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Hybridization to spotted cDNA microarrays: some
technical issues

Unigene sets tend to be more comprehensive than other DNA
microarrays, but also less well characterized.

The various fluorescent dyes differ in their efficiency of incorporation,
the brightness of their fluorescence, and their effects on specific and
nonspecific binding.

Hybridization should be fairly gene-specific (because of the bias
towards 3’ ends), but cross-hybridization has also been observed
between gene family members.

Hybridization stringency is limited by the probe length, which
apparently tends to be rather short.

Sensitivity is limited, so some rare messages may not be detectable.

Unigene sets do contain some annotation errors, so it can be helpful to
resequence the clones of interest.

Choice and amplification of ESTs

e Unigene sets are available for many model organisms (at GMU:
human, rat, mouse, and fruit fly) in the form of bacterial cultures in
microtiter plates.

e The inserts from these cDNA clones can be PCR amplified by using
oligonucleotide primers that bind to the plasmid vector just outside the
polylinker.

e Itis expensive and time-consuming to do this for tens of thousands of
clones, but robots help, and it does not need to be done often.

e Purified insert DNAs are printed on polylysine-coated microscope
slides with robotic printers.
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Figure 4.6 Construction of Affymetrix oligonucleotide arrays
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Oligonucleotide (Affymetrix) microarrays

Oligonucleotides are synthesized directly on a silicon wafer by a
patented method of photolithography and combinatorial chemistry.

One advantage of this method is that a very high spot density can be
achieved, and so 10-20 spots are typically allocated per gene.

This allows multiple sequences within a gene, as well as similar
control sequences, to be tested. It provides a superior method of
discriminating between gene family members, as well as between
splice variants of a single gene.

Some of the disadvantages include cost (which generally preclude a
large sample), limited numbers of genes (they are gradually catching
up to Unigene sets), a lack of flexibility (you cannot add your favorite
genes), and multiple proprietary steps in the data analysis (you can not
get your hands on all of the raw data).

Sensitivity tends to be slightly better than ds cDNA microarrays.

3-um beads in wells Acid etch

A PRIMER OF GENOME SCIENCE 3e, Figure 4.4 2000 Srae Assccases, he.
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Long oligonucleotide microarrays

Long oligonucleotide microarrays are increasingly popular. These are
based on conventional methods of oligonucleotide synthesis and
microarray printing (on polylysine or etc) of 60-80 base oligos,
typically one per gene.

These in many respects represent a compromise between the
advantages and disadvantages of spotted cDNAs vs. proprietary short
oligos.

Long oligonucleotide microarrays have moderate cost, good
sensitivity, and good reproducibility.

Some long oligonucleotide microarrays are commercially available. It
is also possible to make your own, and hence control the gene content
of your assay.

In general, the correlations between microarray platforms are low to
moderate, due to a variety of factors (3’ bias in probes, probe length,
hybridization stringency, diffusion limits, etc).

qRT-PCR

The first step of RT-PCR is reverse transcription of mRNA for form
single-stranded cDNA.

The second step is PCR with specific primers, typically about 75-150
bp apart on two neighboring exons.

The progress of the reaction is monitored during each cycle with a
variety of specialized dye technologies (most popular is SYBR green).

Transcript levels are quantified based on the time taken for the
amplified product to reach a certain level above background.

Some of the advantages of this method include - quantitative, specific,
and sensitive. Can distinguish gene family members and alternative
splice variants. A useful independent test, as a complement to either
spotted cDNA or Affymetrix microarrays.

Disadvantages include - moderately expensive, must analyze one (or a
few) genes at a time.
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Microarrays: initial data analysis

* Affymetrix data is based on single-color hybridizations, computed as
(perfect match - mismatch), which are then log-normalized. Thus, a
separate slide must be purchased if you wish to use a reference sample.

¢ A similar method of initial data analysis can be used for spotted cDNA
microarrays. This approach eliminates problems with dyes and
reference samples. It should also facilitate data mining.

¢ Alternatively, some labs prefer competitive two-color hybridizations
(red/green). This can help to control for variation between printed
spots, as well as variation in hybridization conditions.

¢ Some of the disadvantages of two-color hybridizations are that
experiments can only be compared if they used the same reference
sample, genes not expressed in the reference sample can not be
analyzed, and ratios cause serious statistical problems.

¢ LOESS normalization, sometimes used with either one- or two-color
spotted cDNA arrays, can correct for variations between printer pins
and/or regional variations in background.

A PRIMER OF GENOME SCIENCE 3e, Figure 4.8 ©2000 Srauer Asscctes, .
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Replicate array
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Figure 4.10 - the “volcano” plot of statistical significance
versus log, of fold-change in gene expression values.
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Figure 4.11 - Hierarchical clustering of gene expression patterns.
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Figure 4.12 - Profile plots of gene expression data in each cluster.

© 2009 Snaver Assccates, ine.
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Figure 4.18 - microarray analysis of sporulation in budding yeast.
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Figure 4.19 Gene expression changes in yeast - boxes represent genes that are
repressed (green) or induced (red) at least 2-fold, either after glucose limitation (upper
left quadrant), or 250 generations of adaptive evolution (lower right quadrant).
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Fig. 4.20 - The compendium approach - can cluster both genes and treatments.
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Figure 4.21 - the molecular pharmacology of cancer.
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Figure 4.22 Developmental changes in gene expression in Drosophila
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Figure 4.22 Developmental changes in gene expression in Drosophila
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Serial Analysis of Gene Expression (SAGE)

SAGE essentially amounts to an accelerated version of 3 EST
analysis.

Briefly, double-stranded cDNA is cleaved with a restriction enzyme
that has a 4-bp recognition sequence, 3’ UTRs purified on streptavidin
beads, ligated in pairs by using synthetic oligonucleotide adaptors, then
cloned as | kb concatemers and sequenced.

Some of the advantages of this method are that it is extremely
sensitive, specific, and quantitative. All annotated genes are included.
Comparison of different samples (data mining) is straightforward.

Some of the disadvantages of this method are similar to those of EST
analysis - non-specific transcripts will be included, alternative
polyadenylation will confuse gene identities, cloning artifacts and
sequencing errors further complicate the analysis.

SAGE is slow and expensive. Hence it is usually not used in studies
that require analysis of multiple samples.
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RNA-Seq: sequencing 200 bp random fragments of cDNAs
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Types of promoters in Metazoa

Table 2 | Promoter types

P type Domii gene fu C properties Vertebrate-specific Drosophila Refs
melanogaster-specific
Major promoters
Type | (‘adult’) Tissue-specific expressionin  Sharp (focused’) TSS, Mostly no CpG 8,9,13,17
adult peripheral tissues TATA-box enrichment, islands
disordered nucleosomes
Type ll (ubiquitous’) Broad expression Broad (‘'dispersed’) TSS, CpGislands, Enrichment of 8,9,13,17
throughout organismalcycle ordered nucleosome TATA-depleted non-positionally fixed
configuration motifs (Motif 1 or 6, DRE)
Typelll Differentially regulated Polycomb repression- Large CpGislands Enriched for DPE 16
(developmentally  genes, often regulatorsin regulated genes, broad extending into the
regulated’) multicellular development H3K27me3 marks body of gene
and differentiation
Minor promoters
TCT promoter Highly expressed genes of Sharp, pyrimidine-stretch CpGisland 23
translational apparatus (TCT) initiator sequence, overlapping
often full TATA box, ubiquitous-
promoter-like nucleosome
configuration
DPE. d P 1 DRE.DNA 1 + H3K27me3. histone H3 lysine 27 trimethylation: TSS. transcription start site.

Lenhard et al. (2012) Nat. Rev. Genet. 13, 233-245.
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Chromatin immunoprecipitation (ChIP on chip)

* One goal for future microarray analysis methods is to use gene regulatory
pathways to constrain (or inform) cluster analysis.

* A popular method that attempts to discover gene regulatory pathways at the
whole genome level involves chromatin immunoprecipitation (first crosslink
proteins to DNA in living cells, then shear the DNA and add specific antibody
to one transcription factor, and immunoprecipitate the complexes).

* DNA fragments that were purified in this way can be fluorescently labeled, and
hybridized to genomic microarrays (or promoter microarrays).

* The result is a high-resolution, physical map of the binding sites of a particular
transcription factor, to all gene targets in the genome, under physiological
conditions, in the living cell.

¢ Additional experiments are required to establish whether this binding has a
positive, negative, or no effect on transcription.

Figure 4.13 Chromatin immunoprecipitation and regulatory pathways
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ChIP for transcription factors or histone modifications
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ChIP data analysis
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Model Score Relative score Start End Strand Predicted site sequence
name

IRF1 12,986 0.904279917181229 3 14 = GAAACCGARACG

IRF2 17.216 0.907706006384802 4 21 = CGGAAGTGAAACCGARAC
SPIB 4820 0.806987506140560 5 11 =i ACCGARA

BRCA1 4228 0.802287513481405 8 14 =ik GARACCG

Furey (2012) Nat. Rev. Genet. 13, 840-852.

9/26/13

27



Chromatin-chromatin interactions
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CTCF

Detection of allele-specific bias in ChIP-seq
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Figure 5 | Allele-specific bias in a CTCF ChIP-seq

experiment. Sequence-based experiments allow for the
i igation of functional diff across individual:

due to their underlying genotype. This schematic depicts a

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Position

region with an enriched number of sequence reads from

= £l

quencing (ChIP—seq) experiment. Each rad and blue
line indi an aligned read, with blue reads aligned to
the forward strand and red reads to the reverse strand. As
is typical of a ChIP—seq experiment for a DNA-binding
factor, forward strand reads accumulate 5 to the site
whereas reverse strand reads accumulate 3’ to the site.
Contained within this locus is a heterozygous
polymorphism, denoted by A and T bases. Only
one-quarter of the spanning reads contain the T allele
while three-quarters contain the A allele, thus indicating
an allelic imbalance. This variant site corresponds to a
highly conserved position with an A in the CTCF motif,
suggesting that the alternative T allele in that position
negatively affects binding. The CTCF weblogo at the
bottom of the figure is modified from REF 111.
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Furey (2012) Nat. Rev. Genet. 13, 840-852.
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Discussion questions - week 5

Discuss the advantages and disadvantages of various methods of gene
expression analysis, including cDNA microarrays, long & short
oligonucleotide microarrays, qRT-PCR, SAGE, and RNA-seq.

Discuss the advantages and disadvantages of various methods of
identifying and analyzing groups of co-regulated genes, including
hierarchical clustering, principal cluster analysis, and ChIP.

Discuss the quantitative considerations involved in using mathematical
methods of clustering to cluster samples (or experiments) rather than genes,
and some of the applications of this approach in developmental biology,
cancer biology, and biomedical research. Which of these is compatible
with RNA-seq? Why is RNA-seq rarely used with these analyses?

Discuss the major types of Metazoan promoters, and the functional and
structural (DNA sequence, chromatin modifications) characteristics of
each.

Discuss methods of chromatin immunoprecipitation, as a tool for
understanding the role(s) of chromatin structure in gene regulation. Your
answer should include some of the advantages and disadvantages of each
method.
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