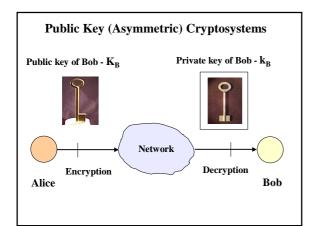
ECE297:11 Lecture 12

RSA – Genesis, operation & security



Trap-door one-way function Whitfield Diffie and Martin Hellman "New directions in cryptography," 1976 PUBLIC KEY X f(X) Y PRIVATE KEY

Professional (NSA) vs. amateur (academic) approach to designing ciphers

- 1. Know how to break Russian | 1. Know nothing about ciphers
- 2. Use only well-established proven methods
- B. Hire 50,000 mathematicians
- 4. Cooperate with an industry giant
- 5. Keep as much as possible secret
- cryptology
- 2. Think of revolutionary ideas
- 3. Go for skiing
- 4. Publish in "Scientific American"
- 5. Offer a \$100 award for breaking the cipher

Challenge p	ublished	in	Scientific	American
-------------	----------	----	------------	----------

Ciphertext:

1977

9686 9613 7546 2206 1477 1409 2225 4355 8829 0575 9991 1245 7431 9874 6951 2093 0816 2982 2514 5708 3569 3147 6622 8839 8962 8013 3919 9055 1829 9451 5781 5145

Public key:

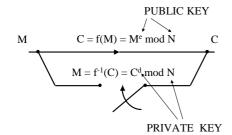
 $N = 114381625757\ 88886766923577997614$ 661201021829672124236256256184293 570693524573389783059712356395870 5058989075147599290026879543541

e = 9007

 $(129\ decimal\ digits)$

Award 100 \$

RSA as a trap-door one-way function



 $N = P \cdot Q$ P, Q - large prime numbers $\mathbf{e}\cdot\mathbf{d}\equiv 1\ \operatorname{mod}\left((P\text{-}1)(Q\text{-}1)\right)$

RSA keys

PUBLIC KEY

PRIVATE KEY

$$N = P \cdot Q$$
 P, Q - large prime numbers
$$e \cdot d \equiv 1 \mod ((P\text{-}1)(Q\text{-}1))$$

Why does RSA work? (1)

$$\begin{aligned} M' &= C^d \text{ mod } N = (M^e \text{ mod } N)^d \text{ mod } N \overset{?}{=} M \\ \text{decrypted} & \text{original} \\ \text{message} & \text{message} \end{aligned}$$

$$e \cdot d \equiv 1 \mod ((P-1)(Q-1))$$

$$\widehat{\mathbb{I}}$$

$$e \cdot d \equiv 1 \mod \phi(N)$$

Euler's totient function

Euler's totient (phi) function (1)

 $\phi(N)\,$ - number of integers in the range from 1 to N-1 that are relatively prime with N

Special cases:

1. P is prime

$$\varphi(P) = P-1$$

Relatively prime with P:

1, 2, 3, ..., P-1

2.
$$N = P \cdot Q$$
 P, Q are prime

$$\phi(N) = (P\text{-}1) \cdot (Q\text{-}1)$$

 $\begin{array}{ll} \mbox{Relatively prime with N:} & \{1,\,2,\,3,\,...,\,P\cdot Q-1\} - \{P,\,2P,\,3P,\,...,\,(Q-1)P\} \\ & - \{Q,\,2Q,\,3Q,\,...,\,(P-1)Q\} \end{array}$

Euler's totient (phi) function (2)

Special cases:

3.
$$N = P^2$$
 P is prime

$$\phi(N) = P \cdot (P-1)$$

 $Relatively \ prime \ with \ N: \ \ \{1,2,3,...,P^2\text{-}1\} - \{P,2P,3P,...,(P\text{-}1)P\}$

In general

If
$$N = P_1^{el} \cdot P_2^{e2} \cdot P_3^{e3} \cdot \dots \cdot P_t^{et}$$

$$\phi(N) = \prod_{i=1}^t \ P_i^{\operatorname{ei-1}} \cdot (P_i\text{-}1)$$

Euler's Theorem

Leonard Euler, 1707-1783

$$\forall \qquad \qquad a^{\phi(N)} \equiv 1 \pmod{N}$$

a: gcd(a, N) = 1

Euler's Theorem - Justification (1)

For N=10

 $R = \{1, 3, 7, 9\}$

Let a=3

 $S = \{ 3.1 \mod 10, \\ 3.3 \mod 10, 3.7 \mod 10, \\ 3.9 \mod 10 \} \\ = \{3, 9, 1, 7\}$

For arbitrary N

$$R = \{x_1, x_2, ..., x_{\phi(\mathbf{N})}\}$$

Let us choose arbitrary a, such that gcd(a, N) = 1

$$\begin{split} S = \{ a \cdot x_1 \text{ mod } N, \, a \cdot x_2 \text{ mod } N, \, ..., \\ a \cdot x \text{ }_{\phi(N)} \text{mod } N \} \end{split}$$

= rearranged set R

Euler's Theorem - Justification (2)

For N=10

For arbitrary N

 $a^{\phi(N)} \equiv \ 1 \ (mod \ N)$

$$\begin{array}{c} R = S \\ \hline x_1 \cdot x_2 \cdot x_3 \cdot x_4 \equiv \\ (a \cdot x_1) \cdot (a \cdot x_2) \cdot (a \cdot x_3) \cdot (a \cdot x_4) \bmod N \\ \hline x_1 \cdot x_2 \cdot x_3 \cdot x_4 \equiv \\ a^4 \cdot x_1 \cdot x_2 \cdot x_3 \cdot x_4 \bmod N \\ \hline & \prod_{i=1}^{\phi(N)} x_i \equiv \prod_{i=1}^{\phi(N)} a \cdot x_i \pmod N \\ \hline & \prod_{i=1}^{\phi(N)} x_i \equiv a^{\phi(N)} \cdot \prod_{i=1}^{\phi(N)} x_i \pmod N \\ \hline \end{array}$$

$$a^4 \equiv 1 \pmod{N}$$

Why does RSA work? (2)

$$\begin{split} M' &= C^d \bmod N = (M^c \bmod N)^d \bmod N = \\ &= M^{c \cdot d} \bmod N = \left| \begin{array}{l} e \cdot d \equiv 1 \mod \phi(N) \\ e \cdot d = 1 + k \cdot \phi(N) \end{array} \right| \ = \\ &= M^{1 + k \cdot \phi(N)} \bmod N = M \cdot (M^{\phi(N)})^k \bmod N = \\ &= M \cdot (M^{\phi(N)} \bmod N)^k \bmod N = \\ &= M \cdot 1^k \mod N = M \end{split}$$

Rivest estimation - 1977

The best known algorithm for factoring a 129-digit number requires:

40 000 trilion years = 40 ⋅ 10¹⁵ years

assuming the use of a supercomputer being able to perform

1 multiplication of 129 decimal digit numbers in 1 ns

Rivest's assumption translates to the delay of a single logic gate ≈ 10 ps

Estimated age of the universe: $100 \text{ bln years} = 10^{11} \text{ years}$

Early records in factoring large numbers				
Years	Number of decimal digits	Number of bits	Required computational power (in MIPS-years)	
1974	45	149	0.001	
1984	71	235	0.1	
1991	100	332	7	
1992	110	365	75	
1993	120	398	830	

How to factor for free?

A. Lenstra & M. Manasse, 1989

- Using the spare time of computers, (otherwise unused)
- Program and results sent by e-mail (later using WWW)

	Practical implementations of attacks Factorization, RSA			
Year	Number of bits of N	Number of decimal digits of N	Method	Estimated amount of computations
1994	430	129	QS	5000 MIPS-years
1996	433	130	GNFS	750 MIPS-years
1998	467	140	GNFS	2000 MIPS-years
1999	467	140	GNFS	8000 MIPS-years
	1	1	1	I

When: August 1993 - 1 April 1994, 8 months Who: D. Atkins, M. Graff, A. K. Lenstra, P. Leyland + 600 volunteers from the entire world How: 1600 computers from Cray C90, through 16 MHz PC, to fax machines Only 0.03% computational power of the Internet Results of cryptanalysis: "The magic words are squeamish ossifrage" An award of 100 \$ donated to Free Software Foundation **Elements affecting the progress** in factoring large numbers • computational power 1977-1993 increase of about 1500 times • computer networks Internet • better algorithms **Factoring methods** General purpose Special purpose Time of factoring depends Time of factoring is much only on the size of N shorter if N or factors of N are of the special form ECM - Elliptic Curve Method GNFS - General Number Field Sieve Pollard's p-1 method QS - Quadratic Sieve Cyclotomic polynomial method Continued Fraction Method (historical) SNFS - Special Number Field Sieve

Breaking RSA-129

Running time of factoring algorithms

 $L_q[\alpha,\,c]=exp\;((c+o(1))\cdot(ln\;q)^{\alpha}\cdot(ln\;ln\;q)^{1-\;\alpha})$

Algorithm **polynomial** as a function of the number of bits of qFor $\alpha=0$

 $L_q[0,\,c] = (ln\,q)^{(c+o(1))}$

For $\alpha=1$

Algorithm **exponential** as a function of the number of bits of q $L_q[1, c] = \exp((c+o(1))\cdot(\ln q))$

Algorithm **subexponential** as a function of the number of bits of qFor $0 < \alpha < 1$

f(n) = o(1) if for any positive constant c>0 there exist a constant $n_0 > 0$, such that $0 \le f(n) < c$, for all $n \ge n_0$

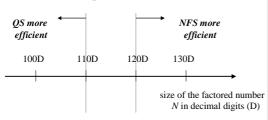
General purpose factoring methods

Expected running time

 $\mathrm{L}_N[1/2,\,1] = \exp((1+o(1))\cdot(\ln N)^{1/2}\,))\cdot(\ln\ln N)^{1/2})$

QS NFS

 $\mathsf{L}_N[1/3,\,1.92] = \exp((1.92 + o(1)) \cdot (\ln N)^{1/3}\,)) \cdot (\ln \ln N)^{2/3})$



	RSA Challenge
RSA-100 RSA-110	Smallest unfactored number
RSA-120 RSA-130 RSA-140	RSA-150
RSA-150 RSA-160 RSA-170 RSA-180	Unused awards accumulate at a rate
RSA-450 RSA-460	of \$1750 / quarter
RSA-470 RSA-480 RSA-490	
RSA-500	

Factoring 512-bit number 512 bits = 155 decimal digits

old standard for key sizes in RSA

17 March - 22 August 1999

Group of Herman te Riele Centre for Mathematics and Computer Science (CWI), Amsterdam

First stage 2 months

168 workstations SGI and Sun, 175-400 MHz 120 Pentium PC, 300-450 MHz, 64 MB RAM 4 stations Digital/Compaq, 500 MHz

Second stage

Cray C916 - 10 days, 2.3 GB RAM

TWINKLE

"The Weizmann INstitute Key Locating Engine"

Adi Shamir, Eurocrypt, May 1999 CHES, August 1999

Electrooptical device capable to speed-up the first phase of factorization from 100 to 1000 times

If ever built it would increase the size of the key that can be broken from 100 to 200 bits

Cost of the device (assuming that the prototype was earlier built) - \$5000

Recommended key sizes for RSA

Old standard:

Individual users 512 bits (155 decimal digits)

New standard:

768 bits
Individual users (231 decimal digits)

Organizations (short term) 1024 bits

(308 decimal digits)

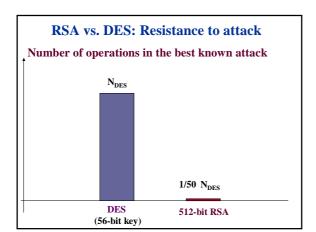
Organizations (long term) 2048 bits (616 decimal digits)

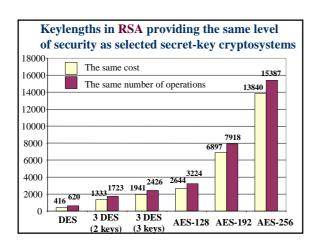
9

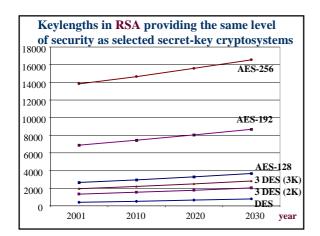
Keylengths in public key cryptosystems that provide the same level of security as AES and other secret-key ciphers

Arjen K. Lenstra, Eric R. Verheul "Selecting Cryptographic Key Sizes" Journal of Cryptology

Arjen K. Lenstra "Unbelievable Security: Matching AES Security Using Public Key Systems" ASIACRYPT' 2001







Practical progress in factorization

March 2002, Financial Cryptography Conference

Nicko van Someren, CTO nCipher Inc.

announced that his company developed software capable of breaking 512-bit RSA key within **6 weeks**

using computers available in a single office

Bernstein's Machine (1)

Fall 2001

Daniel Bernstein, professor of mathematics at University of Illinois in Chicago submits a grant application to NSF and publishes fragments of this application as an article on the web

D. Bernstein, Circuits for Integer Factorization: A Proposal

http://cr.yp.to/papers.html#nfscircuit

Bernstein's Machine (2) March 2002 · Bernstein's article "discovered" during Financial Cryptography Conference Informal panel devoted to analysis of consequences of the Bernstein's discovery • Nicko Van Someren (nCipher) estimates that machine costing \$ 1 bilion is able to break 1024-bit RSA within several minuts Bernstein's Machine (3) March 2002 • alarming voices on e-mailing discussion lists calling for revocation of all currently used 1024-bit keys • sensational articles in newspapers about Bernstein's discovery **Bernstein's Machine (4)** April 2002 **Response of the RSA Security Inc.:** Error in the estimation presented at the conference; according to formulas from the Bernstein's article machine costing **\$ 1 billion** is able to break 1024-bit RSA within $10 \text{ billion} \times \text{several minuts} = \underline{\text{tens of years}}$ According to estimations of Lenstra i Verheul, machine

breaking 1024-bit RSA within one day would cost \$ 160 billion in 2002

Bernstein's Machine (5)

Carl Pomerance, Bell Labs:

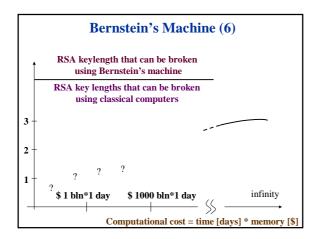
"...fresh and fascinating idea..."

Arjen Lenstra, Citibank & U. Eindhoven:

"...I have no idea what is this all fuss about..."

Bruce Schneier, Counterpane:

"... enormous improvements claimed are more a result of redefining efficiency than anything else..."



RSA Challange		
Lentgh of N in bits	Length of N in decimal digits	Award for factorization
576	174	\$10,000
640	193	\$20,000
704	212	\$30,000
768	232	\$50,000
896	270	\$75,000
1024	309	\$100,000
1536	463	\$150,000
2048	617	\$200,000

Estimation of RSA Security Inc. regarding the number and memory of PCs necessary to break RSA-1024	
Attack time: 1 year Single machine: PC, 500 MHz, 170 GB RAM	
Number of machines: 342,000,000	