathrm{X} \cdot \mathrm{X} \bmod \mathrm{N}$

E-times
\qquad

E may be in the range of $2^{1024} \approx 10^{308}$ \qquad

Problems: \qquad

1. huge storage necessary to store M^{e} before reduction
2. amount of computations infeasible to perform \qquad
Solutions:
3. modulo reduction after each multiplication
\qquad
4. clever algorithms

200 BC, India, "Chandah-Sûtra"

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Right-to-left binary exponentiation: Example$Y=3^{19} \bmod 11$					
$\mathrm{E}=19=16+2+1=(10011)_{2}$					
	X	$\mathrm{X}^{2} \bmod \mathrm{~N}$	$\mathrm{X}^{4} \bmod \mathrm{~N}$	$\mathrm{X}^{8} \bmod \mathrm{~N}$	$\mathrm{X}^{16} \bmod \mathrm{~N}$
	3	$3^{2} \bmod 11=9$	$9^{2} \bmod 11=4$	$4^{2} \bmod 11=5$	$5^{2} \bmod 11=3$
	e_{0}	e_{1}	e_{2}	e_{3}	e_{4}
	1	1	0	0	1
	X	$\mathrm{X}^{2} \bmod \mathrm{~N}$	1	1	$\mathrm{X}^{16} \bmod \mathrm{~N}=$
	3	9	1	1	$3 \bmod 11$
X ${ }^{19} \bmod \mathrm{~N}$ $(27 \bmod 11) \cdot 3 \bmod 11=5 \cdot 3 \bmod 11=4$					

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Exponentiation: $\quad \mathbf{Y}=\mathrm{X}^{\mathrm{E}} \bmod \mathbf{N}$	
Right-to-left binary exponentiation	Left-to-right binary exponentiation
$E=\left(e_{L-1}, e_{L-2}, \ldots, e_{1}, e_{0}\right)_{2}$	
$\begin{aligned} & \mathrm{Y}=1 ; \\ & \mathrm{S}=\mathrm{X} ; \\ & \text { for } \mathrm{i}=0 \text { to } \mathrm{L}-1 \\ & \left\{\begin{array}{l} \text { if }\left(\mathrm{e}_{\mathrm{i}}==1\right) \\ \mathrm{Y}=\mathrm{Y} \cdot \mathrm{~S} \bmod \mathrm{~N} ; \\ \mathrm{S}=\mathrm{S}^{2} \bmod \mathrm{~N} ; \end{array}\right. \\ & \} \end{aligned}$	$\mathrm{Y}=1 ;$ for $\mathrm{i}=\mathrm{L}-1$ downto 0 \{ $\mathrm{Y}=\mathrm{Y}^{2} \bmod \mathrm{~N}$ $\text { if }\left(\mathrm{e}_{\mathrm{i}}==1\right)$ $\mathrm{Y}=\mathrm{Y} \cdot \mathrm{X} \bmod \mathrm{~N}$ \}

\qquad
\qquad
\qquad
$\mathrm{Y}=1$;
$\mathrm{S}=\mathrm{X}$,
for $\mathrm{i}=\mathrm{L}-1$ downto 0
for $\mathrm{i}=0$ to $\mathrm{L}-1$
if $\left(\mathrm{e}_{\mathrm{i}}==1\right)$
$\mathrm{Y}=\mathrm{Y}^{2} \bmod \mathrm{~N}$;
$\mathrm{Y}=\mathrm{Y} \cdot \mathrm{X} \bmod \mathrm{N}$;
\}
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\mathrm{Y}=(\mathrm{X} \cdot \mathrm{X})^{2} \cdot \mathrm{X} \bmod \mathrm{N}=\mathrm{X}^{19} \bmod \mathrm{~N}$ \qquad
\qquad
\qquad
\qquad
\qquad $12=\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)_{2}$

\mathbf{i}		$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{e}_{\mathbf{i}}$		0	0	1	1
$\mathbf{S}_{\text {before }}$		7	5	3	9
$\mathbf{Y}_{\text {after }}$	1	1	1	3	$\mathbf{5}$
$\mathbf{S}_{\text {after }}$	7	5	3	9	4

$\mathbf{S}_{\text {before }}-\mathrm{S}$ before round i is computed
$\mathrm{S}_{\text {after }}-\mathrm{S}$ after round i is computed
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Time of exponentiation $\mathrm{t}_{\text {EXP }}(\mathrm{e}, \mathrm{L}, \mathrm{k})=$ \#modular_multiplications $(\mathrm{e}, \mathrm{L}) \cdot \mathrm{t}_{\text {MULMOD }}(\mathrm{k})$	
e, L	\#modular_multiplications
$\mathrm{e}=3$	2
$\mathrm{e}=\mathrm{F}_{4}=2^{2^{4}}+1$	17
large random L-bit e	$\mathrm{L}+$ \#ones $(1) \approx \frac{3}{2} \cdot \mathrm{~L}$
$\mathrm{t}_{\text {MULMOD }}(\mathrm{k})$ - time of a single modular multiplication of two k -bit numbers modulo a k -bit number	
SOFTWARE	HARDWARE
$\mathrm{t}_{\text {MULMOD }}(\mathrm{k})=\mathrm{c}_{\text {sm }} \cdot \mathrm{k}^{2}$	$\mathrm{t}_{\text {MULMOD }}(\mathrm{k})=\mathrm{c}_{\mathrm{hm}} \cdot \mathrm{k}$

\qquad
\qquad
\qquad
\qquad
\qquad
) - time of a single modular multiplication
\qquad
$\mathrm{t}_{\text {MULMOD }}(\mathrm{k})=\mathrm{c}_{\mathrm{sm}} \cdot \mathrm{k}^{2}$
$\mathrm{t}_{\text {MULMOD }}(\mathrm{k})=\mathrm{c}_{\mathrm{hm}} \cdot \mathrm{k}$ \qquad

Algorithms for Modular Multiplication

\qquad
\qquad
\qquad
\qquad

- classical
- Barrett complexity same as multiplication used \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Time of basic operations in software and hardware		
	SOFTWARE	HARDWARE
Modular Multiplication	$\mathrm{c}_{\mathrm{sm}} \cdot \mathrm{k}^{2}$	$\mathrm{c}_{\mathrm{hm}} \cdot \mathrm{k}$
Modular Exponentiation	$\mathrm{c}_{\mathrm{sme}} \cdot \mathrm{k}^{2} \cdot \mathrm{~L}$	$\mathrm{c}_{\mathrm{hme}} \cdot \mathrm{k} \cdot \mathrm{L}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Time of the RSA operations as a function of the key size k		
	SOFTWARE	HARDWARE
Encryption/ Signature verification with a small exponent e	$\mathrm{c}_{\mathrm{se}} \cdot \mathrm{k}^{2}$	$\mathrm{c}_{\mathrm{he}} \cdot \mathrm{k}$
Decryption / Signature generation	$\mathrm{c}_{\mathrm{sd}} \cdot \mathrm{k}^{3}$	$\mathrm{c}_{\mathrm{hd}} \cdot \mathrm{k}^{2}$
Key Generation	$\mathrm{c}_{\mathrm{sk}} \cdot \mathrm{k}^{4} / \log _{2} \mathrm{k}$	$\mathrm{c}_{\mathrm{hk}} \cdot \mathrm{k}^{3} / \log _{2} \mathrm{k}$
Factorization (breaking RSA)	$\exp \left(\mathrm{c}_{\mathrm{sf}} \cdot \mathrm{k}^{1 / 3} \cdot(\ln \mathrm{k})^{2 / 3}\right)$	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Effect of the increase in the computer speed on the speed of encryption and decryption in RSA
to keep the same security

Decryption using Chinese Remainder Theorem

Time of decryption

 without and with Chinese Remainder Theorem
SOFTWARE

Without CRT

$$
\mathrm{t}_{\mathrm{DEC}}(\mathrm{k})=\mathrm{t}_{\mathrm{EXP}}(\text { random } \mathrm{e}, \mathrm{k}, \mathrm{~L}=\mathrm{k})=\mathrm{c}_{\mathrm{s}} \cdot \mathrm{k}^{3}
$$

With CRT
$\mathrm{t}_{\text {DEC-CRT }}(\mathrm{k}) \approx 2 \cdot \mathrm{t}_{\mathrm{EXP}}($ random $\mathrm{e}, \mathrm{k} / 2, \mathrm{~L}=\mathrm{k} / 2)=2 \cdot \mathrm{c}_{\mathrm{s}} \cdot\left(\frac{\mathrm{k}}{2}\right)^{3}=\underline{\frac{1}{4}} \mathrm{t}_{\mathrm{DEC}}(\mathrm{k})$

HARDWARE

Without CRT

$$
\mathrm{t}_{\mathrm{DEC}}(\mathrm{k})=\mathrm{t}_{\mathrm{EXP}}(\text { random } \mathrm{e}, \mathrm{k}, \mathrm{~L}=\mathrm{k})=\mathrm{c}_{\mathrm{h}} \cdot \mathrm{k}^{2}
$$

With CRT
$\mathrm{t}_{\mathrm{DEC}-\mathrm{CRT}}(\mathrm{k}) \approx \mathrm{t}_{\mathrm{EXP}}($ random $\mathrm{e}, \mathrm{k} / 2, \mathrm{~L}=\mathrm{k} / 2)=\mathrm{c}_{\mathrm{h}} \cdot\left(\frac{\mathrm{k}}{2}\right)^{2}=\underline{\underline{\frac{1}{4}} \mathrm{t}_{\mathrm{DEC}}(\mathrm{k})}$

\qquad

\qquad
\qquad
\qquad
Then, any number $0 \leq \mathrm{A} \leq \mathrm{N}-1$
\qquad
\qquad
A can be reconstructed from $\left(a_{1}, a_{2}, \ldots, a_{M}\right)$ using equation \qquad
\qquad

```
Chinese Remainder Theorem for \(\mathbf{N}=\mathbf{P} \cdot \mathbf{Q}\)
\(\mathrm{N}=\mathrm{P} \cdot \mathrm{Q} \quad \operatorname{gcd}(\mathrm{P}, \mathrm{Q})=1\)
\(M=M_{P} \cdot \frac{N}{P} \cdot\left[\left[\left(\frac{N}{P}\right]^{-1} \bmod P\right]+M_{Q} \cdot \frac{N}{Q} \cdot\left[\left[\frac{N}{Q}\right]^{-1} \bmod Q\right] \bmod N\right.\)
\(=\mathrm{M}_{\mathrm{P}} \cdot \mathrm{Q} \cdot\left(\left(\mathrm{Q}^{-1}\right) \bmod \mathrm{P}\right)+\mathrm{M}_{\mathrm{Q}} \cdot \mathrm{P} \cdot\left(\left(\mathrm{P}^{-1}\right) \bmod \mathrm{Q}\right) \bmod \mathrm{N}=\)
\(=M_{P} \cdot R_{Q}+M_{Q} \cdot R_{P} \bmod N\)
```

\qquad
\qquad
\qquad
\qquad

Concealment of messages in the RSA cryptosystem \qquad
There exist messages that are not changed by the RSA encryption! \qquad
For example:

$$
\begin{array}{ll}
M=1 & C=1^{e} \bmod N=1 \\
M=0 & C=0^{e} \bmod N=0 \\
M=n-1 \equiv-1 \bmod N & C=(-1)^{e} \bmod N=-1
\end{array}
$$

Every M such that
$M_{p}=M \bmod p \in\{1,0,-1\}$
$M_{q}=M \bmod q \in\{1,0,-1\}$
$C_{p}=C \bmod p=M^{e} \bmod p=M_{p}{ }^{e} \bmod p=M_{p}$
$C_{q}^{p}=C \bmod q=M^{e} \bmod q=M_{q}^{e} \bmod q=M_{q}^{p}$

Concealment of messages in the RSA cryptosystem
Blakley, Borosh, 1979
At least 9 messages not concealed by RSA!

Number of messages not concealed by RSA:
$\sigma=(1+\operatorname{gcd}(e-1, p-1)) \cdot(1+\operatorname{gcd}(e-1, q-1))$
A.
$e=3 \quad \sigma=9$
B. $\operatorname{gcd}(e-1, p-1)=2$ and $\operatorname{gcd}(e-1, q-1)=2 \quad \sigma=9$
C. $\quad \operatorname{gcd}(e-1, p-1)=p-1$ and $\operatorname{gcd}(e-1, q-1)=q-1 \quad \sigma=p \cdot q=N$

It is possible that all messages remain unconcealed by RSA!
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Generation of the RSA keys

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
RSA - countermeasures against known attacks
\qquad
\qquad
\qquad
\qquad
\qquad
Wiener's attack
If $d<N^{1 / 4}$
d can be mathematically reconstructed from e and N
Countermeasure:
Choose e, p, and q first
Compute $d=e^{-1} \bmod (p-1)(q-1)$
Check if $d>N^{1 / 4}$
\qquad
\qquad
\qquad
Countermeasure:
Choose e, p, and q first
Compute $d=e^{-1} \bmod (p-1)(q-1)$ \qquad
\qquad

Recovering RSA-encrypted messages without a private key (1) \qquad
Guessing a set of possible messages
IRS $\longrightarrow \quad$ FBI
$\mathrm{E}_{\text {public_key_of_FBI }}$ name of the congress
member who committed a tax fraud)
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Recovering RSA-encrypted messages without a private key (2)

Small e and small messages

$$
\begin{array}{r}
\mathrm{e}=3 \quad \begin{array}{r}
00000000000000000 \\
\mathrm{~m}<\mathrm{N}^{1 / 3} \\
\mathrm{c}=\mathrm{m}^{3} \bmod \mathrm{~N}=\mathrm{m}^{3} \xrightarrow{1 / 3} \mathrm{~m}
\end{array} \\
\end{array}
$$

Hastad's attack

$$
\mathrm{e}=3, \mathrm{~m} \text { send to three different people }
$$

$\begin{array}{ll}\mathrm{P}_{\mathrm{U} 1}=\left(3, \mathrm{~N}_{1}\right) & \mathrm{m}^{3} \bmod \mathrm{~N}_{1} \\ \mathrm{P}_{\mathrm{U} 2}=\left(3, \mathrm{~N}_{2}\right) & \mathrm{m}^{3} \bmod \mathrm{~N}_{2}\end{array} \xrightarrow{\text { CRT }} \mathrm{m}^{3} \bmod \mathrm{~N}_{1} \mathrm{~N}_{2} \mathrm{~N}_{3}=\mathrm{m}^{3} \xrightarrow{1 / 3} \mathrm{~m}$
$\mathrm{P}_{\mathrm{U} 3}=\left(3, \mathrm{~N}_{3}\right) \quad \mathrm{m}^{3} \bmod \mathrm{~N}_{3}$
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Padding for signatures with appendix

PKCS \#1 for signatures

\qquad
\qquad

ISO-14888

Superencryption attack

$C_{0}=C$
$C_{1}=C_{0}{ }^{e} \bmod N$ \qquad
$C_{2}=C_{1}{ }^{e} \bmod N$
\qquad
$\boldsymbol{C}_{k-1}=C_{k-2}{ }^{e} \bmod N$
$C_{k}=C_{k-1}^{e} \bmod N=C_{0}=C$
$\mathrm{M}=C_{k-1} \quad$ because $M^{e} \bmod N=C$
\qquad
\qquad
\qquad
\qquad

Superencryption attack

Simmons, Norris, 1977 \qquad
Typically, number of iterations very large if p and q chosen at random \qquad
Additional protection may be achieved if:
$p-1$ has a large prime factor r_{p} \qquad
$q-1$ has a large prime factor r_{q}
$r_{p}-1$ has a large prime factor t_{p}
$r_{q}-1$ has a large prime factor t_{q}
$e^{(r p-1) / t \mathrm{p}} \bmod \mathrm{r}_{\mathrm{p}} \neq 1$
$e^{(r q-1) / q \mathrm{q}} \bmod \mathrm{r}_{\mathrm{q}} \neq 1$

For these conditions
\# of iterations, $k \geq t_{p} \cdot t_{q}$

Strong primes
Gordon algorithm, based on CRT,
allows to generate strong primes
time to generate a strong prime $=1.2 \cdot$ time to generate a regular prime
Only 20% increase in time

Strong primes		
Most of the large primes generated at random are strong anyway!		
p-1		
k - bits		
$\alpha=\frac{\# \text { bits of } n}{\# \text { bits of the largest }} \begin{gathered} \text { prime factor } \end{gathered}$	2	31%
	3	5\%
	4	0.5\%
	5 9	$\begin{aligned} & 0.035 \% \\ & 0.0000001 \% \end{aligned}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Factoring methods	
General purpose	Time of factoring is much shorter if N or factors of N are of the special form
Time of factoring depends only on the size of N	ECM - Elliptic Curve Method
GNFS - General Number Field Sieve	Pollard's p-1 method QS - Quadratic Sieve
Continued Fraction Method (historical)	SNFS - Special Number Field Sieve

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Special purpose factoring methods	
Name	Condition for a speed-up
ECM - Elliptic Curve Method	One of the factors of N is smaller than 40-45 decimal digits
Pollard's p-1 method	N has a prime factor p such that $p-1$ is B-smooth with respect to some relatively small bound B $p-1$ is B-smooth if $p-1=p_{1}{ }^{\mathrm{el}} p_{2}{ }^{\mathrm{e} 2} \ldots . . p_{\mathrm{k}}{ }^{\mathrm{ck}}$, where $p_{i}<B$ for all i
Cyclotomic polynomial method	N has a prime factor p such that $p+1$ is B-smooth with respect to some relatively small bound B
Special Number Field Sieve - SNFS	N is of the form $r^{e}-s$ for small r and $\|s\|$

RSA for paranoids

Rationale
Shamir 1995

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

