ECE297:11 Lecture 13

RSA – implementation issues & countermeasures against known attacks

Number of bits vs. number of decimal digits			
$10^{\#\text{digits}} = 2^{\#\text{bits}}$			
#digits = $(\log_{10} 2) \cdot $ #bits $\approx 0.30 \cdot $ #bits			
256 bits = 77 D 384 bits = 116 D 512 bits = 154 D 768 bits = 231 D 1024 bits = 308 D 2048 bits = 616 D			

How to perform exponentiation efficiently?

 $Y = X^E \ mod \ N \ = X \cdot X \cdot X \cdot X \cdot X \cdot X \ \dots \ \cdot X \cdot X \ mod \ N$

E-times

E may be in the range of $2^{1024} \approx 10^{308}$

Problems:

- 1. huge storage necessary to store M^e before reduction
- 2. amount of computations infeasible to perform

Solutions:

- 1. modulo reduction after each multiplication
- 2. clever algorithms
 - 200 BC, India, "Chandah-Sûtra"

$$\begin{array}{c} \mbox{Right-to-left binary exponentiation} \\ \mbox{$Y = X^E$ mod N} \\ \mbox{$E = (e_{L-1}, e_{L-2}, ..., e_1, e_0)_2$} \\ \mbox{$S: X X^2 mod N X^4 mod N X^8 mod N $...$ X^{2^{L-1}}$ mod N \\ \mbox{$E: e_0 e_1 e_2 e_3 $...$ e_{L-1} \\ \mbox{$Y = $X^{e_0} \cdot (X^2$ mod N)^{e_1} \cdot (X^4$ mod N)^{e_2} \cdot (X^8$ mod N)^{e_3} \cdot $...$ $(X^{2^{L-1}$ mod N)^{e_{L-1}$}$ \\ \mbox{$| $| $(X^a)^b = X^{ab}$ $X^a \cdot X^b = X^{a+b}$ $| $ \\ \end{array} \\ \mbox{$Y = X^{e_0 + 2} \cdot e_1 + 4 \cdot e_2 + 8 \cdot e_3 + 2^{L-1} \cdot e_{L-1}$ \\ \mbox{$mod N = $\sum_{i=0}^{L-1} e_i \cdot 2^i$ $= X^E mod N $} \end{array}$$

Right-to-left binary exponentiation: Example $Y = 3^{19} \mod 11$ $E = 19 = 16 + 2 + 1 = (10011)_2$ S: X $X^2 \mod N$ $\mathrm{X}^4 \bmod \mathrm{N}$ $X^8 \mod N$ $X^{16} \mod N$ $3^2 \mod 11 = 9$ $9^2 \mod 11 = 4$ $4^2 \mod 11 = 5$ $5^2 \mod 11 = 3$ 3 e_1 E: e_0 e_2 e_3 e_4 1 0 0 1 1 $\mathbf{Y} = \mathbf{X} \cdot \mathbf{X}^2 \bmod \mathbf{N} \cdot \mathbf{1}$ $\cdot \qquad 1 \qquad \cdot \qquad X^{16} \ \ \text{mod} \ N \ = \ \\$ 3.9 3 mod 11 · 1 . 1 . X ¹⁹ mod N = $(27 \mod 11) \cdot 3 \mod 11 = 5 \cdot 3 \mod 11 = 4$

$$\begin{array}{c|c} \textbf{Left-to-right binary exponentiation} \\ Y = X^{E} \mbox{ mod } N \\ E = (e_{L-1}, e_{L-2}, \dots, e_{1}, e_{0})_{2} \\ E: e_{L-1} e_{L-2} e_{L-3} \dots e_{1} e_{0} \\ Y = ((\dots(((1^{2} \cdot X^{e_{L-1}})^{2} \cdot X^{e_{L-2}})^{2} \cdot X^{e_{L-3}})^{2} \dots)^{2} \cdot X^{e_{1}})^{2} \cdot X^{e_{0}} \mbox{ mod } N \\ & | (X^{a})^{b} = X^{ab} X^{a} \cdot X^{b} = X^{a+b} | \\ Y = X \stackrel{(e_{L-1} \cdot 2 + e_{L-2}) \cdot 2 + e_{L-3}) \cdot 2 + \dots + e_{1}) \cdot 2 + e_{0}}{mod \ N} = \\ = X \stackrel{2^{L-1} \cdot e_{L-1} + 2^{L-2} \cdot e_{L-2} + 2^{L-3} \cdot e_{L-3} + \dots + 2 \cdot e_{1} + e_{0}}{mod \ N} = X \stackrel{\sum_{i=0}^{L-1} e_{i} \cdot 2^{i}}{mod \ N} = \\ = X^{E} \ mod \ N \end{array}$$

Left-to-right binary exponentiation: Example $Y = 3^{19} \mod 11$ $E = 19 = 16 + 2 + 1 = (10011)_2$ E: e_4 e_3 e_2 e_1 e_0 1 0 0 1 1 $\mathbf{Y} = ((...(((1^2 \cdot \mathbf{X})^2 \cdot 1)^2 \cdot 1)^2 \cdot \mathbf{X})^2)^2$ $\cdot X \mod N$ $= (((3^2 \mod 11))^2 \mod 11)^2 \mod 11 \cdot 3)^2 \mod 11 \cdot 3 \mod 11$ $(81 \mod 11)^2 \mod 11 \cdot 3)^2 \mod 11 \cdot 3 \mod 11 =$ = $(5 \cdot 3)^2 \mod 11 \cdot 3 \mod 11 =$ = $4^2 \mod 11 \cdot 3 \mod 11$ = = $5 \cdot 3 \mod 11 = 4$ = $Y = (X^8 \cdot X)^2 \cdot X \mod N = X^{19} \mod N$

Right-to-left binaryLeft-to-right binexponentiationexponentiation					inar ion	y						
$12 = (1 \ 1 \ 0 \ 0)_2$												
						I						
i		0	1	2	3		i		3	2	1	0
ei		0	0	1	1		e		1	1	0	0
S _{before}		7	5	3	9		Ŷ	1	7	2	4	5
Y _{after}	1	1	1	3	5			-	1		1	1
S _{after}	7	5	3	9	4							

	SOFTWARE	HARDWARE
Iodular Iultiplication	$c_{sm} \cdot k^2$	c _{hm} · k
Iodular xponentiation	$c_{sme} \cdot k^2 \cdot L$	$c_{hme} \cdot k \cdot L$

Time of the RSA operations as a function of the key size k				
	SOFTWARE	HARDWARE		
Encryption/ Signature verification with a small exponent e	c _{se} ⋅ k ²	c _{he} · k		
Decryption / Signature generation	$c_{sd} \cdot k^3$	$c_{hd} \cdot k^2$		
Key Generation	$c_{sk} \cdot k^4 / log_2 k$	$c_{hk} \cdot k^3 / log_2 k$		
Factorization (breaking RSA)	$\exp(c_{sf} \cdot k^{1/3} \cdot (\ln k)^{2/3})$			

Time of decryption
without and with Chinese Remainder TheoremSOFTWAREWithout CRT $t_{DEC}(k) = t_{EXP}(random e, k, L=k) = c_s \cdot k^3$ With CRT $t_{DEC-CRT}(k) \approx 2 \cdot t_{EXP}(random e, k/2, L=k/2) = 2 \cdot c_s \cdot (\frac{k}{2})^3 = \frac{1}{4} t_{DEC}(k)$ HARDWAREWithout CRT $t_{DEC}(k) = t_{EXP}(random e, k, L=k) = c_h \cdot k^2$ With CRT $t_{DEC}(k) \approx t_{EXP}(random e, k/2, L=k/2) = c_h \cdot (\frac{k}{2})^2 = \frac{1}{4} t_{DEC}(k)$

Chinese Remainder Theorem

Let

 $\mathbf{N} = \mathbf{n}_1 \cdot \mathbf{n}_2 \cdot \mathbf{n}_3 \ \dots \cdot \mathbf{n}_M$

and

for any i, j $gcd(n_i, n_j) = 1$

Then, any number $0 \le A \le N-1$

can be represented uniquely by

 $\mathbf{A} \longleftrightarrow (\mathbf{a}_1 = \mathbf{A} \bmod \mathbf{n}_1, \ \mathbf{a}_2 = \mathbf{A} \bmod \mathbf{n}_2, \ \ldots, \ \mathbf{a}_{\mathbf{M}} = \mathbf{A} \bmod \mathbf{n}_{\mathbf{M}})$

A can be reconstructed from $(a_1, a_2, ..., a_M)$ using equation

 $\mathbf{A} = \sum_{i=1}^{M} (\mathbf{a}_i \cdot \mathbf{N}_i \cdot \mathbf{N}_i^{-1} \mod \mathbf{n}_i) \mod \mathbf{N} \qquad \text{where} \quad \mathbf{N}_i = \frac{\mathbf{N}}{\mathbf{n}_i} = \\ = \mathbf{n}_1 \cdot \mathbf{n}_2 \cdot ... \cdot \mathbf{n}_{i-1} \cdot \mathbf{n}_{i+1} \cdot ... \cdot \mathbf{n}_M$

RSA – countermeasures against known attacks

Wiener's attack
If $d < N^{1/4}$
N
d
d can be mathematically reconstructed from e and N
Countermeasure:
Choose e, p , and q first
Compute $d = e^{-1} \mod (p-1)(q-1)$
Check if $d > N^{1/4}$

Recovering RSA-encrypted messages without a private key (1) Guessing a set of possible messages					
E _r	public_key_of_FBI(name of the congress member who committed a tax fraud)				
journalist	E public_key_of_FBI (name1) E public_key_of_FBI (name2) E public_key_of_FBI (nameN)				

Simmons, Norris, 1977

 $C_0 = C$ $C_1 = C_0^e \mod N$ $C_2 = C_1^e \mod N$ $C_{k-1} = C_{k-2}^e \mod N$ $C_k = C_{k-1}^e \mod N = C_0 = C$ $M = C_{k-1} \text{ because } M^e \mod N = C$

Strong primes

Gordon algorithm, based on CRT, allows to generate strong primes

time to generate a *strong* prime = $1.2 \cdot$ time to generate a *regular* prime

Only 20 % increase in time

Factoring methods			
General purpose	Special purpose		
Time of factoring depends only on the size of N	Time of factoring is much shorter if N or factors of N are of the special form		
GNFS - General Number Field Sieve QS - Quadratic Sieve Continued Fraction Method <i>(historical)</i>	ECM - Elliptic Curve Method Pollard's p-1 method Cyclotomic polynomial method SNFS - Special Number Field Sieve		

Special purpose factoring methods				
Name	Condition for a speed-up			
ECM - Elliptic Curve Method	One of the factors of <i>N</i> is smaller than 40-45 decimal digits			
Pollard's <i>p</i> -1 method	<i>N</i> has a prime factor <i>p</i> such that <i>p</i> -1 is <i>B</i> -smooth with respect to some relatively small bound <i>B</i>			
	<i>p</i> -1 is <i>B</i> -smooth if			
	$p-1 = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$, where $p_i < B$ for all i			
Cyclotomic polynomial method	N has a prime factor p such that $p+1$ is B-smooth with respect to some relatively small bound B			
Special Number Field Sieve - SNFS	N is of the form r^e - s for small r and $ s $			
	1			

RSA for paranoids <i>Rationale</i>	Shamir 1995
Size of $N(k)$	
$\begin{array}{rcl} 500 \text{ bits } & \rightarrow & 5000 \text{ bits} \\ 150 \text{ D} & \rightarrow & 1500 \text{ D} \end{array}$	
<i>Time of decipherment</i> $t_{DEC} = c \cdot k^3$	
k increases 10 times t _{DEC} increases 1000 times	$(500 \rightarrow 5000)$ $(1 \text{ s} \rightarrow 16 \text{ min})$

	RSA for par Solution	ranoids 1 (1)	Shamir 1995
Choose			
	<i>p</i> - 500 bits	<i>q</i> - 4500) bits
	<i>N</i> - 5000 bits	s (<i>k</i> =5000)	
Security:			
As resistant	as classical RSA witl factorin resistant against knov	h <i>k</i> =5000 ag g. wn special p	gainst general purpose purpose methods.

	RSA for paranoids Solution (2)	Shamir 1995		
Make				
	$M \in (0, p-1)$ 500 bits $e \in (20, 100)$ 5-7 bits $d \in (0, \varphi(N))$ 5000 bits			
Ciphering:	Deciphering:			
$C = M^{e} \mod N$	$M_p = C_p^{dp} \mod p$	$p = M \mod p = M$		
	where $C_p = C \text{ m}$ $d_p = d \text{ m}$	od <i>p</i> od <i>p-1</i>		
Efficiency:				
Time of deciphering the same as in regular RSA with $k=500$				