ECE 297:11 Reconfigurable Architectures for Computer Security

Course web page:

http://mason.gmu.edu/~kgaj/ECE297

Instructors:

Kris Gaj (GMU)

Tarek El-Ghazawi (GWU)

TA:

Pawel Chodowiec (GMU)

Kris Gaj

George Mason University Science & Technology II, room 223 kgaj@gmu.edu, (703) 993-1575

Tarek El-Ghazawi

George Washington University Phillips Hall, room 624D tarek@seas.gwu.edu , (202) 994-2607

Pawel Chodowiec

George Mason University Science & Technology II, room 220 pchodow1@gmu.edu, (703) 963-3788

Most-related GMU courses	
ECE 646 Cryptography and Computer Network Security	ECE 545 Introduction to VHDL
ECE 746 Secure Telecommunication Systems	ECE 645 Computer Arithmetic

Cryptography and Compute	r Secure
Network Security	Telecommunication Systems
 Historical ciphers 	• Stream ciphers
 Classical encryption 	• Elliptic curve cryptosystems
(DES, IDEA, RC5, AES)	• Smart cards and PCMCIA cards
Public key encryption (RSA)	• Attacks against implementations
 Message authentication and 	(timing, power analysis)
Hash functions	• Efficient and secure
• Digital signatures	implementations of cryptography
Public key certificates	• Security in various kinds of
Secure Internet Protocols	networks (IPSec, ATM, wireless)
- e-mail: PGP and S-MIME	• Passwords, authentication tokens
- www: SSL	• Zero-knowledge identification
• Cryptographic standards	schemes
Key escrow encryption	Biometric methods
Quantum cryptography	

Topics (1)

Part I Introduction & secret-key cryptosystems Instructor: Kris Gaj

- 1. Security services. Basic concepts of cryptology.
- 2. Types of cryptosystems. Implementation of security services.
- 3. Mathematical background. Modular arithmetic.
- 4. Older secret key ciphers: DES, Triple DES, IDEA, RC5, Skipjack.
- 5. New encryption standard AES, AES candidates.
- 6. Implementing basic operations of secret key ciphers in software & hardware.
- 7. Modes of operation of secret-key ciphers.
 - Hardware architectures for secret key ciphers.

Topics (2)

Part II Computer arithmetic in reconfigurable hardware Instructors: Tarek El-Ghazawi, Pawel Chodowiec, Kris Gaj

- 1. Architectures of the current generation of reconfigurable devices.
- 2. Fast addition. Ripple-carry and carry-lookahead adders.
- 3. Multioperand addition.
- 4. Fast multiplication. Tree and array multipliers.
- 5. Systolic arrays.
- 6. Pipelining.
- 7. Design flow and tools used for design of cryptographic modules.

Proposed schedule (1)		
• Lecture Part I	- June 3 - June 13	
• Project I	- June 15 - July 19	
• Lecture Part II	- TBD	
• Exam	- July 15	
 Final Project I presentations & reports 		
	- July 19	
• Grading	- July 22	
• Lecture Part III	- July 22-August 1	
• Project II	- August 1 - August 23	
• Final Project II presentations & reports - TBD		

Project		
• groups of 1-3 students		
• topics suggested by the instructors		
• implementation of a cryptosystem in reconfigurable hardware		
using VHDL or Verilog HDL		
• HDL code		
- fully verified using available test vectors and		
public domain software implementations		
of cryptographic algorithms.		
- experimentally tested using		
FPGA board, such as SLAAC-1V or Firebird, or reconfigurable hypercomputer.		

Resources

- Standards & specifications
 - NIST Cryptographic Toolkit
 - AES
 - IEEE P1363
- Software cryptographic libraries
 - Crypto++
 - MIRACL
- FPGA resources
- Cryptographic dictionary

Cryptographic dictionary project

- English
- Polish
- French
- Arabic
- Vietnamese
- Hindi
- Nepali
- ?

Handling the code

- export restrictions
- no hardware cryptographic modules in public domain
- protection access to your code
- transfer of codes on diskettes and using PGP
- rules regarding sharing the codes