ECE297:11 Lecture 12
 RSA - Genesis, operation \& security

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Professional (NSA) vs. amateur (academic) approach to designing ciphers	
1. Know how to break Russian ciphers	1. Know nothing about cryptology
2. Use only well-established proven methods	2. Think of revolutionary ideas
3. Hire 50,000 mathematicians	3. Go for skiing
4. Cooperate with an industry giant	4. Publish in "Scientific American"
5. Keep as much as possible secret	5. Offer a $\$ 100$ award for breaking the cipher

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Challenge published in Scientific American

Ciphertext:

96869613754622061477140922254355
88290575999112457431987469512093
08162982251457083569314766228839
89628013391990551829945157815145
\qquad
ublic key:
$\mathrm{N}=11438162575788886766923577997614$ 661201021829672124236256256184293 570693524573389783059712356395870 5058989075147599290026879543541
$e=9007$
(129 decimal digits)

RSA as a trap-door one-way function

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

PUBLIC KEY

PRIVATE KEY
$\{e, N\} \underset{\longrightarrow}{\longleftrightarrow}\{d, P, Q\}$

$$
\mathrm{N}=\mathrm{P} \cdot \mathrm{Q} \quad \mathrm{P}, \mathrm{Q}-\text { large prime numbers }
$$

$\mathrm{e} \cdot \mathrm{d} \equiv 1 \bmod ((\mathrm{P}-1)(\mathrm{Q}-1))$
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Euler's totient (phi) function (1)
$\varphi(\mathbf{N})$ - number of integers in the range from 1 to $\mathbf{N}-1$
that are relatively prime with \mathbf{N} \qquad
Special cases:

1. P is prime

$$
\varphi(\mathrm{P})=\mathrm{P}-1
$$

Relatively prime with $\mathrm{P}: \quad 1,2,3, \ldots, \mathrm{P}-1$
2. $\mathrm{N}=\mathrm{P} \cdot \mathrm{Q} \quad \mathrm{P}, \mathrm{Q}$ are prime \qquad
$\varphi(\mathrm{N})=(\mathrm{P}-1) \cdot(\mathrm{Q}-1)$
Relatively prime with $\mathrm{N}:\{1,2,3, \ldots, \mathrm{P} \cdot \mathrm{Q}-1\}-\{\mathrm{P}, 2 \mathrm{P}, 3 \mathrm{P}, \ldots,(\mathrm{Q}-1) \mathrm{P}\}$ $-\{\mathrm{Q}, 2 \mathrm{Q}, 3 \mathrm{Q}, \ldots,(\mathrm{P}-1) \mathrm{Q}$
\qquad
\qquad

Euler's totient (phi) function (2)

Special cases:
3. $\mathrm{N}=\mathrm{P}^{2} \quad \mathrm{P}$ is prime

$$
\varphi(\mathrm{N})=\mathrm{P} \cdot(\mathrm{P}-1)
$$

Relatively prime with $\mathrm{N}:\left\{1,2,3, \ldots, \mathrm{P}^{2}-1\right\}-\{\mathrm{P}, 2 \mathrm{P}, 3 \mathrm{P}, \ldots,(\mathrm{P}-1) \mathrm{P}\}$

In general

$$
\begin{array}{r}
\text { If } \begin{array}{r}
\mathrm{N}=\mathrm{P}_{1}{ }^{\mathrm{el}} \cdot \mathrm{P}_{2}{ }^{\mathrm{e} 2} \cdot \mathrm{P}_{3}^{\mathrm{e3} 3} \cdot \ldots \cdot \mathrm{P}_{\mathrm{t}}^{\mathrm{et}} \\
\varphi(\mathrm{~N})=\prod_{\mathrm{i}=1}^{\mathrm{t}} \mathrm{P}_{\mathrm{i}}^{\mathrm{ei-1}-} \cdot\left(\mathrm{P}_{\mathrm{i}}-1\right)
\end{array}
\end{array}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Euler's Theorem - Justification (1)
For $\mathbf{N}=\mathbf{1 0}$

$R=\{1,3,7,9\}$
Let $\mathrm{a}=3$

$\mathrm{~S}=\{3 \cdot 1 \bmod 10$,
$3 \cdot 3 \bmod 10,3 \cdot 7 \bmod 10$,
$3 \cdot 9 \bmod 10\}$
$=\{3,9,1,7\}$

For arbitrary \mathbf{N}

$R=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\varphi(\mathbf{N})}\right\}$
Let us choose arbitrary a, such that $\operatorname{gcd}(\mathrm{a}, \mathrm{N})=1$
$S=\left\{a \cdot x_{1} \bmod N, a \cdot x_{2} \bmod N, \ldots\right.$,
\qquad
$\left.a \cdot x_{\varphi(N)} \bmod N\right\}$
$=$ rearranged set R \qquad
\qquad
\qquad

Euler's Theorem - Justification (2)	
For $\mathrm{N}=10$	For arbitrary \mathbf{N}
$\mathrm{R}=\mathrm{S}$	$\mathrm{R}=\mathrm{S}$
$\begin{aligned} & x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4} \equiv \\ & \left(a \cdot x_{1}\right) \cdot\left(a \cdot x_{2}\right) \cdot\left(a \cdot x_{3}\right) \cdot\left(a \cdot x_{4}\right) \bmod N \end{aligned}$	$\prod_{i=1}^{\varphi(N)} x_{i} \equiv \prod_{i=1}^{\varphi(N)} a \cdot x_{i}(\bmod N)$
$\begin{aligned} & x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4} \equiv \\ & a^{4} \cdot x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4} \bmod N \end{aligned}$	$\prod_{i=1}^{\varphi(N)} x_{i} \equiv a^{q(N)} \prod_{i=1}^{\varphi(N)} x_{i}(\bmod N)$
$\mathrm{a}^{4} \equiv 1(\bmod \mathrm{~N})$	$\mathrm{a}^{9(N)} \equiv 1(\bmod \mathrm{~N})$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Why does RSA work? (2)
$M^{\prime}=C^{d} \bmod N=\left(M^{e} \bmod N\right)^{d} \bmod N=$
$=M^{e} \cdot d \bmod N=\left|\begin{array}{l}e \cdot d \equiv 1 \bmod \varphi(N) \\ e \cdot d=1+k \cdot \varphi(N)\end{array}\right|=$
$=M^{1+k \cdot \varphi(N)} \bmod N=M \cdot\left(M^{\varphi(N)}\right)^{k} \bmod N=$
$=M \cdot\left(M^{\varphi(N)} \bmod N\right)^{k} \bmod N=$
$=M \cdot 1^{k} \bmod N=M$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Rivest estimation - 1977

The best known algorithm for factoring a \qquad 129-digit number requires:

40000 trilion years $=40 \cdot 10^{15}$ years

\qquad
\qquad
assuming the use of a supercomputer

> being able to perform
\qquad

1 multiplication of 129 decimal digit numbers in 1 ns
Rivest's assumption translates to the delay of a single logic gate $\approx 10 \mathrm{ps}$
Estimated age of the universe: 100 bln years $=10^{11}$ years
\qquad
\qquad
\qquad

Early records in factoring large numbers			
Years	Number of decimal digits	Number of bits	Required computational power (in MIPS-years)
1974	45	149	0.001
1984	71	235	0.1
1991	100	332	7
1992	110	365	75
1993	120	398	830

How to factor for free?

A. Lenstra \& M. Manasse, 1989

- Using the spare time of computers, (otherwise unused)
- Program and results sent by e-mail \qquad
(later using WWW) \qquad
\qquad
\qquad

Practical implementations of attacks Factorization, RSA				
Year	Number of bits of N	$\begin{array}{\|c} \text { Number of } \\ \text { decimal digits } \\ \text { of } \mathbf{N} \end{array}$	Method	Estimated amount of computations
1994	430	129	QS	5000 MIPS-years
1996	433	130	GNFS	750 MIPS-years
1998	467	140	GNFS	2000 MIPS-years
1999	467	140	GNFS	8000 MIPS-year

| Breaking RSA-129 |
| :---: | :---: |
| When: \quad August 1993-1 April 1994, $\mathbf{8}$ months |
| Who: \quadD. Atkins, M. Graff, A. K. Lenstra, P. Leyland
 + 600 volunteers from the entire world |
| How:$\mathbf{1 6 0 0}$ computers
 from Cray C90, through 16 MHz PC,
 to fax machines |
| Only 0.03\% computational power of the Internet |
| Results of cryptanalysis: |
| "The magic words are squeamish ossifrage" |
| An award of 100 \$ donated to Free Software Foundation |

Elements affecting the progress
in factoring large numbers

\bullet computational power
1977-1993 increase of about 1500 times
\bullet computer networks
Internet
\bullet better algorithms
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Factoring methods	
General purpose	Time of factoring is much shorter if N or factors of N are of the special form
Time of factoring depends only on the size of N	ECM - Elliptic Curve Method
GNFS - General Number Field Sieve	Pollard's p-1 method QS - Quadratic Sieve
Continued Fraction Method (historical)	Cyclotomic polynomial method SNFS - Special Number Field Sieve

Running time of facto $\mathrm{L}_{\mathrm{q}}[\alpha, \mathrm{c}]=\exp ((\mathrm{c}+o(1)) \cdot(\ln$	ng algorithms $\left.x \cdot(\ln \ln q)^{1-\alpha}\right)$
$\begin{aligned} & \text { For } \alpha=\mathbf{0} \\ & \qquad \mathrm{L}_{\mathrm{q}}[0, \mathrm{c}]=(\ln \mathrm{q})^{(\mathrm{c}+\mathrm{o}(1))} \end{aligned}$	Algorithm polynomial as a function of the number of bits of q
For $\alpha=1$ $\mathrm{L}_{\mathrm{q}}[1, \mathrm{c}]=\exp ((\mathrm{c}+o(1)) \cdot(\ln \mathrm{q}))$	Algorithm exponential as a function of the number of bits of q
For $0<\alpha<\mathbf{1}$	Algorithm subexponential as a function of the number of bits of q
$f(\mathrm{n})=o(1)$ if for any positive constan $\mathrm{n}_{0}>0$, such that $0 \leq f(\mathrm{n})<$	0 there exist a constant all $n \geq n_{0}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

	RSA Challenge
RSA-100	Smallest unfactored number
${ }_{\text {RSSA-110 }}^{\text {RSA } 120}$	
RSA-130	RSA-150
RSA-140	
${ }_{\text {RSSA-150 }}^{\text {RSA } 160}$	
RSA-170	Unused awards accumulate at a rate of $\$ 1750$ / quarter
RSA-180	
RSA-450	
${ }_{\text {RSSA-460 }}^{\text {RSA } 40}$	
RSA-480	
RSA-490	
RSA-500	

Factoring 512-bit number

512 bits $=155$ decimal digits
\qquad old standard for key sizes in RSA

17 March-22 August 1999
Group of Herman te Riele
Centre for Mathematics and Computer Science (CWI), Amsterdam

First stage 2 months
168 workstations SGI and Sun, 175-400 MHz
120 Pentium PC, $300-450 \mathrm{MHz}, 64 \mathrm{MB}$ RAM
4 stations Digital/Compaq, 500 MHz
Second stage
Cray C916-10 days, 2.3 GB RAM \qquad

TWINKLE

"The Weizmann INstitute Key Locating Engine"
Adi Shamir, Eurocrypt, May 1999
CHES, August 1999
Electrooptical device capable to speed-up the first phase of factorization from 100 to 1000 times

If ever built it would increase the size of the key that can be broken from 100 to 200 bits

Cost of the device (assuming that the prototype was earlier built) - $\$ 5000$

Recommended key sizes for RSA

Old standard:

\qquad

Individual users
512 bits
(155 decimaldigits)
New standard:

Individual users	(231 decimal digits)
	$\mathbf{1 0 2 4}$ bits
Organizations (short term)	(308 decimal digits)
	$\mathbf{2 0 4 8}$ bits
Organizations (long term)	(616 decimal digits)

Keylengths in public key cryptosystems that provide the same level of security as AES and other secret-key ciphers

Arjen K. Lenstra, Eric R. Verheul
„Selecting Cryptographic Key Sizes"
Journal of Cryptology

Arjen K. Lenstra
„Unbelievable Security: Matching AES Security
Using Public Key Systems"
ASIACRYPT' 2001

RSA vs. DES: Resistance to attack
. Number of operations in the best known attack

\qquad

Practical progress in factorization

March 2002, Financial Cryptography Conference
Nicko van Someren, CTO nCipher Inc.
announced that his company developed software
capable of breaking 512-bit RSA key within 6 weeks
using computers available in a single office

Bernstein's Machine (1)

Fall 2001

```
Daniel Bernstein, professor of mathematics at University of Illinois in Chicago
submits a grant application to NSF
and publishes fragments of this application as an article on the web
D. Bernstein, Circuits for Integer Factorization: A Proposal
http://cr.yp.to/papers.html\#nfscircuit
```

-

\qquad

Bernstein's Machine (2)

March 2002

- Bernstein's article "discovered" during

Financial Cryptography Conference

Informal panel devoted to analysis of consequences of the Bernstein's discovery

Nicko Van Someren (nCipher) estimates that machine costing \$ 1 bilion is able to break 1024-bit RSA within several minuts

Bernstein's Machine (3)

March 2002

- alarming voices on e-mailing discussion lists calling for revocation of all currently used 1024-bit keys
- sensational articles in newspapers about Bernstein's discovery

Bernstein's Machine (4)

April 2002
Response of the RSA Security Inc.:
Error in the estimation presented at the conference; according to formulas from the Bernstein's article machine costing
\$ $\mathbf{1}$ billion is able to break 1024-bit RSA within
10 billion \times several minuts $=\underline{\text { tens }}$ of years
According to estimations of Lenstra i Verheul, machine \qquad breaking 1024-bit RSA within one day would cost \$ $\mathbf{1 6 0}$ billion in 2002

Bernstein's Machine (5)

Carl Pomerance, Bell Labs: \qquad
,...fresh and fascinating idea..."

Arjen Lenstra, Citibank \& U. Eindhoven:
,...I have no idea what is this all fuss about..."
Bruce Schneier, Counterpane:
,, ... enormous improvements claimed are more a result of redefining efficiency than anything else..."

Bernstein's Machine (6)

Computational cost $=$ time [days] * memory [\$]

RSA Challange		
Lentgh of N in bits	Length of N in decimal digits	Award for factorization
576	174	$\$ 10,000$
640	193	$\$ 20,000$
704	212	$\$ 30,000$
768	232	$\$ 50,000$
896	270	$\$ 75,000$
1024	309	$\$ 100,000$
1536	463	$\$ 150,000$
2048	617	$\$ 200,000$

Estimation of RSA Security Inc. regarding the number and memory of PCs necessary to break RSA-1024
Attack time: $\quad 1$ year
Single machine: \quad PC, $500 \mathrm{MHz}, 170 \mathrm{~GB}$ RAM
Number of machines: $\mathbf{3 4 2 , 0 0 0 , 0 0 0}$

