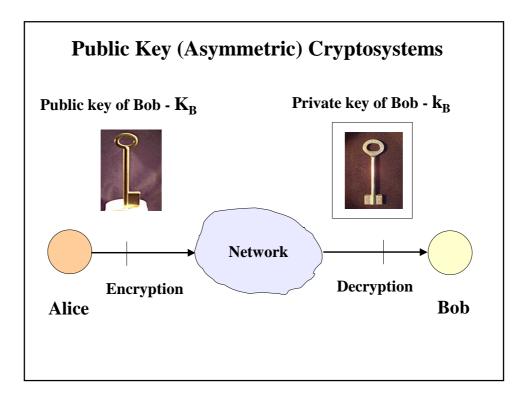
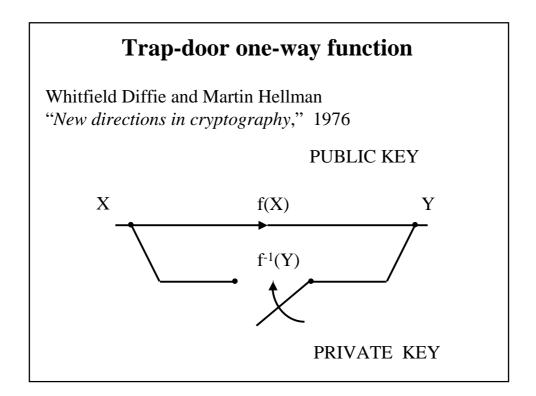
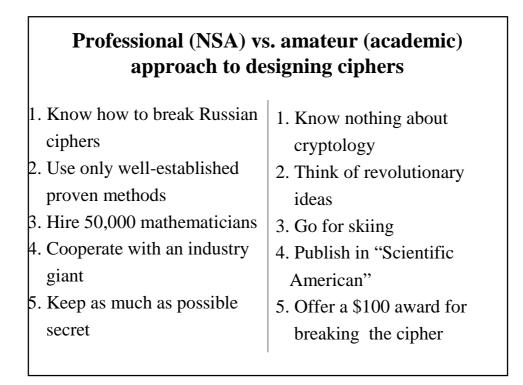
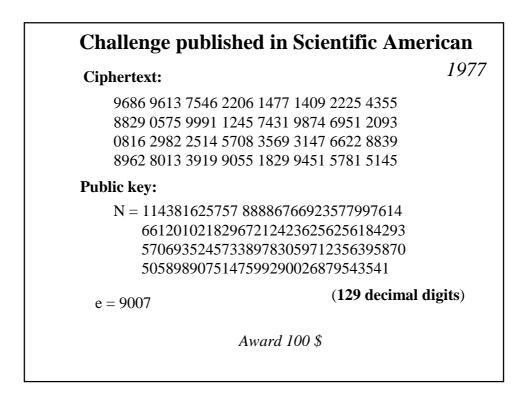
ECE297:11 Lecture 12

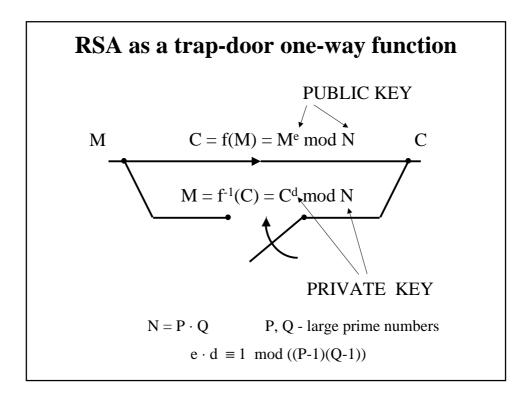
RSA – Genesis, operation & security

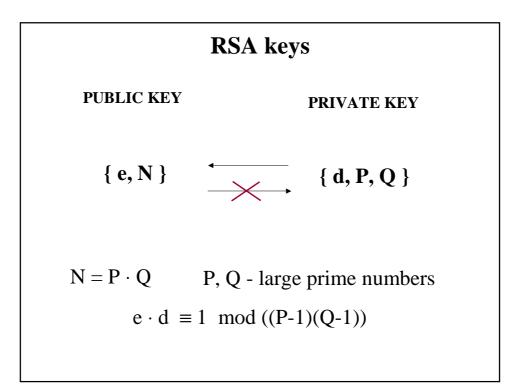


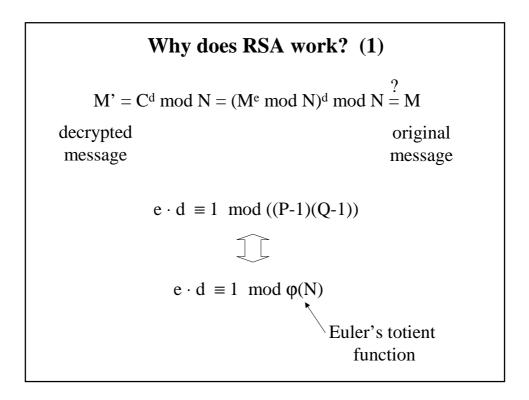








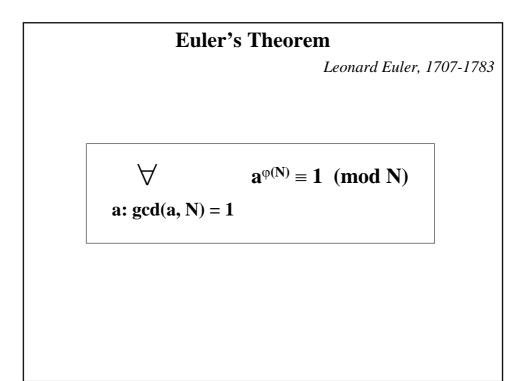




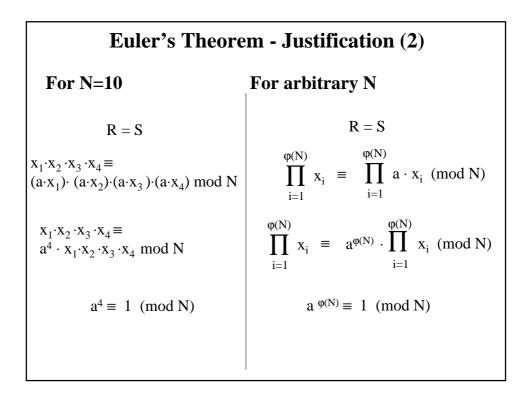
Euler's totient (phi) function (1) φ(N) - number of integers in the range from 1 to N-1 that are relatively prime with N Special cases: 1 Dimension

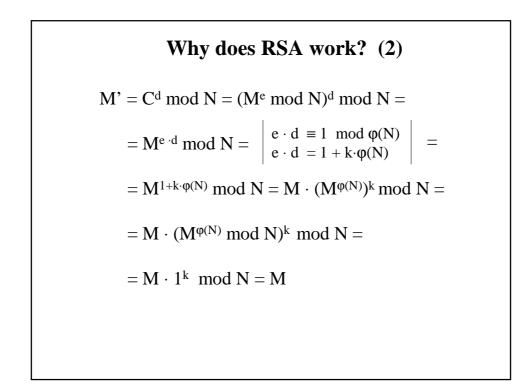
Special cases: 1. P is prime $\phi(P) = P-1$ Relatively prime with P: 1, 2, 3, ..., P-1 2. N = P · Q P, Q are prime $\phi(N) = (P-1) \cdot (Q-1)$ Relatively prime with N: {1, 2, 3, ..., P·Q-1} - {P, 2P, 3P, ..., (Q-1)P} $- \{Q, 2Q, 3Q, ..., (P-1)Q\}$

Euler's totient (phi) function (2) Special cases: 3. $N = P^2$ P is prime $\varphi(N) = P \cdot (P-1)$ Relatively prime with N: $\{1, 2, 3, ..., P^2-1\} - \{P, 2P, 3P, ..., (P-1)P\}$ In general If $N = P_1^{e1} \cdot P_2^{e2} \cdot P_3^{e3} \cdot ... \cdot P_t^{et}$ $\varphi(N) = \prod_{i=1}^t P_i^{ei-1} \cdot (P_i-1)$



Euler's Theorem - Justification (1)		
For N=10	For arbitrary N	
$R = \{1, 3, 7, 9\}$	$\mathbf{R} = \{\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{\phi(\mathbf{N})}\}$	
Let a=3	Let us choose arbitrary a, such that $gcd(a, N) = 1$	
$S = \{ 3.1 \mod 10, \\ 3.3 \mod 10, 3.7 \mod 10, \\ 3.9 \mod 10 \} \\ = \{3, 9, 1, 7\}$	$S = \{a \cdot x_1 \mod N, a \cdot x_2 \mod N, \dots, a \cdot x_{\phi(N)} \mod N\}$ = rearranged set R	





Rivest estimation - 1977

The best known algorithm for factoring a 129-digit number requires:

40 000 trilion years = $40 \cdot 10^{15}$ years

assuming the use of a supercomputer being able to perform

1 multiplication of 129 decimal digit numbers in 1 ns

Rivest's assumption translates to the delay of a single logic gate $\approx 10 \text{ ps}$

Estimated age of the universe: $100 \text{ bln years} = 10^{11} \text{ years}$

Early records in factoring large numbers			
Years	Number of decimal digits	Number of bits	Required computational power (in MIPS-years)
1974	45	149	0.001
1984	71	235	0.1
1991	100	332	7
1992	110	365	75
1993	120	398	830

How to factor for free?

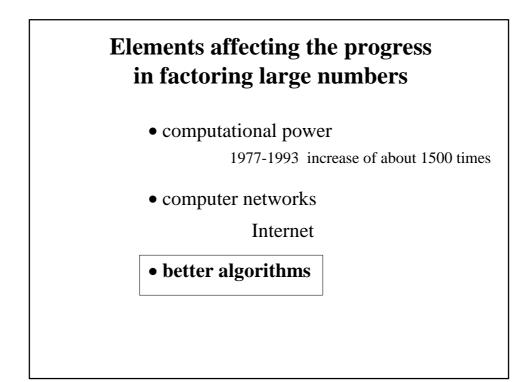
A. Lenstra & M. Manasse, 1989

- Using the spare time of computers, (otherwise unused)
- Program and results sent by e-mail (later using WWW)

Practical implementations of attacks Factorization, RSA				
Year	Number of bits of N	Number of decimal digits of N	Method	Estimated amount of computations
1994	430	129	QS	5000 MIPS-years
1996	433	130	GNFS	750 MIPS-years
1998	467	140	GNFS	2000 MIPS-years
1999	467	140	GNFS	8000 MIPS-years

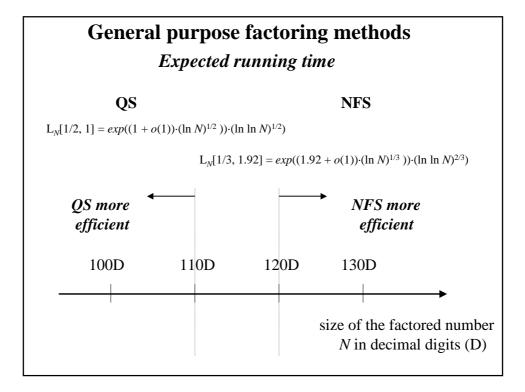
Breaking RSA-129

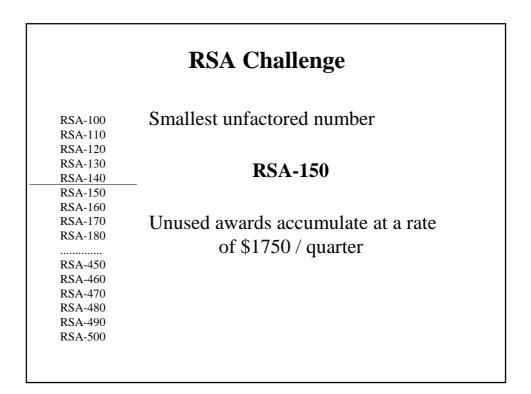
When:	August 1993 - 1 April 1994, 8 months
Who:	D. Atkins, M. Graff, A. K. Lenstra, P. Leyland + 600 volunteers from the entire world
How:	1600 computers from Cray C90, through 16 MHz PC, to fax machines
Only 0	.03% computational power of the Internet
Results of	cryptanalysis:
	"The magic words are squeamish ossifrage"
An	award of 100 \$ donated to Free Software Foundation



Factoring methods		
General purpose	Special purpose	
Time of factoring depends only on the size of N	Time of factoring is much shorter if N or factors of N are of the special form	
GNFS - General Number Field Sieve	ECM - Elliptic Curve Method	
QS - Quadratic Sieve	Pollard's p-1 method	
Continued Fraction Method (historical)	Cyclotomic polynomial method SNFS - Special Number Field Sieve	

Running time of factoring algorithms $L_{\alpha}[\alpha, c] = \exp\left((c + o(1)) \cdot (\ln q)^{\alpha} \cdot (\ln \ln q)^{1 \cdot \alpha}\right)$ For $\alpha = 0$ Algorithm polynomial as a function of the number $L_q[0, c] = (\ln q)^{(c+o(1))}$ of bits of qFor $\alpha = 1$ Algorithm exponential as a function of the number $L_q[1, c] = exp((c+o(1)) \cdot (\ln q))$ of bits of qFor $0 < \alpha < 1$ Algorithm subexponential as a function of the number of bits of qf(n) = o(1) if for any positive constant c > 0 there exist a constant $n_0 > 0$, such that $0 \le f(n) < c$, for all $n \ge n_0$





Factoring 512-bit number

512 bits = 155 decimal digits old standard for key sizes in RSA

17 March - 22 August 1999

Group of Herman te Riele Centre for Mathematics and Computer Science (CWI), Amsterdam

First stage 2 months

168 workstations SGI and Sun, 175-400 MHz

120 Pentium PC, 300-450 MHz, 64 MB RAM

4 stations Digital/Compaq, 500 MHz

Second stage

Cray C916 - 10 days, 2.3 GB RAM

TWINKLE

"The Weizmann INstitute Key Locating Engine"

Adi Shamir, Eurocrypt, May 1999 CHES, August 1999

Electrooptical device capable to speed-up the first phase of factorization from 100 to 1000 times

If ever built it would increase the size of the key that can be broken from 100 to 200 bits

Cost of the device (assuming that the prototype was earlier built) - \$5000

Recommended	key sizes for RSA
Old standard: Individual users	512 bits (155 decimal digits)
New standard:	(155 treclinal trigits)

Individual users

Organizations (short term)

Organizations (long term)

768 bits (231 decimal digits)

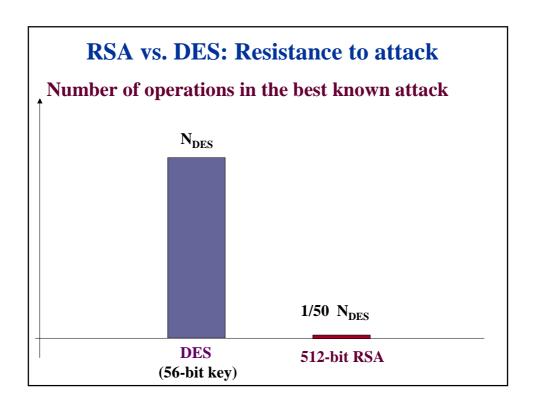
1024 bits (308 decimal digits)

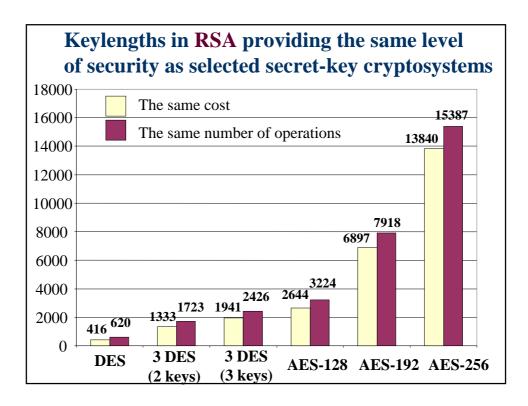
2048 bits (616 decimal digits)

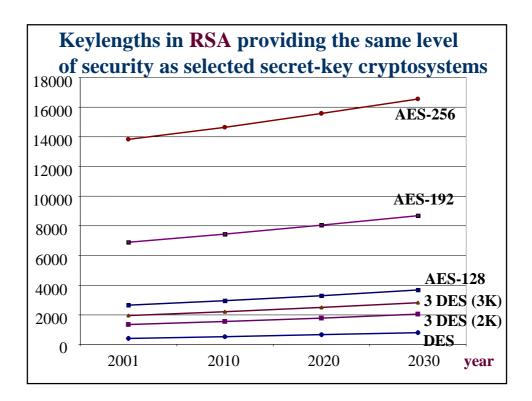
Keylengths in public key cryptosystems that provide the same level of security as AES and other secret-key ciphers

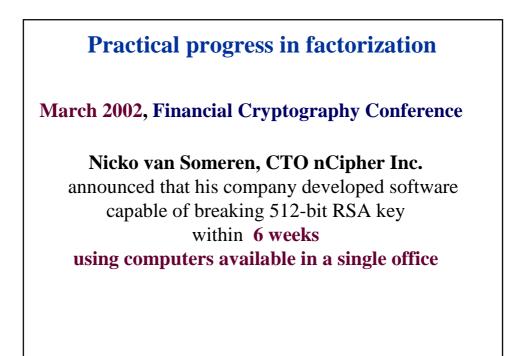
Arjen K. Lenstra, Eric R. Verheul "Selecting Cryptographic Key Sizes" Journal of Cryptology

Arjen K. Lenstra "Unbelievable Security: Matching AES Security Using Public Key Systems" ASIACRYPT' 2001









Bernstein's Machine (1)

Fall 2001

Daniel Bernstein, professor of mathematics at University of Illinois in Chicago submits a grant application to NSF and publishes fragments of this application as an article on the web

D. Bernstein, Circuits for Integer Factorization: A Proposal

http://cr.yp.to/papers.html#nfscircuit

Bernstein's Machine (2)

March 2002

- Bernstein's article "discovered" during *Financial Cryptography Conference*
- Informal panel devoted to analysis of consequences of the Bernstein's discovery
- Nicko Van Someren (nCipher) estimates that machine costing \$ 1 bilion is able to break 1024-bit RSA within several minuts

Bernstein's Machine (3)

March 2002

- alarming voices on e-mailing discussion lists calling for revocation of all currently used 1024-bit keys
- sensational articles in newspapers about Bernstein's discovery

Bernstein's Machine (4)

April 2002

Response of the RSA Security Inc.:

Error in the estimation presented at the conference; according to formulas from the Bernstein's article machine costing \$ 1 billion is able to break 1024-bit RSA within 10 billion x several minuts = tens of years

According to estimations of Lenstra i Verheul, machine breaking **1024-bit RSA** within **one day** would cost **\$ 160 billion** in 2002

Bernstein's Machine (5)

Carl Pomerance, Bell Labs:

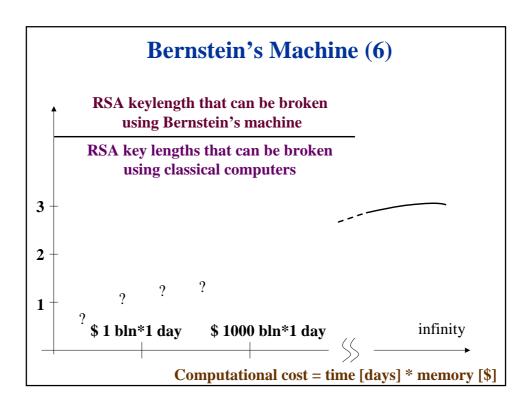
"...fresh and fascinating idea..."

Arjen Lenstra, Citibank & U. Eindhoven:

"...I have no idea what is this all fuss about..."

Bruce Schneier, Counterpane:

"... enormous improvements claimed are more a result of redefining efficiency than anything else..."



Lentgh of N in bits	Length of N in decimal digits	Award for factorization
576	174	\$10,000
640	193	\$20,000
704	212	\$30,000
768	232	\$50,000
896	270	\$75,000
1024	309	\$100,000
1536	463	\$150,000
2048	617	\$200,000

Estimation of RSA Security Inc. regarding the number and memory of PCs necessary to break RSA-1024

Attack time: 1 year

Single machine:PC, 500 MHz, 170 GB RAM

Number of machines: 342,000,000