
1

RSA – implementation issues
& countermeasures against

known attacks

ECE297:11 Lecture 13

Number of bits vs. number of decimal digits

10#digits = 2#bits

#digits = (log10 2) · #bits ≈≈≈≈ 0.30 · #bits

256 bits = 77 D
384 bits = 116 D
512 bits = 154 D
768 bits = 231 D
1024 bits = 308 D
2048 bits = 616 D

2

How to per form exponentiation efficiently?

Problems:

Y = XE mod N = X ⋅ X ⋅ X ⋅ X ⋅ X … ⋅ X ⋅ X mod N

E-times

E may be in the range of 21024 ≈ 10308

1. huge storage necessary to store Me before reduction

2. amount of computations infeasible to perform

Solutions:

1. modulo reduction after each multiplication
2. clever algorithms

200 BC, India, “ Chandah-Sûtra”

Right-to-left binary exponentiation

S: X X2 mod N X4 mod N X8 mod N … X2 mod N
L-1

E: e0 e1 e2 e3 … eL-1

Y = X ⋅ (X2 mod N) ⋅ (X4 mod N) ⋅ (X8 mod N) ⋅ … ⋅ (X2 mod N)

E = (eL-1, eL-2, …, e1, e0)2

e0 e1 e2
e3 eL-1

Y = X
e0 + 2⋅e1 + 4⋅e2 + 8⋅e3 + 2L-1 ⋅eL-1

mod N =

Xa ⋅ Xb = Xa+b(Xa)b = Xab

= X = XE mod N
∑
i=0

L-1

ei ⋅ 2i

L-1

Y = XE mod N

3

Right-to-left binary exponentiation: Example

S: X X2 mod N X4 mod N X8 mod N X16 mod N

E: e0 e1 e2 e3 e4

1 1 0 0 1

Y = X ⋅ X2 mod N ⋅ 1 ⋅ 1 ⋅ X16 mod N =

E = 19 = 16 + 2 + 1 = (10011)2

= X 19 mod N

Y = 319 mod 11

3 32 mod 11 =9 92 mod 11 = 4 42 mod 11 = 5 52 mod 11 = 3

3 ⋅ 9 ⋅ 1 ⋅ 1 ⋅ 3 mod 11

(27 mod 11) ⋅ 3 mod 11 = 5 ⋅ 3 mod 11 = 4

Left-to-r ight binary exponentiation

E: eL-1 eL-2 eL-3 … e1 e0

Y = ((...(((12 ⋅ X)2 ⋅ X)2 ⋅ X)2 ….)2 ⋅ X)2 ⋅ X mod N

E = (eL-1, eL-2, …, e1, e0)2

eL-1 eL-2 eL-3
e1 e0

Y = X
(eL-1 ⋅ 2 + eL-2) ⋅ 2 + eL-3) ⋅ 2 + …. + e1) ⋅ 2 + e0

mod N =

Xa ⋅ Xb = Xa+b(Xa)b = Xab

= XE mod N

∑
i=0

L-1

ei ⋅ 2i

Y = XE mod N

= X
2L-1 ⋅eL-1+ 2L-2 ⋅eL-2+ 2L-3 ⋅eL-3 +…+2⋅e1+e0

mod N = X =

4

Left-to-r ight binary exponentiation: Example

E: e4 e3 e2 e1 e0

Y = ((...(((12 ⋅ X)2 ⋅ 1)2 ⋅ 1)2 ⋅ X)2 ⋅ X mod N

Y = (X8 ⋅ X)2 ⋅ X mod N = X19 mod N

E = 19 = 16 + 2 + 1 = (10011)2

Y = 319 mod 11

1 0 0 1 1

= (((32 mod 11))2 mod 11)2 mod 11 ⋅ 3)2 mod 11 ⋅ 3 mod 11

= (81 mod 11)2 mod 11 ⋅ 3)2 mod 11 ⋅ 3 mod 11 =

= (5 ⋅ 3)2 mod 11 ⋅ 3 mod 11 =

= 42 mod 11 ⋅ 3 mod 11 =

= 5 ⋅ 3 mod 11 = 4

Right-to-left binary
exponentiation

Left-to-r ight binary
exponentiation

Exponentiation: Y = XE mod N

E = (eL-1, eL-2, …, e1, e0)2

Y = 1;
S = X;
for i=0 to L-1

{
if (ei == 1)
Y = Y ⋅ S mod N;

S = S2 mod N;
}

Y = 1;
for i=L-1 downto 0

{
Y = Y2 mod N;
if (ei == 1)

Y = Y ⋅ X mod N;
}

5

Exponentiation Example: Y = 712 mod 11

Right-to-left binary
exponentiation

Left-to-r ight binary
exponentiation

12 = (1 1 0 0)2

i 0 1 2 3
ei 0 0 1 1
Sbefore 7 5 3 9
Yafter 1 1 1 3 5
Safter 7 5 3 9 4

i 3 2 1 0
ei 1 1 0 0
Y 1 7 2 4 5

Sbefore - S before round i is computed
Safter - S after round i is computed

Right-to-Left Binary Exponentiation in Hardware

M UL SQR

Y SE

output

X1

enable

6

Left-to-Right Binary Exponentiation in Hardware

M UL

Y

E

output

X

1

Control
Logic

Basic Operations of RSA

Encryption

Decryption

cipher text

= mod
plaintext public key modulus

public key exponent

plaintext

= mod
cipher text pr ivate key modulus

pr ivate key
exponent

k-bits k-bits k-bits

k-bits k-bits k-bits

L=k

L < k

C M

e

N

M C

d

N

7

Time of exponentiation

tEXP(e, L, k) = #modular_multiplications(e, L) ⋅ tMULMOD(k)

SOFTWARE

#modular_multiplications

e=3

24

e = F4 = 2 + 1

2

17

large random L-bit e L + #ones(1) ≈ ⋅ L
3

2

tMULMOD(k) - time of a single modular multiplication
of two k-bit numbers modulo a k-bit number

HARDWARE
tMULMOD(k) = csm · k2 tMULMOD(k) = chm · k

e, L

Algor ithms for Modular Multiplication

Multiplication

Modular Reduction

Multiplication combined with
modular reduction

• Montgomery algorithm

• Paper-and-pencil
• Karatsuba
• Schönhage-Strassen (FFT)

• classical
• Barrett
• Selby-Mitchell

θ(k2)
θ(k3/2)

θ(k ⋅ ln(k))

θ(k2)

θ(k2)
complexity same as multiplication used

θ(k2)

8

. . . A0A1An-1 An-2

. . . B0B1Bn-1 Bn-2

D0

D1

D2

. . . C0C1Cn-1 Cn-2. . . CnCn+1C2n-1 C2n-2

D2n-4

D2n-3

D2n-2

.
3 words

3 words

A

B

C

2 words

2 words

D0 = A0B0

D1 = A0B1 + A1B0

D2 = A0B2 + A1B1 + A2B0

D2n-4 = An-3Bn-1 + An-2Bn-2 + An-1Bn-3

D2n-3 = An-2Bn-1 + An-1Bn-2

D2n-2 = An-1Bn-1

1 word = l bytes = λ bits

Paper-and-Pencil Algor ithm of Multiplication

Assertion:

lg2 n ≤ λ

x

+

+

+

+

+

Classical Algor ithm (1)

x2n-1 x0. . . x1
x2n-2 x2n-3 xn-1 . . . m0

mn-1 mn-2 . . .:

x0. . . x1
x2n-2 x2n-3 xn-1 . . .

q’n-1 m

x m

–
q’ n-1 =

x2n-1b+ x2n-2

mn-1

q’ n-1 = qn-1 + ε

ε = 0, 1, 2

m0
mn-1 mn-2 . . .

–

x0. . . x1
x2n-3 xn-1 . . .

:

q’ n-2 =
x2n-2b+ x2n-3

mn-1

q’ n-2 = qn-2 + ε

ε = 0, 1, 2

.

x0x1xn-1 . . .

9

Modular
Multiplication

Modular
Exponentiation

SOFTWARE HARDWARE

csm · k2 chm · k

Time of basic operations in software and hardware

csme· k2 · L chme· k · L

Encryption/
Signature ver ification
with a small exponent e

Decryption /
Signature generation

Key
Generation

Factor ization
(breaking RSA)

SOFTWARE HARDWARE

cse· k2 che· k

Time of the RSA operations
as a function of the key size k

csd · k3 chd · k2

csk · k4/log2k chk · k3/log2k

exp(csf · k1/3 · (ln k)2/3)

10

Effect of the increase in the computer speed
on the speed of encryption and decryption in RSA

computer
speed

operand
size

encryption/decryption
speed

to keep the same security

Decryption using Chinese Remainder Theorem

=MP
CP P

dP

mod =MQ
CQ Q

dQ

mod

CP = C mod P
dP = d mod (P-1)

CQ = C mod Q
dQ = d mod (Q-1)

= modCM

d

N

M = MP ·RQ + MQ ·RP mod N
where

RP = (P-1 mod Q) ·P = PQ-1 mod N

RQ = (Q-1 mod P) ·Q= QP-1 mod N

11

Time of decryption
without and with Chinese Remainder Theorem

SOFTWARE

HARDWARE

Without CRT

With CRT

tDEC(k) = tEXP(random e, k, L=k) = cs ⋅ k3

tDEC-CRT(k) ≈ 2 ⋅ tEXP(random e, k/2, L=k/2) = 2 ⋅ cs ⋅ ()3 = tDEC(k)
1
4

Without CRT

With CRT

tDEC(k) = tEXP(random e, k, L=k) = ch ⋅ k2

tDEC-CRT(k) ≈ tEXP(random e, k/2, L=k/2) = ch ⋅ ()2 = tDEC(k)
1
4

k
2

k
2

Chinese Remainder Theorem
Let

N = n1 ⋅⋅⋅⋅ n2 ⋅⋅⋅⋅ n3 . . . ⋅⋅⋅⋅ nM

and
for any i, j gcd(ni, nj) = 1

Then, any number 0 ≤ A ≤ N-1

can be represented uniquely by

A ↔↔↔↔ (a1 = A mod n1, a2 = A mod n2, …, aM = A mod nM)

A can be reconstructed from (a1, a2, …, aM) using equation

A = ∑
i=1

M

(ai ⋅⋅⋅⋅ Ni ⋅⋅⋅⋅ Ni
-1 mod ni) mod N

where Ni = N
ni

= n1⋅ n2 ⋅...⋅ ni-1 ⋅ ni+1 ⋅... ⋅ nM

=

12

Chinese Remainder Theorem
for N=P ⋅⋅⋅⋅ Q

N = P ⋅ Q gcd(P, Q) = 1

M ↔↔↔↔ (M p = M mod P, M Q = M mod Q)

M = MP ⋅ N
P

⋅ N
P

-1
mod P + N

Q
⋅ N

Q

-1
mod QMQ ⋅ mod N

= MP ⋅ Q ⋅ ((Q-1) mod P) + MQ ⋅ P ⋅ ((P-1) mod Q) mod N =

= MP ⋅ RQ + MQ ⋅ RP mod N

Concealment of messages in the RSA cryptosystem
Blakley, Borosh, 1979

There exist messages that are not changed by the RSA encryption!

For example:

M=1 C = 1e mod N = 1
M=0 C = 0e mod N = 0
M=n-1≡-1 mod N C = (-1)e mod N = -1

Every M such that
Mp = M mod p ∈ { 1, 0, -1}
Mq = M mod q ∈ { 1, 0, -1}

Cp = C mod p = Me mod p = Mp
e mod p = Mp

Cq = C mod q = Me mod q = Mq
e mod q = Mq

13

Concealment of messages in the RSA cryptosystem
Blakley, Borosh, 1979

At least 9 messages not concealed by RSA!

Number of messages not concealed by RSA:

σ = (1 + gcd(e-1, p-1)) · (1 + gcd(e-1, q-1))

A. e=3 σ = 9

B. gcd(e-1, p-1) = 2 and gcd(e-1, q-1) = 2 σ = 9

C. gcd(e-1, p-1) = p-1 and gcd(e-1, q-1) = q-1 σ = p·q=N

I t is possible that all messages remain unconcealed by RSA!

Generation of the RSA keys

e Typically
e = 3 or
e = 216 + 1

P, Q

prime number
generation

gcd(e, P-1) = 1
gcd(e, Q-1) = 1

N = P · Q

Extended Euclid’s
algorithm

d = e-1 mod (P-1) ·(Q-1)

gcd(e-1, P-1) = 2
gcd(e-1, Q-1) = 2

14

RSA – countermeasures
against known attacks

Wiener ’s attack

If d < N 1/4

N

d

d can be mathematically reconstructed from e and N

Countermeasure:

Choose e, p, and q first
Compute d = e-1 mod (p-1)(q-1)
Check if d > N 1/4

15

Recover ing RSA-encrypted messages without a pr ivate key (1)

Guessing a set of possible messages

IRS FBI

E public_key_of_FBI(name of the congress
member who committed

a tax fraud)

journalist E public_key_of_FBI (name1)
E public_key_of_FBI (name2)
………………………..
E public_key_of_FBI (nameN)

Recover ing RSA-encrypted messages without a pr ivate key (2)

Small e and small messages

e=3

m < N
1/3

c = m3 mod N = m3

00000000000000000 m

1/3
m

Hastad’s attack

e=3, m send to three different people

m3 mod N1

m3 mod N2

m3 mod N3

m3 mod N1N2N3 = m3
1/3

m
CRTPU1 = (3, N1)

PU2 = (3, N2)

PU3 = (3, N3)

16

Optimal Assymetr ic Encryption Padding (1)

Bellare-Rogaway

000000001 SEEDmessage

Coding

MASK(SEED)

masked_message

MASK(masked_message)

masked_message masked_seed

>168 bits

Optimal Assymetr ic Encryption Padding (2)

Bellare-Rogaway
Decoding

masked_message masked_seed

MASK(masked_message)

SEED

MASK(SEED)

000000001 message
>168 bits

17

M essage

Hash
function

Public key
algor ithm

Alice
Signature

Alice’s pr ivate key

Bob

Hash
function

Alice’s public key

RSA signature

Hash value 1

Hash value 2

Hash value

Public key
algor ithm

yes no

M essage Signature

Padding for signatures with appendix

PKCS #1 for signatures

00 01 FF FF FF …. FF 00 h(m)

at least 8 bytes

ISO-14888

6 BBBBBBBBBBB A h(m)

33CC for SHA-1
31CC for RIPEMD-160

hash
code

18

Superencryption attack
Simmons, Norris, 1977

C0 = C
C1 = C0

e mod N
C2 = C1

e mod N
…………………..

Ck-1 = Ck-2
e mod N

Ck = Ck-1
e mod N = C0 = C

M = Ck-1 because Me mod N = C

Superencryption attack
Simmons, Norris, 1977

Typically, number of iterations very large if p and q chosen at random

Additional protection may be achieved if:

p-1 has a large prime factor rp

q-1 has a large prime factor rq

rp-1 has a large prime factor tp

rq-1 has a large prime factor tq

e(rp-1)/tp mod rp ≠ 1

e(rq-1)/tq mod rq ≠ 1

For these conditions

of iterations, k ≥ tp · tq

19

Strong pr imes

Gordon algorithm, based on CRT,
allows to generate strong primes

time to generate a strong prime = 1.2 · time to generate a regular prime

Only 20 % increase in time

Most of the large primes generated at random are strong anyway!

Strong pr imes

p-1
k - bits

Largest prime
factor of p-1

< k/α bits
α

fraction of k-bit numbers
whose largest prime factor

has less than k/α bits

2
3
4
5
9

31%
5%
0.5%
0.035%
0.0000001%

α =
bits of n

bits of the largest
prime factor

20

Factor ing methods

General purpose Special purpose

QS - Quadratic Sieve

GNFS - General Number
Field Sieve

ECM - Elliptic Curve Method

Time of factoring depends
only on the size of N

Time of factoring is much
shorter if N or factors of N

are of the special form

Pollard’s p-1 method

Cyclotomic polynomial method

SNFS - Special Number Field
Sieve

Continued Fraction Method
(historical)

Special purpose factor ing methods

Condition for a speed-up

ECM - Elliptic Curve
M ethod

One of the factors of N is smaller
than 40-45 decimal digits

Name

Pollard’s p-1 method
N has a prime factor p such that p-1 is B-smooth

with respect to some relatively small bound B

p-1 is B-smooth if

p-1 = p1
e1p2

e2 ·...· pk
ek, where pi < B for all i

Cyclotomic polynomial
method

N has a prime factor p such that p+1 is B-smooth
with respect to some relatively small bound B

Special Number
Field Sieve - SNFS N is of the form re - s for small r and |s|

21

RSA for paranoids
Rationale Shamir 1995

Size of N (k)

500 bits → 5000 bits
150 D → 1500 D

Time of decipherment tDEC = c·k3

k increases 10 times (500→5000)
t DEC increases 1000 times (1 s → 16 min)

RSA for paranoids
Solution (1) Shamir 1995

Choose

p - 500 bits q - 4500 bits

N - 5000 bits (k=5000)

As resistant as classical RSA with k=5000 against general purpose
factoring.

Sufficiently resistant against known special purpose methods.

Secur ity:

22

Decryption using Chinese Remainder Theorem

=MP
CP P

dP

mod =MQ
CQ Q

dQ

mod

CP = C mod P
dP = d mod (P-1)

CQ = C mod Q
dQ = d mod (Q-1)

= modCM

d

N

M = MP ·RQ + MQ ·RP mod N
where

RP = (P-1 mod Q) ·P = PQ-1 mod N

RQ = (Q-1 mod P) ·Q= QP-1 mod N

Efficiency:

Time of deciphering the same as in regular RSA with k=500

RSA for paranoids
Solution (2) Shamir 1995

Make

M ∈ (0, p-1) 500 bits
e ∈ (20, 100) 5-7 bits
d ∈ (0, ϕ(N)) 5000 bits

Ciphering: Deciphering:

C = Me mod N Mp = Cp
dp mod p = M mod p = M

where Cp = C mod p
dp = d mod p-1

