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RSA – Genesis, operation & 
security

ECE297:11 Lecture 12

Public Key (Asymmetric) Cryptosystems

Public key of Bob - KB Private key of Bob - kB

Alice Bob

Network

Encryption Decryption

Trap-door one-way function

X f(X) Y

f-1(Y)

Whitfield Diffie and Martin Hellman
“New directions in cryptography,”  1976

PUBLIC KEY

PRIVATE  KEY



2

Professional (NSA) vs. amateur (academic)
approach to designing ciphers

1. Know how to break Russian

ciphers

2. Use only well-established

proven methods

3. Hire 50,000 mathematicians

4. Cooperate with an industry 

giant

5. Keep as much as possible 

secret

1. Know nothing about 

cryptology

2. Think of revolutionary

ideas

3. Go for skiing

4. Publish in “Scientific 

American”

5. Offer a $100 award for 

breaking  the cipher

Challenge published in Scientific American

9686 9613 7546 2206 1477 1409 2225 4355
8829 0575 9991 1245 7431 9874 6951 2093
0816 2982 2514 5708 3569 3147 6622 8839
8962 8013 3919 9055 1829 9451 5781 5145

Ciphertext:

Public key:

N = 114381625757 88886766923577997614
661201021829672124236256256184293
570693524573389783059712356395870
5058989075147599290026879543541

(129 decimal digits)e = 9007

Award 100 $

1977

RSA as a trap-door one-way function

M C = f(M) = Me mod N C

M = f-1(C) = Cd mod N

PUBLIC KEY

PRIVATE  KEY

N = P ⋅ Q P, Q - large prime numbers

e ⋅ d  ≡ 1  mod ((P-1)(Q-1))
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RSA keys

PUBLIC KEY PRIVATE KEY

{ e, N } { d, P, Q }

N = P ⋅ Q

e ⋅ d  ≡ 1  mod ((P-1)(Q-1))

P, Q - large prime numbers

Why does RSA work?  (1)

M’ = Cd mod N = (Me mod N)d mod N = M

decrypted
message

original
message

?

e ⋅ d  ≡ 1  mod ((P-1)(Q-1))

e ⋅ d  ≡ 1  mod ϕ(N)

Euler’s totient 
function

Euler’s totient (phi) function (1)

� (N)  - number of integers in the range from 1 to N-1
that are relatively prime with N

Special cases:

1.   P is prime

Relatively prime with P:                 1, 2, 3, …, P-1

2.   N =  P ⋅ Q       P, Q  are prime 

ϕ(N) = (P-1) ⋅(Q-1)

Relatively prime with N:   {1, 2, 3, …, P⋅Q-1} – {P, 2P, 3P, …, (Q-1)P}
– {Q, 2Q, 3Q, …, (P-1)Q}

ϕ(P) = P-1
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Euler’s totient (phi) function (2)

Special cases:

3.   N =  P2 P is prime 

ϕ(N) = P ⋅(P-1)

Relatively prime with N:   {1, 2, 3, … , P2-1} – {P, 2P, 3P, … , (P-1)P}

In general

If  N = P1
e1⋅ P2

e2 ⋅ P3
e3 ⋅ … ⋅ Pt

et

ϕ(N) = ∏ Pi
ei-1 ⋅ (Pi-1)

i=1

t

Euler’s Theorem
Leonard Euler, 1707-1783

�
a: gcd(a, N) = 1

a � (N) { 1  (mod N)

Euler’s Theorem - Justification (1)

For N=10 For arbitrary N

R = {1, 3, 7, 9} R = {x1, x2, … , x 
� (N)}

Let a=3 Let us choose arbitrary a, such that
gcd(a, N) = 1

S = {a⋅x1 mod N, a⋅x2 mod N, … , 
a⋅x ϕ(N)mod N}

S = { 3⋅1 mod 10, 
3⋅3 mod 10, 3⋅7 mod 10,

3⋅9 mod 10 }
= {3, 9, 1, 7} = rearranged set R
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Euler’s Theorem - Justification (2)

For N=10 For arbitrary N

R = S R = S

x1⋅x2 ⋅x3 ⋅x4 ≡
(a⋅x1)⋅ (a⋅x2)⋅(a⋅x3 )⋅(a⋅x4) mod N

x1⋅x2 ⋅x3 ⋅x4 ≡
a4 ⋅ x1⋅x2 ⋅x3 ⋅x4  mod N

a4 ≡ 1  (mod N)

∏
i=1

ϕ(N)

xi ≡ ∏
i=1

ϕ(N)

a ⋅ xi   (mod N)

∏
i=1

ϕ(N)

xi ≡ aϕ(N) ⋅ ∏
i=1

ϕ(N)

xi   (mod N)

a ϕ(N) ≡ 1  (mod N)

Why does RSA work?  (2)

M’  = Cd mod N = (Me mod N)d mod N = 

= Me ⋅d mod N =  

= M1+k⋅ϕ(N) mod N = M ⋅ (Mϕ(N))k mod N =

= M ⋅ (Mϕ(N) mod N)k  mod N =

= M ⋅ 1k mod N = M

e ⋅ d  ≡ 1  mod ϕ(N)
e ⋅ d = 1 + k⋅ϕ(N)

=

Rivest estimation - 1977
The best known algorithm for factoring a 

129-digit number requires:

40 000 trilion years
= 40 · 1015 years

assuming the use of a supercomputer
being able to perform

1 multiplication of 129 decimal digit numbers in 1 ns

Rivest’s assumption translates to the delay of a single logic gate ≈ 10 ps

Estimated age of the universe:   100 bln years = 1011 years
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Early records in factoring large numbers

Years
Number of

decimal 
digits

Number
of bits

Required 
computational

power 
(in MIPS-years)

1974

1984

1991

1992

1993

45

71

100

110

120

149

235

332

365

398

0.001

0.1

7

75

830

How to factor for free?
A. Lenstra & M. Manasse, 1989

• Using the spare time of computers,
(otherwise unused)

• Program and results sent by e-mail
(later using WWW)

Practical implementations of attacks
Factorization, RSA

Year

Number 
of bits
of N

Number of 
decimal digits 

of N 

Estimated amount
of computations

1994

1996

1998

129

130

140 

430

433

467 2000 MIPS-years

5000 MIPS-years

750 MIPS-years

Method

QS

GNFS

GNFS

1999 140 467 8000 MIPS-yearsGNFS
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Breaking RSA-129

When: August 1993 - 1 April 1994, 8 months

Who: D. Atkins, M. Graff, A. K. Lenstra, P. Leyland 
+ 600 volunteers from the entire world

How: 1600 computers
from Cray C90, through 16 MHz PC,

to fax machines

Only 0.03% computational power of the Internet

Results of cryptanalysis:

“The magic words are squeamish ossifrage”

An award of 100 $ donated to Free Software Foundation

Elements affecting the progress
in factoring large numbers

• computational power

• computer networks

� better algorithms

1977-1993  increase of about 1500 times

Internet

Factoring methods

General purpose Special purpose

QS - Quadratic Sieve

GNFS - General Number 
Field Sieve

ECM - Elliptic Curve Method

Time of factoring depends
only on the size of N

Time of factoring is much
shorter if N or factors of N

are of the special  form

Pollard’ s p-1 method

Cyclotomic polynomial method

SNFS - Special Number Field
Sieve

Continued Fraction Method
(historical)
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Running time of factoring algorithms

Lq[α, c] = exp ((c+o(1))·(ln q)α·(ln ln q)1- α)

For � =0

Lq[0, c] = (ln q)(c+o(1))

Algorithm polynomial
as a function of the number
of bits of q

For � =1

Lq[1, c] = exp((c+o(1))·(ln q))

Algorithm exponential
as a function of the number
of bits of q

For   0 < � < 1 Algorithm subexponential
as a function of the number

of bits of q

f(n) = o(1)  if for any positive constant c>0 there exist a constant
n0>0, such that 0 ≤ f(n) < c, for all  n ≥ n0

General purpose factoring methods

size of the factored number 
N in decimal digits (D)

100D 130D

QS more 
efficient

NFS more
efficient

Expected running time

QS NFS

LN[1/2, 1] = exp((1 + o(1))·(ln N)1/2 ))·(ln ln N)1/2)

LN[1/3, 1.92] = exp((1.92 + o(1))·(ln N)1/3 ))·(ln ln N)2/3)

110D 120D

RSA Challenge

RSA-100
RSA-110
RSA-120
RSA-130
RSA-140
RSA-150
RSA-160
RSA-170
RSA-180
..............
RSA-450
RSA-460
RSA-470
RSA-480
RSA-490
RSA-500

Smallest unfactored number

RSA-150

Unused awards accumulate at a rate
of $1750 / quarter
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Factoring 512-bit number
512 bits = 155 decimal digits

old standard for key sizes in RSA

17 March - 22 August 1999

168 workstations SGI and Sun, 175-400 MHz
First stage

Second stage

Cray C916    - 10 days, 2.3 GB RAM

Group of Herman te Riele 
Centre for Mathematics and Computer Science 
(CWI), Amsterdam

120 Pentium PC, 300-450 MHz, 64 MB RAM
4 stations Digital/Compaq, 500 MHz

2 months

TWINKLE 
“The Weizmann INstitute Key Locating Engine”

Adi Shamir, Eurocrypt, May 1999
CHES, August 1999

Electrooptical device capable to speed-up
the first phase of factorization from 100 to 1000 times 

If ever built it would increase the size of the key
that can be broken from 100 to 200 bits

Cost of the device (assuming that the prototype was 
earlier built) - $5000

Recommended key sizes for RSA

Old standard:

New standard:

Individual users

Individual users

Organizations (short term)

Organizations (long term)

512 bits
(155 decimal digits)

768  bits
(231 decimal digits)

1024 bits
(308 decimal digits)

2048 bits
(616 decimal digits)
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Keylengths in public key cryptosystems
that provide the same level of security as AES 

and other secret-key ciphers

Arjen K. Lenstra, Eric R. Verheul
„Selecting Cryptographic Key Sizes”
Journal of Cryptology

Arjen K. Lenstra
„Unbelievable Security: Matching AES Security 
Using Public Key Systems”
ASIACRYPT’  2001

Number of operations in the best known attack

512-bit RSADES
(56-bit key)

1/50

NDES

NDES

RSA vs. DES: Resistance to attack

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Keylengths in RSA providing the same level
of security as selected secret-key cryptosystems

DES 3 DES
(2 keys)

3 DES
(3 keys)

AES-128 AES-192 AES-256

The same number of operations

The same cost

416 620 1333
1723 1941

2426 2644
3224

6897
7918

13840

15387
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0

2000

4000

6000

8000

10000

12000

14000

16000

18000

2001 2010 2020 2030
DES
3 DES (2K)
3 DES (3K)
AES-128

AES-192

AES-256

year

Keylengths in RSA providing the same level
of security as selected secret-key cryptosystems

March 2002, Financial Cryptography Conference

Nicko van Someren, CTO nCipher Inc.
announced that his company developed software

capable of breaking 512-bit RSA key
within 6 weeks

using computers available in a single office

Practical progress in factorization

Bernstein’s Machine (1)

Fall 2001

Daniel Bernstein, professor of mathematics
at University of Illinois in Chicago 
submits a grant application to NSF

and publishes fragments of this application
as an article on the web

D. Bernstein, Circuits for Integer Factorization: A Proposal

http://cr.yp.to/papers.html#nfscircuit
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March 2002

• Bernstein’ s article “discovered” during
Financial Cryptography Conference

• Informal panel devoted to analysis of consequences
of the Bernstein’ s discovery

• Nicko Van Someren (nCipher) estimates that machine
costing $ 1 bilion is able to break 1024-bit RSA
within several minuts

Bernstein’s Machine (2)

March 2002

• alarming voices on e-mailing discussion lists
calling for revocation of all currently used

1024-bit keys

• sensational articles in newspapers about
Bernstein’ s discovery

Bernstein’s Machine (3)

April 2002

Response of the RSA Security Inc.:

Error in the estimation presented at the conference; 
according to formulas from the Bernstein’ s article

machine costing
$ 1 billion is able to break

1024-bit RSA within
10 billion x several minuts = tens of years

According to estimations of Lenstra i Verheul, machine
breaking 1024-bit RSA within one day

would cost $ 160 billion in 2002

Bernstein’s Machine (4)
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Arjen Lenstra, Citibank & U. Eindhoven:

„… I have no idea what is this all fuss about...”

Bruce Schneier, Counterpane:

Carl Pomerance, Bell Labs:

„… fresh and fascinating idea...”

„ ... enormous improvements claimed are more a result 
of redefining efficiency than anything else...”

Bernstein’s Machine (5)

RSA keylength that can be broken
using Bernstein’s machine

Computational cost = time [days] * memory [$]

RSA key lengths that can be broken
using classical computers

3

2

1
?

? ?

infinity

?

$ 1 bln*1 day $ 1000 bln*1 day

Bernstein’s Machine (6)

RSA Challange

Lentgh of N
in bits

Length of N
in decimal digits

Award for
factorization

576
640
704
768
896

1024
1536
2048

174
193
212
232
270
309
463
617

$10,000
$20,000
$30,000
$50,000
$75,000

$100,000
$150,000
$200,000
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Estimation of RSA Security Inc. regarding 
the number and memory of PCs

necessary to break RSA-1024

Attack time: 1 year

Single machine: PC, 500 MHz, 170 GB RAM

Number of machines: 342,000,000


