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RSA – implementation issues
&  countermeasures against 

known attacks

ECE297:11  Lecture 13

Number  of bits vs. number  of decimal digits

10#digits  = 2#bits

#digits = (log10 2) · #bits ≈≈≈≈ 0.30 · #bits

256 bits  =   77 D
384 bits  = 116 D
512 bits  = 154 D
768 bits  = 231 D
1024 bits = 308 D
2048 bits = 616 D



2

How to per form exponentiation efficiently?

Problems:

Y = XE mod N  = X ⋅ X ⋅ X ⋅ X ⋅ X … ⋅ X ⋅ X  mod N

E-times

E  may be in the range of  21024  ≈ 10308

1.  huge storage necessary to store Me before reduction

2.  amount of computations infeasible to perform

Solutions:

1. modulo reduction after each multiplication
2. clever algorithms

200 BC, India, “ Chandah-Sûtra”

Right-to-left binary  exponentiation

S: X X2 mod N          X4 mod N       X8 mod N      …     X2         mod N
L-1

E:   e0 e1 e2 e3 …          eL-1

Y =   X ⋅ (X2 mod N) ⋅ (X4 mod N)   ⋅ (X8 mod N) ⋅ …  ⋅ (X2       mod N)

E = (eL-1, eL-2, …, e1, e0)2

e0 e1 e2
e3 eL-1

Y = X
e0 + 2⋅e1 + 4⋅e2 + 8⋅e3 + 2L-1 ⋅eL-1

mod N  =

Xa ⋅ Xb = Xa+b(Xa)b = Xab

= X                    =   XE mod N
∑
i=0

L-1

ei ⋅ 2i

L-1

Y = XE mod N
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Right-to-left binary  exponentiation: Example

S: X X2 mod N          X4 mod N          X8 mod N          X16   mod N

E: e0 e1 e2 e3 e4

1           1                        0                  0                       1

Y =      X   ⋅ X2 mod N      ⋅ 1         ⋅ 1          ⋅ X16   mod N  =

E = 19 = 16 + 2 + 1 = (10011)2

=      X 19 mod N

Y = 319 mod 11

3      32 mod 11 =9     92 mod 11 = 4    42 mod 11 = 5  52 mod 11 = 3

3    ⋅ 9             ⋅ 1           ⋅ 1          ⋅ 3 mod 11 

(27 mod 11) ⋅ 3 mod 11 = 5 ⋅ 3  mod 11 = 4

Left-to-r ight binary  exponentiation

E:   eL-1 eL-2 eL-3 …     e1 e0

Y = ((...(((12 ⋅ X )2 ⋅ X       )2 ⋅ X       )2  …. )2 ⋅ X    )2 ⋅ X    mod N

E = (eL-1, eL-2, …, e1, e0)2

eL-1 eL-2 eL-3
e1 e0

Y = X
(eL-1 ⋅ 2 + eL-2) ⋅ 2 + eL-3 ) ⋅ 2 + …. + e1) ⋅ 2 + e0

mod N  =

Xa ⋅ Xb = Xa+b(Xa)b = Xab

=   XE mod N

∑
i=0

L-1

ei ⋅ 2i

Y = XE mod N

= X
2L-1 ⋅eL-1+ 2L-2 ⋅eL-2+ 2L-3 ⋅eL-3 +…+2⋅e1+e0

mod N  = X              =
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Left-to-r ight binary  exponentiation: Example

E:   e4 e3 e2 e1 e0

Y =  ((...(((12 ⋅ X )2  ⋅ 1    )2 ⋅ 1  )2      ⋅ X)2 ⋅ X    mod N

Y =  (X8 ⋅ X )2 ⋅ X mod N  =  X19 mod N

E = 19 = 16 + 2 + 1 = (10011)2

Y = 319 mod 11

1             0                 0                   1           1

= (((32 mod 11) )2 mod 11)2 mod 11 ⋅ 3)2 mod 11 ⋅ 3 mod 11 

= (81 mod 11)2 mod 11 ⋅ 3)2 mod 11 ⋅ 3 mod 11  =

=                                          (5 ⋅ 3)2 mod 11 ⋅ 3 mod 11 =

=                                             42 mod 11 ⋅ 3 mod 11     = 

=                                                            5 ⋅ 3 mod 11    =  4

Right-to-left binary 
exponentiation

Left-to-r ight binary 
exponentiation

Exponentiation:    Y = XE mod N

E = (eL-1, eL-2, …, e1, e0)2

Y = 1;
S = X;
for  i=0 to L-1

{
if (ei == 1)
Y = Y ⋅ S mod N;

S = S2 mod N;
}

Y = 1;
for  i=L-1 downto 0

{
Y = Y2 mod N;
if (ei == 1)

Y = Y ⋅ X mod N;
}
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Exponentiation Example:    Y = 712 mod 11

Right-to-left binary 
exponentiation

Left-to-r ight binary 
exponentiation

12 = (1 1 0 0)2

i 0      1      2     3
ei  0      0      1     1
Sbefore 7      5      3     9
Yafter        1     1      1      3     5
Safter             7     5      3      9     4

i 3      2     1     0
ei  1      1     0     0
Y 1     7     2    4      5

Sbefore - S before round i is computed
Safter - S after round i is computed

Right-to-Left Binary Exponentiation in Hardware

M UL SQR

Y SE

output

X1

enable
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Left-to-Right Binary Exponentiation in Hardware

M UL

Y

E

output

X

1

Control
Logic

Basic Operations of RSA

Encryption

Decryption

cipher text

= mod
plaintext public key modulus

public key exponent

plaintext

= mod
cipher text pr ivate key modulus

pr ivate key 
exponent

k-bits k-bits k-bits

k-bits k-bits k-bits

L=k

L < k

C M

e

N

M C

d

N
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Time of exponentiation

tEXP(e, L, k) = #modular_multiplications(e, L) ⋅ tMULMOD(k)

SOFTWARE

#modular_multiplications

e=3

24

e = F4 = 2    + 1

2

17

large random L-bit e L + #ones(1) ≈ ⋅ L
3

2

tMULMOD(k) - time of a single modular multiplication 
of two k-bit numbers modulo a k-bit number

HARDWARE
tMULMOD(k) = csm · k2 tMULMOD(k) = chm · k

e, L

Algor ithms for  Modular  Multiplication

Multiplication

Modular  Reduction

Multiplication combined with
modular  reduction

• Montgomery algorithm

• Paper-and-pencil
• Karatsuba
• Schönhage-Strassen (FFT)

• classical
• Barrett
• Selby-Mitchell

θ(k2)
θ(k3/2)

θ(k ⋅ ln(k))

θ(k2)

θ(k2)
complexity same as multiplication used

θ(k2)
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. . . A0A1An-1 An-2

. . . B0B1Bn-1 Bn-2

D0

D1

D2

. . . C0C1Cn-1 Cn-2. . . CnCn+1C2n-1 C2n-2

D2n-4

D2n-3

D2n-2

. . . . .
3 words

3 words

A

B

C

2 words

2 words

D0 = A0B0

D1 = A0B1 + A1B0

D2 = A0B2 + A1B1 + A2B0

D2n-4 = An-3Bn-1 + An-2Bn-2 + An-1Bn-3

D2n-3 = An-2Bn-1 + An-1Bn-2

D2n-2 = An-1Bn-1

1 word = l bytes = λ bits

Paper-and-Pencil Algor ithm of Multiplication

Assertion:

lg2 n  ≤ λ

x

+

+

+

+

+

Classical Algor ithm (1)

x2n-1 x0. . . x1
x2n-2 x2n-3 xn-1 . . . m0

mn-1 mn-2 . . .:

x0. . . x1
x2n-2 x2n-3 xn-1 . . .

q’n-1 m

x m

–
q’ n-1 =

x2n-1b+ x2n-2

mn-1

q’ n-1 = qn-1 + ε

ε = 0, 1, 2

m0
mn-1 mn-2 . . .

–

x0. . . x1
x2n-3 xn-1 . . .

:

q’ n-2 =
x2n-2b+ x2n-3

mn-1

q’ n-2 = qn-2 + ε

ε = 0, 1, 2

. . . . . . .

x0x1xn-1 . . .
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Modular
Multiplication

Modular  
Exponentiation

SOFTWARE HARDWARE

csm · k2 chm · k

Time of basic operations in software and hardware

csme· k2 · L chme· k · L

Encryption/
Signature ver ification
with a small exponent e

Decryption / 
Signature generation

Key 
Generation

Factor ization
(breaking RSA)

SOFTWARE HARDWARE

cse· k2 che· k

Time of the RSA operations 
as a function of the key size k

csd · k3 chd · k2

csk · k4/log2k chk · k3/log2k

exp(csf · k1/3 · (ln k)2/3)
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Effect of the increase in the computer  speed
on the speed of encryption and decryption in RSA

computer  
speed

operand
size

encryption/decryption
speed

to keep the same security

Decryption using Chinese Remainder  Theorem

=MP
CP P

dP

mod =MQ
CQ Q

dQ

mod

CP = C mod P
dP = d mod (P-1)

CQ = C mod Q
dQ = d mod (Q-1)

= modCM

d

N

M = MP ·RQ + MQ ·RP  mod  N
where

RP = (P-1 mod Q) ·P = PQ-1 mod N

RQ = (Q-1 mod P) ·Q= QP-1 mod N
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Time of decryption 
without and with Chinese Remainder  Theorem

SOFTWARE

HARDWARE

Without CRT

With CRT

tDEC(k) = tEXP(random e, k, L=k) = cs  ⋅ k3

tDEC-CRT(k) ≈ 2 ⋅ tEXP(random e, k/2, L=k/2) = 2  ⋅ cs  ⋅ (   )3 = tDEC(k)
1
4

Without CRT

With CRT

tDEC(k) = tEXP(random e, k, L=k) = ch  ⋅ k2

tDEC-CRT(k) ≈ tEXP(random e, k/2, L=k/2) = ch ⋅ ( )2 = tDEC(k)
1
4

k
2

k
2

Chinese Remainder  Theorem
Let

N = n1 ⋅⋅⋅⋅ n2 ⋅⋅⋅⋅ n3 . . . ⋅⋅⋅⋅ nM

and
for any i, j          gcd(ni, nj) = 1

Then, any number         0  ≤ A ≤ N-1

can be represented uniquely by

A ↔↔↔↔ (a1 = A mod n1,  a2 = A mod n2,  …, aM = A mod nM) 

A can be reconstructed from (a1, a2, …, aM) using equation

A = ∑
i=1

M

(ai  ⋅⋅⋅⋅ Ni ⋅⋅⋅⋅ Ni
-1 mod ni) mod N

where   Ni = N
ni

= n1⋅ n2 ⋅...⋅ ni-1 ⋅ ni+1 ⋅... ⋅ nM

=
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Chinese Remainder  Theorem
for  N=P ⋅⋅⋅⋅ Q

N = P ⋅ Q gcd(P, Q) = 1

M ↔↔↔↔ (M p = M mod P, M Q = M mod Q)

M = MP ⋅ N
P

⋅ N
P

-1
mod P + N

Q
⋅ N

Q

-1
mod QMQ ⋅ mod N

= MP ⋅ Q ⋅ ((Q-1) mod P)  + MQ ⋅ P ⋅ ((P-1) mod Q) mod N =

= MP ⋅ RQ + MQ ⋅ RP mod N

Concealment of messages in the RSA cryptosystem
Blakley, Borosh, 1979

There exist messages that are not changed by the RSA encryption!

For example:

M=1                              C = 1e mod N = 1
M=0                              C = 0e mod N = 0
M=n-1≡-1 mod N C = (-1)e mod N = -1

Every M such that
Mp = M mod p ∈ { 1, 0, -1}
Mq = M mod q ∈ { 1, 0, -1}  

Cp = C mod p = Me mod p = Mp
e mod p = Mp

Cq = C mod q = Me mod q = Mq
e mod q = Mq
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Concealment of messages in the RSA cryptosystem
Blakley, Borosh, 1979

At least 9 messages not concealed by RSA!

Number of messages not concealed by RSA:

σ = (1 + gcd(e-1, p-1)) · (1 + gcd(e-1, q-1)) 

A. e=3                  σ = 9

B. gcd(e-1, p-1) = 2   and gcd(e-1, q-1) = 2               σ = 9

C. gcd(e-1, p-1) = p-1   and gcd(e-1, q-1) = q-1        σ = p·q=N

I t is possible that all messages remain unconcealed by RSA!

Generation of the RSA keys

e Typically 
e = 3 or
e = 216 + 1

P, Q

prime number
generation

gcd(e, P-1) = 1
gcd(e, Q-1) = 1

N = P · Q

Extended Euclid’s 
algorithm

d = e-1 mod (P-1) ·(Q-1)

gcd(e-1, P-1) = 2
gcd(e-1, Q-1) = 2
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RSA – countermeasures
against known attacks

Wiener ’s attack

If   d < N 1/4

N

d

d can be mathematically reconstructed from e and N

Countermeasure:

Choose e, p, and q first
Compute d = e-1 mod (p-1)(q-1)
Check if  d > N 1/4
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Recover ing RSA-encrypted messages  without a pr ivate key (1)

Guessing a set of possible messages

IRS FBI

E public_key_of_FBI( name of the congress
member who committed

a tax fraud)

journalist E public_key_of_FBI (name1)
E public_key_of_FBI (name2)
………………………..
E public_key_of_FBI (nameN)

Recover ing RSA-encrypted messages  without a pr ivate key (2)

Small e and small messages

e=3

m <  N
1/3

c = m3 mod N = m3

00000000000000000 m

1/3
m

Hastad’s attack

e=3,   m send to three different people

m3 mod  N1

m3 mod  N2

m3 mod  N3

m3 mod N1N2N3 = m3 
1/3

m
CRTPU1 = (3, N1)

PU2 = (3, N2)

PU3 = (3, N3)
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Optimal Assymetr ic Encryption Padding (1)

Bellare-Rogaway

000000001 SEEDmessage

Coding

MASK(SEED)

masked_message

MASK(masked_message)

masked_message masked_seed

>168 bits

Optimal Assymetr ic Encryption Padding (2)

Bellare-Rogaway
Decoding

masked_message masked_seed

MASK(masked_message)

SEED

MASK(SEED)

000000001 message
>168 bits
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M essage

Hash 
function

Public key
algor ithm

Alice
Signature

Alice’s pr ivate key

Bob

Hash 
function

Alice’s public key

RSA signature

Hash value 1

Hash value 2

Hash value

Public key 
algor ithm

yes no

M essage Signature

Padding for  signatures with appendix

PKCS #1 for signatures

00 01  FF FF FF …. FF  00              h(m)

at least 8 bytes

ISO-14888

6  BBBBBBBBBBB  A               h(m)         

33CC for SHA-1
31CC for RIPEMD-160

hash
code
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Superencryption attack
Simmons, Norris, 1977

C0 = C
C1 = C0

e mod N
C2 = C1

e mod N
…………………..

Ck-1 = Ck-2
e mod N

Ck = Ck-1
e mod N = C0 = C

M = Ck-1 because Me mod N = C

Superencryption attack
Simmons, Norris, 1977

Typically, number of iterations very large if p and q chosen at random

Additional protection may be achieved if:

p-1   has a large prime factor rp

q-1   has a large prime factor rq

rp-1  has a large prime factor tp

rq-1  has a large prime factor tq

e(rp-1)/tp mod rp ≠ 1

e(rq-1)/tq mod rq ≠ 1

For these conditions

# of iterations, k ≥ tp · tq
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Strong pr imes

Gordon algorithm, based on CRT, 
allows to generate strong primes

time to generate a strong prime = 1.2 · time to generate a regular prime

Only 20 % increase in time

Most of the large primes generated at random are strong anyway!

Strong pr imes

p-1
k - bits

Largest prime
factor of p-1

< k/α bits
α

fraction of k-bit numbers
whose largest prime factor

has less than k/α bits

2
3
4
5
9

31%
5%
0.5%
0.035%
0.0000001%

α = 
# bits of n

# bits of the largest 
prime factor
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Factor ing methods

General purpose Special purpose

QS - Quadratic Sieve

GNFS - General Number 
Field Sieve

ECM - Elliptic Curve Method

Time of factoring depends
only on the size of N

Time of factoring is much
shorter if N or factors of N

are of the special  form

Pollard’s p-1 method

Cyclotomic polynomial method

SNFS - Special Number Field
Sieve

Continued Fraction Method
(historical)

Special purpose factor ing methods

Condition for  a speed-up

ECM  - Elliptic Curve
M ethod

One of the factors of N is smaller
than 40-45 decimal digits

Name

Pollard’s p-1 method
N has a prime factor p such that p-1 is B-smooth 

with respect to some relatively small bound B

p-1 is B-smooth if

p-1 = p1
e1p2

e2 ·...· pk
ek, where pi < B for all i

Cyclotomic polynomial
method

N has a prime factor p such that p+1 is B-smooth 
with respect to some relatively small bound B

Special Number
Field Sieve - SNFS N is of the form re - s for small r and |s|
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RSA for  paranoids
Rationale Shamir 1995

Size of N (k)

500 bits   → 5000 bits
150 D      → 1500 D

Time of decipherment tDEC = c·k3

k        increases              10  times    (500→5000)
t DEC increases          1000 times    (1 s → 16 min)

RSA for  paranoids
Solution (1) Shamir 1995

Choose

p - 500 bits q - 4500 bits

N - 5000 bits   (k=5000)

As resistant as classical RSA with k=5000 against general purpose 
factoring.

Sufficiently resistant against known special purpose methods.

Secur ity:
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Decryption using Chinese Remainder  Theorem

=MP
CP P

dP

mod =MQ
CQ Q

dQ

mod

CP = C mod P
dP = d mod (P-1)

CQ = C mod Q
dQ = d mod (Q-1)

= modCM

d

N

M = MP ·RQ + MQ ·RP  mod  N
where

RP = (P-1 mod Q) ·P = PQ-1 mod N

RQ = (Q-1 mod P) ·Q= QP-1 mod N

Efficiency:

Time of deciphering the same as in regular RSA with k=500  

RSA for  paranoids
Solution (2) Shamir 1995

Make

M ∈ (0, p-1)      500 bits
e ∈ (20, 100)    5-7 bits
d ∈ (0, ϕ(N))    5000 bits

Ciphering: Deciphering:

C = Me mod N Mp = Cp
dp mod p = M mod p = M

where  Cp = C mod p
dp = d mod p-1


