Inf Syst Front (2007) 9:505-514
DOI 10.1007/s10796-007-9050-7

Virtual organization security policies: An ontology-based

integration approach

Saravanan Muthaiyah - Larry Kerschberg

Published online: 19 October 2007
© Springer Science + Business Media, LLC 2007

Abstract This paper addresses the specification of a secu-
rity policy ontology framework to mediate security policies
between virtual organizations (VO) and real organizations
(RO). The goal is to develop a common domain model for
security policy via semantic mapping. This mitigates
interoperability problems that exist due to heterogeneity in
security policy data among various (VO) and (RO) in the
semantic web. We propose to carry out integration or
mapping for only one aspect of security policy, which is
authorization policy. Other aspects such as integrity, repudi-
ation and confidentiality will be addressed in future work.
We employ various tools such as Protégé, RacerPro and
PROMPT to show proof of concept.

Keywords Ontology mapping - Semantic mapping -
Security policy ontology - Security policy domain model
1 Introduction

One of the major semantic web research requirements is the
need for semantic interoperability. Previous research into

S. Muthaiyah (D<)

3500 Country Hill Drive,
Fairfax, VA 22030, USA
e-mail: smuthaiy@gmu.edu
URL: http://eceb.gmu.edu

L. Kerschberg

Department Information and Software Engineering,
George Mason University,

4400 University Drive, MS 4A4,

Fairfax, VA 22030, USA

e-mail: kersch@gmu.edu

URL: http://eceb.gmu.edu

S. Muthaiyah - L. Kerschberg
E-Center for E-Business, George Mason University,
Fairfax, USA

mapping and integration has focused on a closed and
controlled environment within organizational boundaries
(ie., via EDI' and XML? technology). However those
efforts did not solve semantic heterogeneity problems and
only managed to mediate structural data heterogeneity
requirements. With recent increased interest in ontologies
and taxonomies we can see how much importance the
research community has given to this area. Semantic inter-
operability allows systems to exchange information and
services seamlessly with one another in more meaningful
ways. Our research is focused on ontology mapping, which
is a fairly new discipline. We believe that semantic
interoperability can be achieved via ontology mapping and
our work in the past has provided evidence that this is
possible (Muthaiyah and Kerschberg 2006).

Understanding the causes of heterogeneity is crucial for
developing accurate mapping techniques. The main reasons
for heterogeneity are structural heterogeneity (difference in
structures), semantic heterogeneity (interpretation of differ-
ent structures) and subjective mappings. Figure 1 illustrates
how the structural heterogeneity problem occurs for
security policies. Assume that a VO has an authentication
policy and RO has its own authentication policy, which it
decided to call authorization policy.

Although the policies appear to be similar, structurally
they are different. In the authentication policy structure, the
VO has “UserPassword” and the RO has “Token”.
However the other classifications in the tree remain the
same. The next example (Fig. 2) shows semantic heteroge-
neity that exists for the same entities, i.e., VO and RO.
From the above example one would assume that the PKI

! Electronic Data Interchange
% Extensible Markup Language

@ Springer

506

Inf Syst Front (2007) 9:505-514

Fig. 1 Structural heterogeneity
problems VO RO
Authentication Integrity Authorization Integrity
Userld i ‘ PKI Userld Token PKI
Password
Public Key Private Key Public Key Private Key

/VO/authentication/user password/text()

/RO/authorization/token/text()

data definitions of both entities are the same. However this
is not always true and it is clear from the example below
that the PKI data definitions are different in the final policy.

The X.509 certificate specifies the association between a
public key and a set of attributes such as subject name,
version, issuer name, serial number and validity interval.
The OASIS® specification describes the use of the X.509
authentication framework in greater detail and SOAP*
Message Security specification (WS-Security) describes
procedures for message exchange. In order to achieve inter-
operability and to resolve the heterogeneity issues of security
policies above, semantic integration is needed.

Our goal is to specify a Security Policy Domain Model
(SPDM), via ontology mapping. SPDM acts as a common
security policy for both entities by inheriting the existing
attributes and sometimes adding or modifying attributes
between them so that the policies become commonly
applicable to both entities without compromising existing
security standards. The contribution of our paper is twofold,
one is the methodology for building the SPDM for
authorization policy, and the other is the taxonomy for
authentication, which we developed from scratch to test our
concept.

Explicit differences in security policies can exist among
organizations (Mehta et al. 2004) that transact over the
Semantic Web (Lee et al. 2005). RO and VO have differ-
ences in their security policy design and we have provided
examples. This is also true for any type of heterogeneous

3 Organization for the Advancement of Structured Information Stand-
ards http://www.oasis-open.org/who/).

“ Simple Object Access Protocol

@ Springer

databases where having the same identical structures would
be nearly impossible. SPDM fully integrates and eliminates
semantic differences that exist at the object and attribute
levels of the security policy data structures. In the next
section we show the methodology for developing SPDM.

2 Literature review

Information systems today are evolving from static to
dynamic environments. Integration of these systems using
Grid technology was the very first effort to resolve data type
differences. The Grid defines various abstraction layers
(Foster et al. 2001), which enabled much of this work.
Widely dispersed information spaces were fully inter-
connected and they were referred to as virtual organizations
(VO) (Foster et al. 2001). The Grid infrastructure was a
good start for collaborations to take place among VO
participants (Foster et al. 2001). Coordination of seamless
interactivity and resource sharing among VO was the main
focus of that effort. However some of the heterogeneity
problems still remained unresolved.

Another approach for solving heterogeneity problems
has been to carry out matching. Much of this work had
been done using XML technology. The match operator
takes as input two graph-like structures (e.g., database
schemas or ontologies) to produce mappings between its
elements. If the graphs correspond semantically to each
other, matching is successful. The InfoSleuth project
(Fowler et al. 1999), which uses agent architecture, is a
good example of this approach. Ontologies are believed to
be the next trend for solving heterogeneity problems.

Ontology allows the explicit specification of a domain of
discourse. By incorporating semantics, ontologies produce

http://www.oasis-open.org/who/

Inf Syst Front (2007) 9:505-514

507

Fig. 2 Semantic data heteroge-

VO: Security Authentication Final Policy

RO: Security Authentication Final Policy

neity problems

PKI — X.509 Certificate

PKI - X.509 Certificate

Name | Identifier | Category | Version Name | Identifier | Category | Version
Final Userld | Certificate 3 Final Userld Token 3
Policy Policy

Note: Object representation conflicts

specific knowledge domains. However, ontologies per se
cannot resolve any interoperability problems because it is
not possible to have a single ontology that represents all
kinds of domains and applications. The same analogy is also
applicable to ontologies for security policies. To provide
seamless and “on the fly” capabilities for semantic web
services, we must implement a complete SPDM.

The semantic mapping between ontologies has not been
automated and is still performed manually. A dynamic inte-
gration solution is required. Interoperability at the semantic-
level is more desirable today; protocols like SOAP, UDDI and
WSDL alone will not solve this problem. A shift towards
semantic level integration via semantic interoperability using
Reference Ontology and a Semantic Annotation Language
has been proposed to resolve this problem (Missikoff et al.
2003). The Semantic Web can also be viewed in the same
manner as the Grid (Howard and Kerschberg 2004) where
various layers exist and heterogeneous security policies exist
among them. Security policies can have a totally different
meaning for different VO (Wang et al. 2004). To reconcile
the differences, gap analysis is required, followed by
semantic reasoning and lastly mapping of all objects and
attributes. Some instances may also be merged if they have a
lot in common. We can thus produce a common reference
ontology, which will represent concepts, relationships,
integrity constraints and business rules that both VO and
RO would collaborate on. A formal definition of the
ontology is necessary to do this (Hone and Eloff 2002).

3 Methodology

We first assume that only two entities exist, i.e., RO and
VO, and are in our earlier examples, we specify authoriza-
tion security policy ontologies, one for RO and another one
for VO. In order to do this one first constructs an
authorization taxonomy. To show that VO and RO have
different data structures we name VO’s ontology as
authentication and RO’s as authorization. Having identified
the structural and semantic differences we proceed to carry
out reasoning regarding those policies. We conducted
reasoning to check for consistency in both of the ontologies
that we had specified.

Note: Object representation conflicts

Inconsistencies between them had to be resolved to
produce a consistent SPDM. We used a tool to check for
consistency, i.e., RacerPro.(OWL reasoner by Racer Systems,
http://www.sts.tu-harburg.de/~r.f. moeller/racer/) It is a very
useful tool for checking the consistency between two or
more ontologies. Mapping would be useless if the ontologies
were inconsistent. The tool also understands the ontology to
be mapped and sends a message to the reasoning server via
http GET and POST messaging. This is a client-server Java-
enabled engine that produces a summary report after the
reasoning process is complete. This process is very time
consuming and can be very cumbersome.

Integration and mapping are technically difficult; thus
much of the existing work often assumes that mappings are
already known. The identification of semantic relationships
between different information sources is a difficult problem
as well. Moreover to produce mappings and reason about
them in a dynamic environment is a non-trivial task. How
much processing time would be needed is still unknown.
After making sure all inconsistencies have been resolved
one performs gap analysis on the ontologies that were
reasoned about.

The analysis provides us an overview of the similarities
and differences in the structure and semantics of those
security policies. Next, one maps and consolidates the
policies where they were required. Ontology mapping is a
fairly new area and much of it is done manually. Also, it is
done in a static fashion as described in this paper. When the
Semantic Web grows and becomes popular we should have
automated systems to do all the mappings seamlessly in a
dynamic way and on-the-fly. A method for finding
semantic relations effectively is also required to make all
this possible. Such systems have yet to be built and this
research is a contribution in that direction.

4 Understanding security policy

The term “security policy” has many different meanings
and can be interpreted in many different ways. A security
policy is a statement of what is allowed, and what is not
allowed (Bishop 2002). The existence of various interpre-
tations is rooted in two observations. Firstly, security policy

@ Springer

http://www.sts.tu-harburg.de/~r.f.moeller/racer/

508

Inf Syst Front (2007) 9:505-514

is a context-dependent notion (e.g., computer security
policy, information security policy, etc.) and secondly, even
in the same context, specific kinds of security policies have
been developed to meet specific needs (e.g., confidentiality
security policies in military environments, etc.).

To effectively manage security policies we must be able
to produce compatible policy representations. The existence
of a large number of representation methods leads to the
conclusion that security policies, even when semantically
compliant, can be represented in ways that differ substan-
tially in terms of formalism, structure, and hierarchy, thus
raising obstacles to their reconciliation. Therefore, in order
to effectively manage security policies one has to be able to
produce compatible policy representations (i.e., SPDM).

Multiple interacting security policies require semantics to
be managed and manipulated. The security policy semantics
ontology is an efficient means for achieving this. Ontology is
“an explicit specification of a conceptualization” (Gruber
1993). Domain-specific ontologies are used to define the
terminology for a group of people that share a common
view on a specific domain, effectively supporting knowl-
edge sharing and reuse. Thus, security policies can be
represented by the means of a SPDM, which elaborates on
the domain of security knowledge.

SPDM can be used to describe structurally heteroge-
neous security policies of different levels of abstraction.
Thus, by defining shared and common domain theories and
vocabularies, SPDM help both people and machines to
communicate in a concise manner, a manner which is based

not only on the syntax of security policy statements, but on
their semantics, as well.

5 SPDM lifecycle and tools

Figure 3 shows the six steps of the SPDM development
lifecycle to produce the SPDM. The security policy
ontology is created for RO and VO first (step 1) and
then exported to OWL. We use Protégé (Open source on-
tology editor downloadable at: http://protege.stanford.edu/
download/prerelease/full/) to build and export the OWL and
perform reasoning with RacerPro (Appendix A.1 and A.2).
The reasoning process in RacerPro is made up of three
subprocesses, i.e., checking for consistency in the ontolo-
gies to be mapped, classifying their taxonomy and
computing their inferences. Figure 3 summarizes those
processes in (steps 2-3). The reasoner will eliminate
inconsistency and align any new additions that are inserted
into the ontology.

Upon successful elimination of inconsistency (steps 2—3)
we begin mapping (Appendix A.3) using the PROMPT
(Protégé plug-in that allows comparing and merging
ontologies.) plug-in (step 4). Merge functions (step 5) are
carried out if ontologies can be combined (Appendix A.3)
and lastly a mapping log is generated (step 6). In the
dynamic semantic web environment the policy mapping
would be done on-the-fly seamlessly. When the VO and
RO agree on a common security policy for processing a

Fig. 3 SPDM development

lifecycle
RO + VO

1: Security Policy Ontology Creation }

RO security ontology/taxonomy defined;
VO security ontology/taxonomy defined.

gt

RO+ VO

2: Security Policy OWL Reasoning

Detect conflicts and check for inconsistencies;
} Reasoning Engine checks and provides conflict

gt

solutions.

3: Security Policy Ontology Consistency
Test for RO + VO

} Check inconsistency in data types;
Generate suggestions, and if there are

gt

violations or errors, repeat step 1.

4: Security Policy Ontology Mapping

} SPDM generated;
Produce global security policy via mapping.

gt

5: Security Policy Ontology Merging

} | SPDM generated;
Produce global security policy via merging.

gt

6: Completion of Mapping and Merging

} | SPDM completed;
Output results.

@ Springer

http://protege.stanford.edu/download/prerelease/full/
http://protege.stanford.edu/download/prerelease/full/

Inf Syst Front (2007) 9:505-514

509

transaction a new contact agreement is formed. Since the
Semantic Web is a dynamic environment with multiple new
entrants coming into the virtual supply chain, there is a need
to dynamically map local and global policies. The wrapper,
as explained earlier solves this problem. Mapped policies
would also represent virtual temporary contracts (VTC),
which can be stored in a knowledge base for future use.

With technology similar to topic maps we can track how
security polices evolve with dynamic changes in business
requirements. Another benefit would be to carry out audit
functions on previously contracted transactions for resolv-
ing repudiation problems and thus enhancing controls.

The methodology for semantic mapping in the semantic web
would be to have a WS-Security ontology mapping system like
JENA®, which has its own rule ontology and rule parser.
However, aligning and mapping the security policies of the
constant influx of new entrants is not a trivial task. We
demonstrate how this could be done with different plug-ins
incorporated into Protégé such as Algernon® and PAL’. Also a
merge® function was done using another plug-in called
PROMPT. PROMPT has four stages (i.e., merge, extract,
move frame and compare). RacerPro was used to test the
overall consistency of SPDM. Table 1 illustrates the tools
we have used for proof-of-concept and the steps 1 through
6 relate to the six steps in the SPDM lifecycle.

6 Mapping in Protégé and reasoning in RacerPro

There are many aspects of security policy that need to be
reconciled between the global and local environments. A
complete taxonomy is needed so that the reconciliation can
be performed quickly. However our literature survey
indicates that a comprehensive security ontology does not
exist. Therefore, we have created our own ontology, one for
the VO and another for the RO. As we have mentioned
earlier, this is our major contribution of this paper. Security
can be divided into authentication, authorization, integrity,
access control, non-repudiation and confidentiality. This
paper focuses on authorization security policy for SPDM.
Table 2 shows two scenarios A and B. The “final policy”
data labels for authentication in scenario A are “Userld” and
“UserPassword” and authorization data labels are “Userld”
and “Token”. SPDM shows the mapped data labels which are
“Userld” and “UserPassword”. The identifier remains as
“Userld” but Password and Tokenld becomes ‘“Password

>JENA API is a Java framework for building Semantic Web
applications, http://jena.sourceforge.net/.

® Protégé plug-in is used for forward and backward chaining rules.
7 Protégé plug-in is used for expressing constraints.

8 Merging function allows projects to be merged after resolving the
common concepts between them.

Table 1 Tools used in the SPDM development lifecycle

Step/process Tools used to carry out the process

1 Protégé 3.1—Ontology editor

2 RacerPro—Ontology/OWL Reasoner

3 RacerPro—Reasoner with Java API

4 Prompt—Plug-in for Protégé 3.1 ontology editor

5 Prompt—Merge function in Prompt plug-in
available in Protégé 3.1 ontology editor

6 Successful completion viewable in Mlog

Ticket”. In scenario B, the “final policy” data labels for
authentication are “Userld” and “X.509” (Certificate) before
mapping. After mapping SPDM shows the new data labels as
“Userld” and “X.509” (Certificate Token). Merge is complete
without any discrepancies and SPDM is the common global
policy for authorization, which is agreed by VO and RO.
Heterogeneity in the data labels above, were reconciled to
arrive at the common policy (SPDM). The scenario above is
mapped into XML and in order to maintain consistency we use
RacerPro to do reasoning. Typically RacerPro would produce
statistics for tests carried out (step 3, Fig. 3) and produces a log
report (i.e., Mlog) which will address the following:

» Total number of generated suggestions

* Number of generated suggestions that were followed by
the user

» Total number of conflicts detected

* Number of conflict solutions used

» Total number of KB operations

First separate ontologies for Scenarios A and B have to be
created in Protégé. Each ontology must then be exported to
OWL format prior to reasoning. After that the reasoning is done
separately for A and for B. Notice that the reasoning results are
error free which means mapping can be carried out from this
point. If there were errors (usually in red) those would have to
be corrected before mapping. We do this to ensure that the data
is consistent before mapping. Errors are usually related to
inconsistent classes, concepts, slots and attributes. For instance
if the authorization policy for scenario A had inconsistent
attributes, the output would appear in “red” and the user would
be prompted to fix those errors. The errors must be amended
before proceeding to the next step, which is mapping.

Figure 4 shows the successful reasoning (i.e., number of
conflicts detected=0) performed for Scenario A (RO and
VO). Reasoning is also done for Scenario B (RO and VO)
and after successful reasoning we perform mapping. Mlog
(mapping log) outputs in (Appendix A.l and A.2) also
show the number of conflicts detected which in this case is
zero. SPDM (Fig. 3, step 6) would be the end result.
Successful mapping with PROMPT and merge for scenario
A is shown in (Appendix A.3).

@ Springer

http://http://jena.sourceforge.net/

510

Inf Syst Front (2007) 9:505-514

Table 2 Merging two SPRO

policy data elements Security Policy - VO Security Policy — RO Compatible Security
(Authentication) (Authorization) Policy — SPDM =
VO+RO
Before Mapping Before Mapping (Authorization)
After Mapping
A=Identifier +Password A=Identification with A=Password ticket
token ID
<? xml version="1.0" 7> <? xml version="1.0" 7>
< <Final Policy > <?xml version="1.0" 7> <Final Policy >
=) <Entity> <Final Policy > <Entity>
= <Type/> <Entity> <Type/>
§ <Identifier>Userld</Ident <Type/> <Identifier>Userld</Ident
8 ifier> <Identifier>Userld</Ident ifier>
2] <Password> ifier> <Password Ticket>
UserPassword <Tokenld>Token</Token UserPassword
</Password> 1d> </Password Ticket>
B=X.509 Certificate B=X.509 token B=X.509 Certificate &
token
- <?xml version="1.0" 7> <?xml version="1.0" 7>
o <Final Policy > <Final_Policy > <?xml version="1.0" 7>
~ <Entity> <Entity> <Final_Policy >
< <Type/> <Type/> <Entity>
E <Identifier>Userld</Ident | <Identifier>Userld</Ident <Type/>
8 ifier> ifier> <Identifier>Userld</Ident
<Certificate>X.509</Certi | <Token>X.509</Token> ifier>
ficate> <CertificateToken>X.509
</CertificateToken>

7 Conclusion

change in an explicitly understandable form. Nevertheless
one question remains unanswered that is, “are standard
schemas or ontologies going to solve the semantic
integration problems?” Stand-alone ontologies provide zero

Ontologies raise the level of specification of knowledge by
incorporating semantics into data and promoting its ex-

Fig. 4 Reasoning results of sce-

nario A and B before mapping Connected to Racer 1.9.0 @

Computing inconsistent concepts: Updating Protege-Oyl ...

Reasoner log
v ¥ Synchronize reasoner

=@ Time to clear knowledgebasze = 0.741 seconds

<@ Time for DIG conversion = 016 seconds
<@ Time to update reasoner = 1 252 seconds
Lol Tirne to synchronlze = 2,193 seconds
* @ Check concept consistency
i S Tirne to build gquery = less that 0,001 seconds
¥ Time to send and receive from reasoner = 1.072 seconds
| - Time to update Protege-Ovil = 001 seconds
- Total time: 5.088 seconds

@ Springer

Inf Syst Front (2007) 9:505-514

511

interoperability therefore we need accurate mappings from
actual systems and exploitation by real development tools
like the ones mentioned above. Ontology mapping aims to
overcome semantic integration problem between ontology-
based systems. Ontology mapping is an important area of
research due to the need for better data integration and to
achieve semantic interoperability. Semantic data integration
carried out in this paper gives an insight into the benefits of
ontology mapping in the area of security. This is significant
for building a common information model, trusted domain
and federated services. More work is needed in this area,

<?xml version="1.0"?>
<rdf:RDF

especially in conflict analysis and resolution. VO represents
RO for carrying out transactions to fulfill demands from
user. Policies of RO and VO of agent ontologies may differ
greatly and so we need to look into implementing security
taxonomy, which can be common to all. This would also
make mapping and reasoning a lot faster.

Appendix A.1

OWL for RO (after RacerPro reasoning)

xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="http://www.w3.0rg/2001/ XMLSchema#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.0rg/2002/07/ow1#"
xmlns="http://www.owl-ontologies.com/unnamed.owl#"
xml:base="http://www.owl-ontologies.com/unnamed.ow1">

<owl:Ontology rdf:about=""/>
<owl:Class rdf:ID="Authorization"/>

<owl:DatatypeProperty rdf:ID="password">

<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLSchematstring"/>
<rdf:type rdf:resource="http://www.w3.0rg/2002/07/owl#FunctionalProperty"/>
<rdfs:domain rdf:resource="#Authorization"/>

</owl:DatatypeProperty>

<owl:FunctionalProperty rdf:ID="user _id">

<rdfs:domain rdf:resource="#Authorization"/>
<rdfitype rdf:resource="http://www.w3.0rg/2002/07/owl#DatatypeProperty"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchematstring"/>

</owl:FunctionalProperty>

<owl:FunctionalProperty rdf:ID="token_ id">

<rdf:type rdf:resource="http://www.w3.0rg/2002/07/owl#DatatypeProperty"/>
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLSchema#string"/>
<rdfs:domain rdf:resource="#Authorization"/>

</owl:FunctionalProperty>

<owl:FunctionalProperty rdf:ID="X.509 token">
<rdf:type rdf:resource="http://www.w3.0rg/2002/07/owl#DatatypeProperty"/>
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLSchema#string"/>
<rdfs:domain rdfiresource="#Authorization"/>
<rdfs:label rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string"

>X.509 token</rdfs:label>
</owl:FunctionalProperty>
</rdf:RDF>

<!-- Created with Protege (with OWL Plugin 2.2, Build 307) http://protege.stanford.edu -->

Mlog Output for RO

START
Total number of generated suggestions: 0

Number of generated suggestions that were followed by the user: 0

Total number of conflicts detected: 0
Number of conflict solutions used: 0
Total number of KB operations: -3

@ Springer

512 Inf Syst Front (2007) 9:505-514

Note:

Appendix A.1 shows the OWL results after RacerPro
had reasoned it. All the attributes and classes for RO were
checked using description logic. The log shows that there
were no problems with RO’s ontology as such no were
conflicts detected.

Appendix A.2

OWL for VO (after RacerPro reasoning)

<?xml version="1.0"?>
<rdf:RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.0rg/2002/07/ow1#"
xmlns="http://www.owl-ontologies.com/unnamed.owl#"
xml:base="http://www.owl-ontologies.com/unnamed.owl">
<owl:Ontology rdf:about=""/>
<owl:Class rdf:ID="Authentication"/>
<owl:DatatypeProperty rdf:ID="X.509 certificate">
<rdfs:label rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string"
>X.509 certificate</rdfs:label>
<rdfs:domain rdfiresource="#Authentication"/>
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLSchema#string"/>
<rdf:type rdf:resource="http://www.w3.0rg/2002/07/owl#FunctionalProperty"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="password">
<rdfs:domain rdfiresource="#Authentication"/>
<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLSchema#string"/>
<rdf:type rdf:resource="http://www.w3.0rg/2002/07/owl#FunctionalProperty"/>
</owl:DatatypeProperty>
<owl:FunctionalProperty rdf:ID="identifier">
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchemattstring"/>
<rdfs:domain rdfiresource="#Authentication"/>
<rdf:type rdf:resource="http://www.w3.0rg/2002/07/owl#DatatypeProperty"/>
</owl:FunctionalProperty>
</rdf:RDF>

<!-- Created with Protege (with OWL Plugin 2.2, Build 307) http://protege.stanford.edu -->

Mlog Output for VO

START
Total number of generated suggestions: 0
Number of generated suggestions that were followed by the user: 0
Total number of conflicts detected: 0
Number of conflict solutions used: 0
Total number of KB operations: -3
Total number of generated suggestions: 0
Number of generated suggestions that were followed by the user: 0
Total number of conflicts detected: 0
Number of conflict solutions used: 0
Total number of KB operations: -3

@ Springer

Inf Syst Front (2007) 9:505-514

513

Note:

Appendix A.2 shows the OWL results after RacerPro
had reasoned it. All the attributes and classes for VO were
checked using description logic. The log shows that there
were no problems with RO’s ontology as such no were
conflicts detected.

Appendix A.3

Mapping is complete for scenario A

EAV0 Protégs 3.2 beta (file:\C:\WProgram? 20Files\Pratege_3.2_bela\V0. pprj, Protégs Files (,pont and .pins))
Ele Et Project Wndow Tools Prompt el
NeRE «+ B2 8 wad ¢ <{\protégé
® Cstes | Moots | 3 Foms | # nstances | A& Quenes | Frompt
[Tabie view | Tree view |
Wmage table B AtSHEHS
2 |__renamed | operstion | mag bevel | rename explanation |
™ Delete e
@ Auherticafion Yes Map Directy-changed Domains for the same siotSict{passward)
= 509 corlificate Yes Map Diectiy-changed nstances have the sams type and siot valses
W icentifier Yes Mag Dwrectiy-changed instances have the same type and siol values
W paszword L] Map Isomarpihic frame name and type are the same
Changed by:
Differences i i v X
Operation Siot Facet Ok Vs Mew Value |
Note:

Appendix A.3 shows the mapping results for Scenario A.
We did this after the reasoning process was complete.
Renamed attributes and operations are mentioned in
column 3 and 4. The delete operation shows that a slot is
being eliminated in the process. Map-level shows mapped
operation and password in this case was not renamed as it
was isomorphic.

References

Bishop, M. (2002). Computer security: Art and science. New York:
Addison-Wesley.

Fowler, J., Brad, P., Marian, N., & Bruce, B. (1999). Agent-based
semantic interoperability in InfoSleuth. SIGMOD, 28(1), 60-67.

Hoéne, K., & Eloff, J. H. P. (2002). Information security policy: What
do international information security standards say? Computers
and Security, 21(5), 402—409.

Howard, R., & Kerschberg, L. (2004). Using facets of security within
a knowledge-based framework to broker and manage semantic
web services. Paper presented at the Workshop on Secure
Knowledge Management, Amberst, New York.

Foster, 1., Kesselman, C., & Tuecke, S. (2001). The anatomy of the grid:
Enabling scalable virtual organizations. International Journal of
High Performance Computing Applications, 15(3), 200-222.

Gruber, T. R. (1993). A translation approach to portable ontologies.
Knowledge Acquisition, 5(2), 199-220.

Lee, K. J., Upadhyaya, S. J., Rao, H. R., & Sharman, R. (2005).
Secure knowledge management and the semantic web. Commu-
nications of the ACM, 48(12), 48-54.

Mehta, B., Niederée, C., Stewart, A., Muscogiuri, C., & Neuhold, E. J. (2004,
June). An architecture for recommendation based service mediation.
Paper presented at the Proceedings of International Conference on
Semantics of a Networked World (ICSNW), Paris, France.

Missikoff, M., Schiappelli, F., & Taglino, F. (2003). 4 controlled language
for semantic annotation and interoperability in e-business applica-
tions. Paper presented at the Proceedings of the Second International
Semantic Web Conference (ISWC-03), Sanibel Island, Florida.

Muthaiyah, S., & Kerschberg, L. (2006). Dynamic integration and
semantic security policy ontology mapping for semantic web

@ Springer

514

Inf Syst Front (2007) 9:505-514

services (SWS). IEEE Engineering Management Society, ISSN 1-
4244-0682-X, pp. 116-120.

Wang, H, Jah, S., Livny, M., & McDaniel, P. D. (2004). Security
policy reconciliation in distributed computing environments.
Paper presented at the Proceedings of the 5th IEEE International
Workshop on Policies for Distributed Systems and Networks
(POLICY’04), New York.

Saravanan Muthaiyah is a senior lecturer at Multimedia University,
Cyberjaya, Malaysia and currently a doctoral degree candidate in
Information Technology at George Mason University, Fairfax, VA. He
holds a Masters degree in Information Technology and other degrees
in the area of accounting and finance for his bachelors. He is also a
Fulbright scholar under the auspicious graduate research exchange
program sponsored by the US Department of State. His research
interests include semantic web, ontology mapping, systems integra-
tion, systems engineering, topic maps, knowledge management and
enterprise architectures. His recent papers have focused on ontology
mapping and mainly solving heterogeneity issues for Semantic Web.

@ Springer

Larry Kerschberg is Professor of Information and Software Engi-
neering, at George Mason University, Fairfax, VA 22030 USA. He is
director of E-Center for E-Business and directs the MS in E-Commerce
Program. He is past Chairman of the Information and Software
Engineering Department at Mason. During 1998 he was a Fellow of
the Japan Society for the Advancement of Science at Kyoto University.
He holds a B.S. in Engineering from Case Institute of Technology, and
MS in Electrical Engineering from the University of Wisconsin-
Madison, and a Ph.D. in Engineering from Case Western Reserve
University. He is Editor-in-Chief of the Journal of Intelligent
Information Systems, published by Springer. He recently served as
an editor and contributor of the book “The Functional Approach to
Data Management: Modeling, Analyzing and Integrating Heteroge-
neous Data,” published at Heidelberg, Germany, Springer, 2004. His
areas of expertise include expert database systems, intelligent
integration of information, knowledge management, and agent-based
semantic search. His recent papers have focused on ontology-driven
semantic search in Knowledge Sifter, knowledge representation using
Topic Maps, and methodologies for the creation and management of
Semantic Web Services. These papers can be found at http://eceb.
gmu.edu/publications.html.

http://eceb.gmu.edu/publications.html
http://eceb.gmu.edu/publications.html

	Virtual organization security policies: An ontology-based integration approach
	Abstract
	Introduction
	Literature review
	Methodology
	Understanding security policy
	SPDM lifecycle and tools
	Mapping in Protégé and reasoning in RacerPro
	Conclusion
	Appendix A.1
	OWL for RO (after RacerPro reasoning)

	Appendix A.2
	OWL for VO (after RacerPro reasoning)

	Appendix A.3
	Mapping is complete for scenario A

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

