ON OPTIMAL CONSTRAINT DECOMPOSITION, MONITORING,
AND MANAGEMENT IN DISTRIBUTED ENVIRONMENTS

by

Samuel E. Varas G.
A Dissertation Submitted
to the Graduate Faculty
of
George Mason University
in Partial Fulfillment of
the Requirements for the Degree
of
Doctor of Philosophy

Information Technology

Committee:

Larry Kerschberg, Dissertation Director

Alex Brodsky, Dissertation Director

Daniel Barbard

Daniel Menascé

Edgar H. Sibley

Carl M. Harris, Associate Dean for

Graduate Studies and Research

Lloyd J. Griffiths, Dean, School of

Information Technology and Engineering

Date: Summer, 1998
George Mason University

Fairfax, Virginia

On Optimal Constraint Decomposition, Monitoring,

and Management in Distributed Environments

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy Information Technology at George Mason University.

Samuel E. Varas G.
B.S. Industrial Engineering, University of Chile, Chile, 1989
M.S. Industrial Engineering, University of Chile, Chile, 1989

Directors: Dr. Larry Kerschberg and Dr. Alex Brodsky

School of Information Technology and Engineering

Summer 1998
George Mason University

Fairfax, Virginia

Copyright (©) 1998 Samuel E. Varas G.

All Rights Reserved

i

il

Dedication

I would like to dedicate this work to my parents, Carmen and Samuel, whom always
taught me to give my best effort, and to my wife Paula, and our daughter Paula

Antonia who understood me and shared their life with me.

v

Acknowledgments

I would like to thank my advisors Dr. Larry Kerschberg and Dr. Alex Brodsky
for their support and exceptional guidance and encouragement to understand new
paradigms. [would also like to thank the other members of my dissertation committee,
Dr. Daniel Barbara, Dr. Daniel Menascé, and Dr. Edgar H. Sibley for their helpful
comments and support during the research and writing of this dissertation.

I would like to thank the Industrial Engineering Department, of the Physical Sci-
ences and Mathematics School, of the University of Chile for its support. I would
also like to thank the Government of Chile for the Scholarship “Beca Presidente de la
Republica” granted to me.

[would also like thank to the Defense Advanced Research Project Agency (DARPA)
and the Advanced Logistics Program under contract number N00600-96-D-3202 for

supporting, in part, this dissertation.

Table of Contents

Page
List of Figures X
Abstract X
1 Introduction 1
1.1 Problem Characterization 2
1.1.1 Optimal Integrity Constraint Management 2
1.1.2 Optimal View Materialization 5
1.1.3 Optimal Decomposition of Quasi-Views 6
1.2 Organization 7
2 Optimal Constraint Management in Distributed Databases 8
2.1 Introduction L 8
2.1.1 Local Verification of Global Integrity Constraints 8
2.1.2 Crisis Management Scenario Example 0. 10
2.1.3 Contributions 12
2.1.4 Related Work oo 20

2.1.5 Organization e 23

vi

2.2 Decomposition Optimization Framework 24
2.2.1 Safe Decompositions 24
2.2.2 Optimization Problem Formulation 29
2.2.3 Optimization Criteria 31
2.3 Linear Arithmetic Constraints 34
2.3.1 Parametric Optimization Problem 36
2.4 Individual Variable Partitions 0L, 37
2.4.1 Parametric Characterization 37
2.4.2 Parametric Optimization Problem 41
2.5 General Variable Partitions 0oL 44
2.5.1 Split Decompositions Lo 44
2.5.2 Resource Characterization 50
2.5.3 Concurrent Split Decompositions 54
2.6 Optimization Function o 60
2.6.1 Uniformity Assumptions 60
2.6.2 Parametric Representation 000000 62
2.7 Distributed Protocol 68
2.7.1 Properties oL 71
2.7.2 Protocol with one Coordinator 74

2.8 Algorithms, Implementation and Experiments 77

3 Optimizing Materialized Views

3.1 Introduction
3.2 Related Work
3.3 Contributions
3.4 View Materialization Characterization
3.4.1 Definitions
3.4.2 Optimal View Materialization Problem
3.4.3 Expression DAG
3.4.4 Objective Function
3.4.5 Optimization Problem o
3.5 Solution and Algorithms Lo oo
3.5.1 Shortest Path Algorithm in an Expression-DAG
3.5.2 Local Search Algorithm for Expression-DAG

3.6 Implementation and Experiments

4 Optimal Decomposition in Quasi-Views

4.1 Introduction
4.2 Related Worko oo
4.3 Contributions
4.4 Problem Characterization

4.4. 1 QUASI-VIEWS . . . v v v e e e e e e e e e e e e e e e

Vil

83

83

84

86

87

88

89

91

96

97

104

104

107

109

112

4.4.2 Motivation Example
4.4.3 Quasi-view Design Problem . . .
4.5 Solution Strategy
4.5.1 Framework

4.5.2 Refresh Condition Decomposition

5 Conclusions

Bibliography

viii

118

122

123

123

125

128

135

1.1

2.1

2.2

2.3

2.4

2.5

3.1

3.2

4.1

4.2

X

List of Figures

Page
Problems Addressedo oo 3
Safe Decompositionsof Q oo 26
Resource Representation at Site¢o L. 51
Experimental Run Time 82
Run Time for Transportation Case 82
Run Time for Scheduling Case 82
An Expression-DAGof V o 95
Experimental Run Time 111
View V Expression-DAG o oo 119

Refresh Conditions Alternatives 120

Abstract

ON OPTIMAL CONSTRAINT DECOMPOSITION, MONITORING,
AND MANAGEMENT IN DISTRIBUTED ENVIRONMENTS

Samuel E. Varas G.
George Mason University, 1998
Dissertation Directors: Dr. Larry Kerschberg and Dr. Alex Brodsky

This dissertation addresses three distributed database management problems: in-
tegrity constraint management, optimal view materialization, and quasi-view optimal
decomposition. First, it considers the problem of decomposing global integrity con-
straints in a distributed database. Decompositions are performed in order to save
communication and other distributed processing costs, since if during a local update
the corresponding local constraint is satisfied, no distributed global constraint checking
is necessary. This dissertation addresses the problem of deriving the best possible de-
compositions, both during database design and at update time. It formulates a generic
powerful framework for finding optimal decompositions for a range of design and query-
time scenarios. It also provides a comprehensive solution for the family of unrestricted
linear constraints. Linear (integrity) constraints are widely used in (distributed) ap-
plications such as: resource allocation, ticket reservations, financial transactions, and

logistics.

The comprehensive optimization-based solution includes: (1) reducing the problem
to one of mathematical programming, (2) developing effective algorithms for it, and (3)
providing a distributed a protocol to manage updates and constraint decompositions,
while guaranteeing desirable properties of consistency, availability, and optimality. Sec-
ond, the optimal view materialization problem is addressed, where for set of views
(queries), one must decide which additional (intermediate) views should be material-
ized in order to reduce the computational effort of maintaining the views updated. It
introduces a generic optimization framework to decide optimally those (intermediate)
materialized views. It uses expression-DAG (Directed Acyclic Graph) as a mechanism
to represent equivalent view evaluation plans, and shows that the optimal view materi-
alization problem, under certain objective function conditions, is equivalent to finding
a constrained shortest path in an expression-DAG. For those cases where the optimal
solution is an expression-DAG path, a linear-time algorithm is presented. Third, the
concept of quasi-view (a view with explicit update conditions) is extended considerably
in this dissertation. The problem of deciding on the optimal quasi-view decomposition
is addressed. This problem reduces to the optimal view materialization and constraint
decomposition problems. Although the quasi-view decomposition problem is not a sep-
arable one, a solution strategy is presented in terms of the view materialization and

constraint decomposition problems.

Chapter 1

INTRODUCTION

Decentralized and distributed architectures pose unique problems for database man-
agement systems, particularly in the area of constraint management. Distributed ar-
chitectures can be characterized by: (1) autonomous and distributed data sources
connected by loosely-coupled networks, (2) an increasing number of users with com-
plex requirements, and (3) large amounts of multimedia data and information being
gathered, cataloged and stored. Distributed database solutions assigned most of the
work to local processing, thereby saving on communication costs. However, this de-
centralization requires additional costs in coordination and control to ensure proper
system behavior.

This dissertation investigates and develops optimal solutions for three distributed
database management problems: integrity constraint management, optimal view ma-
terialization, and optimal quasi-view decomposition. These problems are interrelated
in that the solution techniques use results obtained for other problems as shown in

Figure 1.1. The arrow in Figure 1.1 denote the “uses” relationship, e.g.. the solution

to the “Distributed Constraint Management” problem uses the results and machinery
developed to solve the “Optimal Constraint Decomposition” problem. The next section
describes a general problem characterization and provides an overview of the contribu-
tions for each problem addressed, the complete explanation is found at the respective

chapters. Finally, Section 1.2 presents the overall organization for this dissertation.

1.1 Problem Characterization

The problems addressed in this dissertation are interrelated, but each problem can be
addressed individually. Figure 1.1 presents the relation among the problems. The re-
search begins by providing a framework for distributed constraint management. Next,
it 1s shown that under certain conditions, one may use the framework to obtain op-
timal constraint decompositions. The problem of optimizing materialized views is an
independent problem. Finally, it is shown that the optimal quasi-view materialization
problem involves the novel use of both optimal constraint decomposition and optimal
view materialization.

Now, each problem is characterized and an overview of the contributions is provided.

1.1.1 Optimal Integrity Constraint Management

Traditional protocols used to manage global distributed constraints (e.g., two-phase
commit) incur enormous overhead and have limitations. In order to reduce those

costs and limitations, the idea of local constraint verification has been studied in

Figure 1.1: Problems Addressed

[BGM92, GM91, GW93, Maz93, Qial89, SV86, GSE1T97, Huy97]. This idea decom-
poses a global constraint into a set of local ones, such that they provide a sufficiency
test of the global constraint, i.e., if the local constraints are satisfied, then the global
constraint is also satisfied. Furthermore, those sufficiency tests allow for autonomous
operation, which is important when some sites are unavailable or the network is par-
titioned. This problem is important but has not been addressed effectively: (1) most
of the previous work has been oriented to finding feasible tests, but they have not
addressed the problem of finding the optimal one, (2) sufficiency tests require frequent
re-definition, because certain database instances may satisfy global constraints, while
violating current sufficiency tests, and (3) this dynamic re-definition of sufficiency tests

requires a protocol to coordinate and guarantee correct system operation. This moti-

vates the research presented in this thesis.

The first problem addressed in this dissertation corresponds to optimal constraint
decomposition. Here a global constraint €) is decomposed into a set of optimal local-
ized constraints Cy, ..., (), such that they constitute sufficient satisfiability tests for
2, under various decomposition scenarios. In general, this optimization problem is
intractable, since there is no bounded characterization for such decompositions. How-
ever, this dissertation proposes a characterization of feasible solutions within a general
optimization framework. Moreover, for the case where 2 is represented by a set of
general linear constraints, a comprehensive solution is provided which reduces the de-
composition problem to a standard mathematical programming problem, and efficient
algorithms are provided.

The second problem addressed corresponds to that of distributed constraint man-
agement, i.e., the protocol to manage updates and effect concurrent linear integrity
constraint decompositions. Even though this problem has been addressed before in
[BGM92], this dissertation extends considerably its results by providing a protocol
that guarantees properties of consistency, safety, last-resort update refusal, and op-
timality under communication and site failures. The protocol makes use of previous

machinery to decompose and re-decompose a global constraint.

1.1.2 Optimal View Materialization

The evaluation of materialized views (queries) may require considerable computational
effort because some materialized views (1) can share some intermediate results (views)
with other materialized views, or (2) are complex enough to justify some intermediate
pre-computed views. This optimal view materialization problem can be formulated
as follows: Given a set of materialized views (queries) V, defined over a set of base-
relations or views R, then, one must decide which additional (intermediate) views V*
should be materialized in order to optimize some criterion (e.g., maintenance costs,
response time, etc.), while a set of materialization constraints is satisfied (e.g., main-
tenance time, available storage, budget, etc.). In general, this problem is NP-hard
[Gup97], because, for a given set of possible additional views, it corresponds to select-
ing a subset of elements, in which the number of subsets is exponential in the number
of additional views.

This dissertation solves the optimal view materiazation problem by providing: (1) a
mechanism to compactly represent intermediate views (queries) called expression-DAG
(Direct Acyclic Graphs) is introduced and extended from [RSS96] ', (2) an optimization
framework is proposed to decide the set V* based on a dynamic programming approach,
and (3) when a complete path (i.e., expression-path or AND-path) characterizes the
solution of this problem, a linear-time algorithm (in terms of the expression-DAG size)

is presented.

!Expression-DAG and AND-OR graphs are used to represent intermediate views.

Note that this special case is found in important applications such as the case where
the evaluation time is the critical variable, and therefore, although more intermediate

views are materialized, the complete evaluation should be more efficient.

1.1.3 Optimal Decomposition of Quasi-Views

Many applications must support the monitoring of distributed data for the occurrence
of critical events or complex conditions among data items. The concept of quasi-
view (i.e., views with explicit re-materialization conditions called refresh conditions)
has been introduced as a mechanism to refresh views based on the refresh conditions
(monitoring conditions). The concept of quasi-view, introduced in [Sel94], is based
on the notion of quasi-copies [ABGM90]. However, [Sel94, SK97] did not address the
problem of multiple data sources and global events, such as those found in distributed
environments.

The problem addressed in this dissertation is how a quasi-view is evaluated effi-
ciently over a distributed environment. In general, this problem is complex because it
requires the efficient coordination of the view materialization strategy with the refresh
condition strategy. This dissertation proposes a general solution strategy, where the
problem is reduced to the optimal view materialization and constraint decomposition
problem, and for the special case of refresh conditions represented as disjunctive arith-
metic linear constraints, the refresh condition part corresponds to a special case of the

“compact split decomposition” problem formulated in Chapter 2.

1.2 Organization

Chapter 2 addresses both the optimal constraint decomposition and distributed con-
straint management problems. It proposes an optimization framework to find the best
decomposition under multiple scenarios. For the general linear constraint case, a math-
ematical programming reduction and algorithm are provided. In addition a distributed
protocol to manage global linear integrity constraints is presented. Chapter 3 addresses
the problem of optimal view materialization, which is formulated as an optimization
problem, and for some special cases (where a complete materialization path should
be selected) a linear-time algorithm is proposed. Chapter 4 addresses the problem of
optimal quasi-view decomposition. An optimization framework is proposed to decom-
pose quasi-views, which is based on both the constraint decomposition and the view
materialization problems. Finally, Chapter 5 presents the conclusions, a summary of

contributions and suggestions for future research.

Chapter 2

OPTIMAL CONSTRAINT MANAGEMENT IN

DISTRIBUTED DATABASES

2.1 Introduction

2.1.1 Local Verification of Global Integrity Constraints

Increasingly, enterprise-wide information systems are being built in distributed, het-
erogeneous environments. The prevalence of the Internet and the World Wide Web
[BLCea94] allow designers to incorporate data and information from multiple sources.
In those systems centralized control may be difficult, if not impossible, due to the
autonomy of the local constituents, which indicates that highly autonomous federated
distributed architectures [KGea96] are more appropriate. Often, workflow coordina-
tion for distributed systems involves constraint-based agreements, which can be viewed
as global integrity constraints [JK97]. These global database integrity constraints are

difficult to monitor, update and enforce in distributed environments, so that new,

distributed techniques and protocols are desirable.

To reduce the costs of distributed management of global constraints, the idea of lo-
cal verification of global constraints was introduced and studied (e.g., [BGM92, GM91,
GW93, Maz93, Qia89, SV86, GSET97]). The idea is to decompose a global constraint
into a set of local ones that will serve as a conservative approximation, that is, satis-
faction of local constraints by a database instance guarantees satisfaction of the global
constraint. Then, when a local site ¢ is being updated, if the update satisfies its local
constraint C;, no global constraint checking is necessary. Thus, most of the work can
be delegated to local processing, thereby saving communication and other distributed
processing costs. The ability to perform updates autonomously is also very important
in presence of site or network failures.

While the above-mentioned works have considered many aspects of local verifi-
cation (see Related Work section), they have not addressed the problem of finding
optimal constraint decompositions and distributed constraint-management protocols
that achieve decomposition optimality along with maximal resource utilization. This
is precisely the subject of this chapter.

To illustrate the problem of distributed constraint management we now consider
an example of a distributed database for an application of logistics support for crisis

management.

10

2.1.2 Crisis Management Scenario Example

Emergency service providers (e.g., fire fighters, medical personnel, military etc.) must
be prepared to respond efficiently to crises such as floods, fires and earthquakes. In
order to perform Crisis Management, the enterprise must find, coordinate, allocate,
deploy and distribute various resources (such as food, clothing, equipment, emergency
personnel, transportation) to the victims of a crisis. These resources are typically
geographically distributed among many warehouses, suppliers, military units, local fire
departments, bus terminals, etc. Each location may maintain a local database that
stores and monitor information about available resources and their quantities. Our
distributed database in this example is a loosely-connected collection of local databases,
which are related, however, because of a global constraint on resources.

The global constraint in such a distributed database may originate, for example,
from a number of pre-defined crisis management scenarios that require that certain
amounts of resources be delivered to any potential disaster area within bounded time
using available transportation. For example, a Hurricane Relief Mission to Florida may
require that the following resources be delivered there in 24 hours: 1) sufficient canned
food to feed 30,000 people for 4 days, 2) a supply of tents to support a tent city of 20,000
people, 3) medicines and vaccines to inoculate the tent city residents against cholera,
4) computers and communications equipment to support the coordination, command
and control functions of the mission, 5) 10 medical units with medical personal and

portable facilities to care for victims, and 6) DoD personnel to staff the mission.

11

For this scenario, the global integrity constraint would reflect that, for each resource
type above, the overall amount of this resource available in all locations reachable in
24 hours (with the available transportation) is greater than or equal to the amount
required in the scenario. Note that some resources are composed of other resources,
which also needs to be reflected by the global constraint. For example, each of the
required 10 medical units (resource 1) is composed of 2 MD’s (resource 2), 5 paramedics
(resources 3) and must have 2 tents (resource 4), 2000 vaccination packages (resource
5), 500 first aid packages (resource 6), etc. In turn, each vaccination package may be
composed of certain quantities of other items and so on.

When a local site of the distributed database is being updated, for example when
a certain amount of materiel is taken from a warehouse (not necessarily for crisis sup-
port), the update can only be allowed if it satisfies the global integrity constraint,
which depends, in general, on the global database instance, not just on the updated
local instance. Therefore, verification of the global constraint would require a dis-
tributed transaction involving possibly hundreds of loosely connected distributed sites,
which might be an extremely expensive and time-consuming operation, especially when
protocols such as two phase-commit are used to guarantee the standard properties of
transaction atomicity, consistency, isolation and durability (e.g., [JK97]). Moreover,
such distributed transaction would often not be possible in the presence of site and
network failures, whereas the robustness feature, i.e., the ability to operate in the pres-

ence of (partial) failures, is crucial for applications such as Crisis Management. In

12

short, protocols managing local verification of the global constraint can significantly
reduce distributed processing costs and increase the system robustness in the presence

of failures.

2.1.3 Contributions

This chapter focuses on the problem of deriving the best possible decompositions, dur-
ing both database design and update processing. It formulates a generic and powerful
framework for finding optimal decompositions for a range of design and update-time
scenarios, and provides a comprehensive solution for the case of general linear con-
straints, which are widely used in distributed applications such as resource allocation,
reservations, financial transactions, and logistics. The comprehensive optimization-
based solution includes (1) reducing the problem to mathematical programming, (2)
developing algorithms for it, and (3) providing a distributed protocol to manage local
updates and concurrent distributed constraint decompositions in the presence of com-
munication and site failures, while guaranteeing the desirable properties of consistency,
safety, optimality and last-resort update refusal.

More specifically, the contributions of this chapter are as follows. First, we introduce
a generic optimization framework to achieve best decompositions by defining (1) the
solution space of all feasible decompositions (explained below) (Cy,...,Cy) of the
global constraint over M distributed sites, and (2) the objective function that can

describe a variety of optimization criteria, such as the probability that an update

13

satisfies its local constraint, the expected number of updates before the first update
that violates a local constraint, or the expected overall cost of operations during an
update.

The solution space of all feasible decompositions is the set of decompositions having
the first and possibly other properties from the following list (depending on what is

known at the time of a decomposition):

1. Safety, i.e., satisfaction of local constraints by a database instance must guarantee

satisfaction of the global integrity constraint.

2. Local Consistency w.r.t. to a given database instance, i.e., each local instance
must satisfy its local constraint (i.e., at the same local site). Clearly, local con-

sistency and safety imply global consistency.

3. Partial-constraint preservation w.r.t. a given subset 6 of sites and local con-
straints for sites outside 6, i.e., the decompositions cannot change the given local

constraints outside 0.

4. Resource partition By w.r.t. to a subset 6 of sites. This property is based on
the notion of resources and their upper bounds (explained below) associated with
each local and the global constraint. Resource partition means that the global
constraint resource upper bound is partitioned between the sites in and outside 8,
and the cumulative resources of sites in and outside # must be bounded by their

corresponding upper bounds. The notion of resource partition is more flexible

14

than constraint preservation, and allows concurrent constraint (re-) decomposi-

tions.

One or more properties 1-4 are required for various decomposition scenarios, de-
pending on what is known at the time of a decomposition. For example, to design a
Crisis Management Database schema and local constraints when no actual database
instance is known, the property of safety is required, while local consistency is not ap-
plicable. Often, only a partial design is required when local constraints for most sites
have already been fixed, in which case the property of partial constraint preservation
is needed in addition to safety. Assume now that the Crisis Management Database is
operational, and the current local constraints entail the global constraint (i.e., safety)
and the current database instance satisfies the local constraints (i.e., local consistency).
Consider an update at site i, for example when a certain number of blankets is being
taken from a warehouse, and the number of remaining blankets, stored at local data-
base site 7, has to be updated. If the update satisfies the current local constraint at site
1, no processing except for the update itself is necessary, because safety guarantees that
the global constraint is satisfied. However, if the update violates the local constraint
(i.e., local consistency) no longer holds, a protocol can try to find a new feasible decom-
position of the global constraint that will regain local consistency and still be safe. A
more sophisticated protocol may try to re-decompose constraints only in a (hopefully
small) subset 6 of (well-connected) sites, which will be done under the assumption that

the cumulative resources in and outside § will stay within their corresponding resource

15

upper bounds, i.e., a new feasible decomposition will have the property of resource
partition, in addition to safety and local consistency.

Second, for the case of general linear arithmetic constraints, we reduce the optimi-
zation-based framework to a standard, finitely-specified problem of mathematical pro-
gramming. This is done by proving existence and actually developing a finite para-
metric (i.e., in terms of coefficients) characterizations of the properties 1-4 of feasible

decompositions together with optimization criteria !, as follows:

o Compact Split Decompositions. Given a global constraint), a parametric char-
acterization of safe decompositions mean formulating a constraint D(w) whose
variables « are the parameters (i.e., coefficients) of local constraints, such that
D(w) is true precisely for all safe decompositions. The problem, however, is that
in general a constraint C; at site 1 may be characterized by an unlimited num-
ber of atomic linear constraints; thus the size of a parametric description (using
coefficients of those constraints) is unbounded. To overcome this problem, we
introduce the notion of compact split safe decompositions, for which we prove
that: (1) there does exist a parametric description of bounded size and (2) the

2

optimum of any monotonic function * among all safe decompositions can always

be found in the subspace of compact split safe decompositions.

INot every family of constraints have such finite characterization, but we prove that the linear
constraints do.

?We claim that any reasonable ”decomposition quality” objective function must be monotonic, i.e.,
intuitively, the more databases instances a decomposition satisfies, the better.

16

o Reducing Decompositions to Resource Distributions. We introduce a resource-
based characterization of split decompositions to reduce the problem of decom-
posing constraints to the problem of distributing resources, which significantly
simplifies the distributed management of constraints. Specifically, every local
constraint C; for site ¢ in a split decomposition D is uniquely associated with a
resource vector® r;, and the global constraint is associated with the global resource
vector, for which we prove that: D is a compact split (safe decomposition) if and
only if the cumulative resource in all sites is bounded by the global resource.
Furthermore, given a database instance, every site ¢ is also associated with a
lower resource bound, for which we prove that: the local database instance at ¢
satisfies its local constraint if and only if its resource is bounded from below by
its lower resource bound. In addition, every site is associated with its resource
upper bound. The resource and its bounds for every site constitute a resource
distribution, which a protocol can maintain instead of explicit local constraints
and database instance. The key advantage of a resource distribution is its small
size of O(nc) as compared with the size O(ncxnv) of a constraint decomposition,
where nc and nv are the number of constraints and variables, respectively, in the
global constraint. In fact, nv may be as large as the size of a database, for ex-
ample when the global constraint reflects that the summation of some quantity,

one per relational tuple, is bounded by a constant.

3the dimension of this and other resource vectors equals to the number of atomic linear constraints
(i.e., linear inequalities over reals) in the global constraint.

17

o Concurrent Split Decompositions. To manage concurrent constraint decomposi-
tions, a protocol needs to be able to (re-)decompose constraints autonomously in
a (small) subset 6 of sites, when the constraints and database instances outside
0 are unknown, and, furthermore, may change. * The only imposed limitation is
the property of resource partition By w.r.t. 6, that is, the cumulative resources
of sites in and outside # must be bounded by their current resource upper bounds
By and its complement, respectively. We show that the decompositions can be
done autonomously in § by proving that, given a database instance for sites in
6, the following are equivalent: (1) there exists a (partial) permissible resource

distribution for sites in # w.r.t. By, i.e., such that for each site in 8 its re-

“
source is bounded between its lower and upper bounds, and that the cumulative
resource upper bound in 0 is exactly By, and (2) there exists a (full) compact
split (safe decomposition) of the global constraint that satisfies resource partition
w.r.t. By and local consistency. Furthermore, we show that optimal constraint
decomposition adhering to resource partition can also be achieved autonomously
in 0. Specifically, we prove that, given any (1) resource partition By, (2) local
constraints outside # (and possibly (3) a database instance satisfying the local
constraint outside #), an optimal (partial) safe decomposition in 6 adhering to

the resource partition By and, possibly, to local consistency w.r.t. the database

instance yields a (full) safe decomposition that is optimal among all safe decom-

Note that constraint preservation property is not adequate for this purpose because it assumes
that the constraints outside f are fixed (and known).

18

positions that hold the same properties plus the partial constraint preservation
w.r.t. the local constraints outside §. Moreover, we show that combining optimal
(partial) safe decompositions for sites in and outside 6 that satisfy resource parti-
tion By and, possibly, local consistency yields an optimal (full) safe decomposition

with the same properties.

o Parametric Characterization of Objective Function and its localization. While
the parametric characterization of compact split decompositions is applicable to
any monotonic objective function, we consider a specific optimization function in
more detail: mazimizing the probability of not violating local constraints. Specif-
ically, we provide an analytical expression of this probability function in terms
of parametric characterizations of compact split decompositions (i.e., resources),
which we do by using the polyhedron volume function [CHT79, Las83, Bea96],
under the uniform distribution assumption of database instances, described pre-
cisely in Section 2.6. We also express this function in terms of partial resource
distribution, so that the optimization could be done within a (small) subset of

sites.

Third, we actually develop and partly implement an algorithmic framework to solve
the resulting mathematical programming problems, for the case of maximizing the
probability of not violating local constraints. For this case, the constructed optimiza-

tion problems in terms of parametric descriptions have linear constraints and a non-

19

linear objective function, which is based on a parametric representation of the volume
function. For safe decompositions, when each local constraint is in a single variable,
the constructed objective function turns out to be concave; this property enables us to
use a global search algorithm. We adopt the Frank-Wolfe algorithm [BS79, Kam84] to
solve it. For other cases, the objective function is not concave and we use local search
techniques in the algorithmic framework, that incorporate the Frank-Wolfe algorithm
for search in local neighborhoods. To run experiments and prove the feasibility of the
approach we have implemented an optimization engine for safe decompositions with
local constraints in single variables. The experiments suggest that the approach is
feasible and scalable, but more experimental study will be necessary to fine-tune and
extend the algorithms for various specific cases.

Fourth, in order to exemplify the use of constraint decomposition techniques, we
develop a distributed (tunable) protocol to manage resource distributions (i.e., local
updates and concurrent distributed constraint decompositions) in the presence of site
and network failures. We formulate desirable properties to hold for such a proto-
col, namely, local and global Consistency, decomposition Safety and Optimality and
Last-resort update refusal (CSOL-properties), and come up with Distributed Protocol
Assumptions under which, we prove, the CSOL-properties must hold. The suggested
protocol satisfies the assumptions and thus possesses the CSOL-properties, but many
other protocols are possible. In particular, our results are readily available to extend,

with a significantly more powerful class of constraints and the guaranteed CSOL prop-

20

erties, a variety of database protocols, including [BGM92] for distributed databases and
[SS90] for supporting local transactions in the presence of network partitions. Also, our
results on decomposing constraints can easily extend [SK95, SK97] dealing with quasi-
views, where global conditions (constraints) for re-materialization can be decomposed

among subviews.

2.1.4 Related Work

The body of work on constraints in databases is too large to attempt to survey. The
problem of integrity constraint verification has drawn much attention (e.g., [BGM92,
GM9I1, GW9I3, Maz93, Qia89, QS87, SV86]). This includes local verification of global
constraints in distributed databases (e.g., [BGM92, GM91, GW93, Maz93, Qia89,
SV86, GSE*97, Huy97]). However, none of the works on local verification, to the
best of our knowledge, has solved the problem of optimal selection of local constraints.

More closely associated with our work are the works [BGM92, SS90, MY 98] which
deal with numerical constraints, and the works [Las, LM92, HJLL] which consider para-
metric linear constraint queries and their connection to Fourie’s elimination method;
the work on parametric queries, however, assumes that the number of parameters (i.e.,
coefficients) is bounded, which is not the case for our safe decompositions.

Perhaps most closely related is the work of [BGM92], which was the first to consider
verification of linear arithmetic constraints in the context of distributed databases. It

considers a single atomic linear constraint at the global level. Intuitively, an atomic

21

constraint must be such that it could be decomposed between two sites storing indi-
vidual variables using some constant boundaries °. For example, the global constraint
A+ B > 100 can be decomposed into two local constraints A > « and B > b, where
a and b are constants such that ¢ + b > 100; or the global constraint A < B can
be decomposed into A < @ and b < B, where a < b. The focus in [BGM92] is on
the “demarcation” distributed protocol which is concerned with efficient (in terms of
communication and other costs) negotiation between two sites on synchronizing the
change in constant boundaries, in case a local update violated its local constraint.

The work [SS90] uses an idea similar to the demarcation of [BGM92] €, in the
context of network partition failures, in order to overcome the problem by trying to
perform transactions locally. Similar to [BGM92], a global constraint in the example
considered in [SS90] is a single linear inequality of the form x; + ... + 2, < ¢, which
is split among n sites (i.e., a single variable per site) by giving each site a quota of
c. However, [SS90] focuses on the distributed transaction management and leaves the
problem of how to achieve constraint decompositions, as well as the question on what
constraint families its techniques are applicable open.

The recent work [MY98] extends the demarcation protocol of [BGM92] by consid-
ering a wider class constraints: linear, quadratic and polynomial constraints. A global
constraint is a single inequality that is decomposed into local constraints involving one

variable per site. Since for this case, the property of safety corresponds geometrically to

SThere is no precise formulation of the allowed atomic constraints in [BGM92).
bIn fact, [SS90] is earlier.

22

containment of a multidimensional rectangle in the shape described by the global con-
straint (inequality), [MY98] suggests the use of geometrical techniques for (dynamic)
decompositions. However, geometrical techniques (e.g., from computational geome-
try) are restricted to low dimension (i.e., small overall number of variables) whereas
typically distributed databases involve a large number of variables used in the global
constraint (e.g., Crisis Management Scenario).

In contrast to [BGM92, SS90, MY98], our methods on linear arithmetic constraints
have none of the above-mentioned restrictions, i.e., we allow atomic linear inequalities
of any general form, a global constraint may have any number of atomic constraints,
constraints may be partitioned among any number of sites, and each site may have
not just one, but any number of variables. Furthermore, ours is the only work sug-
gesting achieving optimal decompositions, and providing a comprehensive solution for
it. Moreover, our decompositions can work for different scenarios, i.e., with different
assumptions regarding what is known at the time of a decomposition.

The work [Maz93] dealt with first-order (not numerical) constraints, in the context
of distributed databases, and suggested certain heuristics to select better decompo-
sitions. However, the questions of how, and under what conditions, these heuristics
relate to optimization criteria such as maximizing the probability of not violating local
constraints and the optimality of decomposition was not considered.

The work [QS87] has also considered a certain class of first-order (not numerical)

constraints in the context of equivalent reformulation of a constraint (which is dif-

23

ferent from our safety) in the presence of additional semantic information (not for a
distributed environment). They also suggested some heuristics, based on costs of con-
straint verification and reformulation, but no algorithm or guarantee of optimality in
any sense was provided. Finally, [Qia89] applied the techniques of [QS87] for equivalent

constraint reformulation in the context of distributed databases.

2.1.5 Organization

The chapter is organized as follows. Following the introduction, Section 2.2 provides a
formal framework for selecting optimal decompositions, which is generic for all types
of constraints. In Section 2.3 we then concentrate on linear arithmetic constraints.
Section 2.4 concentrates on parametric characterizations for the case when each dis-
tributed site has just one variable, while Section 2.5 considers the case of unrestricted
variable partitions. Section 2.6 discusses the local uniformity assumptions on the up-
date space, a specific optimization function and its localization. In Section 2.7 we
describe the distributed protocol manage global (integrity) constraints and its proper-
ties. Section 2.8 focuses on actual algorithms, implementation and experiments with a

number of decomposition examples.

24

2.2 Decomposition Optimization Framework

In this section we define the central notion of safe decompositions, and formulate our
problem as one of finding the best feasible safe decomposition of a global constraint.

The problem formulation in this section is applicable to all types of constraints.

2.2.1 Safe Decompositions

Definition 1. A constraint C is a Boolean function from the set of variables &, to the

Boolean set, i.e., C: Domain(¥) — {True, False}
We denote the dimension (number of elements) in & by | ¥ | = n.

Definition 2. A wvariable partition P of the set of variables ¥ is defined as P =

(Y1y- e s Unm), such that 1 U U ... UGy = &, and g; N y; = O for all i, j (1 <
1,] < M,i#).

Definition 3. Let Q be a constraint, and P = (41, ... ,ym) be a partition of variables.
We say that C = (C1, ... ,Chr) is a decomposition of Q, if in every constraint C; all free

variables are from i;. Sometimes we will use C to indicate the conjunction CyN..ANCyy.
We say that a decomposition C = (Cq,... ,Cy) is safe if Cy A .. A Cy |E Q, where |=

denotes logical entailment.

We also say that G = (G,...,Gy) is a cover decomposition of Q if (Gy,...,Ga)

is a decomposition of @ and Q@ | G V ... V Gy 7. The following proposition

“we will use G to indicate the disjunction G1 V ...V Gas.

25

provides the relationship between safe and cover decompositions.

Proposition 1. Let Q be constraint, and P = (i1,... ,ym) be a variable partition.
Then, (Cy,...,Cwn) is a safe (cover) decomposition of Q if and only if (=Cy,... ,~Cy)

is a cover (safe) decomposition of —€1.

Proof. Since (Cq,...,Cy) is a safe (cover) decomposition of €2,

<:>_‘Q |:_‘Cl\/\/_‘CM

This completes the proof. O

In the following we will only concentrate on safe decompositions, but the results

can also be applied to cover decompositions using Proposition 1.

Definition 4. Let 7° = (4),... ,4%;) be a database instance. We say that 1° satisfies

a safe decomposition C if) satisfies Cy, 43 satisfies Cy, ..., and ¥, satisfies Cyr.

Example 1. Consider the following set of linear constraints: X +Y <6, — X 4+5Y <
15, 5X +4Y < 15, and both variables X and Y are non-negative. The partition P s

{ X} . {Y}), and a graphic representation of Q is given in Figure 2.1.

26

Figure 2.1: Safe Decompositions of)

Constider three safe decompositions Cy, Cy, and Cs, where:

C, = (Cy,Cha)

= ({05 < X <25}.,{0.5<Y <25}
Cy = (Cy1, Cya), and

= ({0.0 < X <3.0},{0.0 <Y < 3.0}),and
Cs = (Cyy, Ca)

= ({0.0 < X <4.0},{1.25 <Y < 2.0}).

Cy is a safe decomposition of Q because every point (X,Y) that satisfies C1y and
Chia will also satisfy Q. Geometrically, this means that the space (1) defined by Cy is
contained in the space defined by Q. Similarly, C; and Cs are safe decompositions of

Q. Note that the database instance (a,b) satisfies Cy, but not C; and Cs.

Note that rectangle (1) (for C;) is strictly contained in rectangle (2) (for C;). Hence,

the decomposition C, is better than C; in the sense that, in C, we will have to perform

27

global updates less frequently than in Cy, i.e., less overhead. This notion is defined

formally as follows:

Definition 5. Given an arbitrary constraint Q and two decompositions C; = (Chy,
ooy, Cim) and Cy = (Coq, ..., Conr), we say that Cy subsumes Cy (or Cy is subsumed
by Cy) if:

M M
A Cui = N Ca

We will denote this by C; = Cy. We say that Cy strictly subsumes C; if C; |
Cy, but Cy F Cy. Furthermore, we say that a safe decomposition C is minimally-

constrained, if there is no safe decomposition C' that strictly subsumes C. Finally, we

say that C; is equivalent to Cy, denoted by C; = Cy, if C; E Cy and C; = C;.

Note that, in example 1, C; and C; are minimally-constrained safe decompositions,

while C; is not.

Proposition 2. Let P = (yy1,...,ym) be a partition of variables, and C be a con-
Junction of constraints (Cy,...,Cy), where C; (1 <@ < M) is over ;. Then, C is

satisfiable iff for every v, 1 <1 < M, C; is satisfiable.

Proof. TF-part, if every (; is satisfiable, its conjunction is satisfiable, i.e., C is satisfi-
able. ONLY-IF-part, if C is satisfiable, and since (1) (%1,... ,¥m) is a partition of 7,
and (2) each C;, 1 < i < M, has its free variables exclusively in y;, then, all C;’s are

satisfiable. O

28

Proposition 3. Let C; = (Cyy,...,Cim) and Cy = (Cay, ..., Copr) be two lists of

constraints over 4y, ... ,Ynm respectively, for partition P = (41,... ,ym). Then:

1. If Cy is satisfiable, then C; = Cy iff for alli, 1 <1t < M, Cy; E Csy.

2. If both Cy and Cy are satisfiable C; = Cy iff for all 1, 1 <1 < M, Cy; = Cy.

Proof. Part 2 immediately follows from Part 1. In Part 1, the ”<” direction is obvious,
while the ”=-" is due the fact that the variable partition P = (¢,...,¢n) is disjoint
as follows:

Assume that C; | C,, but, by way of contradiction, for some 7, 1 <1 < M, Cy; F

(’y;. Then, there exists d@; over y; that satisfies C'j;, but not Cy;. Since, C; is consistent,

each C4q,...,Cp must be consistent, and therefore there must exist gl, .. ,I;M over
U1, .-, Yn, that satisfy Cqq,... ,Cia, respectively. Then, gl, e ,gi_l, d;, I;H_l, e ,I;M
satisfies C;, but not C,, contradicting the fact that C; | Cs. O

In practical cases, we are only interested in the case when () is satisfiable, because
otherwise the database must be empty and no update would be allowed. Technically,

however, every unsatisfiable (i.e., inconsistent) decomposition will be safe for unsatis-

fiable Q. If € is satisfiable we have the following:

Proposition 4. Let Q) be a satisfiable constraint. Then every minimally-constrained

safe decomposition C of) is satisfiable.

Proof. Since (1 is satisfiable, there exists @ = (dy,... ,dpn) over ¥ that satisfies €.

29

—

Then, the decomposition C; = (¢ = d1,... ,ynm = dn) is always a safe decomposition
of Q).
Consider now an arbitrary minimally-constrained safe decomposition C. If, by way

of contradiction, C is not satisfiable, then C | C; and C; F C, contradicting the

minimality of C. O

Clearly, safe or even minimally-constrained safe decompositions are not unique. In
our example, both C, and C; are minimally-constrained, because there is no other safe
decomposition that strictly subsumes C; or Cs.

Since safe decompositions are not unique, an important question is how to choose
a safe decomposition that is optimal according to some meaningful criterion.

In our example, the rectangle with the maximum area may be a good choice. In fact,
if update points (X,Y) are uniformly distributed over the given space (defined by),
then the larger area (volume in the general case) corresponds to greater probability
that an update will satisfy local constraints, and thus no global processing will be

necessary. We defer the discussion on optimality criteria to Section 2.6.

2.2.2 Optimization Problem Formulation

We suggest the following general framework for selecting optimal feasible decomposi-

tions:

30

mazximize f(s)

(2.1)
5t.5€S

where S is the set of all feasible decompositions, and f : S — R (real numbers) is the

objective function discussed in the next subsection.

Definition 6. Let Q be a global constraint, C = (Cy, ... ,Chr) be a decomposition of (2,
O ={k+1,..., M} be a subset of sites{1,... ,M}, and @ = (y1,... ,Ym) be a database
instance. Then, feasible decompositions are defined as the set of decompositions having

one or more of the following properties:

1. Safety. Decomposition C has the safety property if C is a safe decomposition of

Q.

2. Local Consistency. Decomposition C has the local consistency property if each
local instance y; satisfies its local constraint C; (1 < ¢ < M). Clearly, local

consistency and safety imply global consistency.

3. f-Partial Constraint Preservation. Decomposition C has the partial constraint
preservation w.r.t. 0, if local constraints for sites outside of 8 are fived. This
property can be used for scenarios where a (safe) constraint re-decomposition

would involve only a (hopefully small) subset of sites 6, leaving the rest unchanged.

31

4. 0-Resource Bound Partition ®. Decomposition C has the resource bound partition

property w.r.t. 8 and a bound ég, if the overall resource of sites in 0 is bounded

by é@.

Resource bound partition property is for families of constraints in which resource
specification is possible (such as linear constraints). Namely, the global constraint €
is associated with the global resource bound g, each local constraint C; in the decom-
position is associated with a resource r;, and each subset of sites # is associated with
the cumulative resource 7.

A partition of the global resource bound between # and 8 (i.e., all sites except 0) is
a pair (ég, 59), such that By + ég = g, is a partition identified by By. We say that a
decomposition C has a resource bound partition property w.r.t. a partition é@, if the
cumulative resource 7y is bounded by é@, and 7 is bounded by ég.

Before we discuss how the decomposition problems can be solved effectively, we

consider possible candidates for function f.

2.2.3 Optimization Criteria

There are many feasible (minimally-constrained) safe decompositions in S, and we
would like to formulate a criterion to select the best among them. This criterion

should represent the problem characteristics, and the decomposition goals. Possible

8Note that the notion of resource bound partition is more flexible than constraint preservation,
and allows one to perform concurrent constraint decompositions.

32

criteria include:

o Maximize the probability that an update will not violate the existing local con-

straints (decomposition).

e Minimize overall expected cost of computations during an update.

e Maximize the expected number of updates before the first update that violates

local constraints.

Maximize the expected length of time before an update violates local constraints.

Many other optimization criteria are possible. However, any reasonable criteria

should be monotonic, as defined below.

Definition 7. Let f be a function from the set of safe decompositions of Q) to R. We
say that [is monotonic if for every two decompositions C;,Cy of Q, C; = Cy implies

F(Cy) < f(Cy).

Intuitively, being monotonic for an optimization criterion means that enlarging the
space defined by a decomposition can only make it better.

Note, that if f is monotonic, then f(Cy) = f(Cy) for any two equivalent decompo-
sitions C; and C;.

As we will see in Section 2.5, it is often necessary to consider a subspace of all safe

decompositions (without loosing an optimal decomposition).

33

Definition 8. Let'S be a set of safe decompositions of 2. A subset S’ of S will be called
a monotonic cover of S if for every decomposition C in S there exists a decomposition

C in' S, such that C' subsumes C (i.e., C|=C').

The following proposition states that optimal decompositions are not missed when
the search space is restricted to a monotonic cover and the optimization criteria are

monotonic.

Proposition 5. Let'S be a (sub) set of all safe decompositions of 1, S' be a monotonic
cover of S, and f be a monotonic function from S to R. Then, the following two

optimization problems yield the same mazximum.

Problem 1. maz f(s), s.t. s €S.

Problem 2. max f(s), s.t. s €§'.

Proof. Suppose the maxima of f in Problem 1 and 2 are achieved by s = C in S and
s = C in §' respectively. Since S’ C S, f(C') < f(C). Now, since S’ is a monotonic
cover of S, there must exist C” € §', such that C | C"”. Therefore, because f is
monotonic, f(C) < f(C").

Finally, since the maximum of Problem 2 is achieved at C', f(C') > f(C") > f(C).

Thus, f(C') = f(C) which completes the proof. O

The functions in the above criteria depend on the update distribution and other

assumptions. Specifically we consider two assumptions.

34

o For design-time decompositions: We do not know the current database state, but

we are given a probability distribution of database instances in the space defined

by €.

e For update-time decompositions: We are given a current database instance, and

a conditional distribution function of database instances on f).

Now, we present precise methods to characterize the set S, function f, and al-
gorithms to solve effectively the optimization problem (2.1), for the family of linear

constraints.

2.3 Linear Arithmetic Constraints

Definition 9. An atomic linear constraint is an inequality of the form aix; + azxy +
vt anz, <b, where ay, as, ..., a,, and b are real numbers, and x1, x4, .., T, are variables

ranging over the reals.

Definition 9 defines a constraint as a symbolic expression. However, an atomic
linear constraint a1+ aszs+ ...+ a,z, < b also defines a Boolean function C' : R* —
{True, False}, where for each instantiation of values to variables (2, x2,...,2,), the

expression ajxy + axy + ...+ a,x, < bis evaluated as true or false.

Definition 10. A linear system) is a conjunction of atomic linear constraints.

35

A linear system §) containing n variables and (a conjunction of) m atomic linear

constraints, can be written as follows:

anizy tapry +... Fapr, <bh
anry Fanry +... Fazx, < b

(2.2)
Am1T1 +am2$2 —I' e —I'amnxn S bm

This system £ can also be written in matrix notation as the system A ¥ < g, where

A is the matrix

a1 a1 . A1p

a1 a99 . dop ()
2.3

dm1 Am2 ... Amn

and b is the column vector (b1 by ... by), and @ is the vector (1 22 ... x,).

36

2.3.1 Parametric Optimization Problem

To solve the optimization problem for linear arithmetic constraints we want to rewrite

the problem (2.1), i.e.,

mazx f(s)

51.5€S

where S is the set of feasible safe decompositions in the form

mazx f(w0)

s.t. O(w)

where w0 is the set of variables describing coefficients (i.e., parameters) of constraints
on a decomposition D(w), and ®(w) is a logical condition in terms of @ defining the

search space

§"={D() | &()}

such that S’ is a monotonic cover of S.

By Proposition 5, the two problems are equivalent for any user-given monotonic op-
timization function, but the latter allows the use of known mathematical programming
methods to solve it.

We do it for the case of an individual as well as a general variable partition as

37

described in Section 2.4 and 2.5, respectively, in which we study the problem of para-

metric characterization of decompositions.

2.4 Individual Variable Partitions

Individual partition case variables are partitioned in an individual way, i.e., we have a

partition P = ({1 },...,{x,}), where {z,2q,... ,2,} is the set of all variables ?.

2.4.1 Parametric Characterization

In this case, safe decompositions can be parametrically described using intervals as

follows:

Proposition 6. Given a bounded set of constraints), and an individual partition P,
every decomposition C = (Cy,...,C,) of Q is equivalent to a decomposition C' of Q of

the form:

({Un <y < U21} g 7{u1n <z, < Uzn}) (2-4)

Proof. Every atomic constraint C; (1 < i < n) of C over & can be written as x; < v;; or
zij < a;. Thus C; will be equivalent to uy; < a; < ug;, where uy; = max {zi1, ziz, - .+, Zin, }

and ug; = min {vy, Vg, ..., Vin, }- O

9Note that this implies n =M.

38

In this section, we will denote the decomposition ({u1; < 1 < wart,..., {u, <

Ty, < ugn}) by D(u), where @ = (U, uy), Uy = (u1r, U12,... ,U1,) and s = (U1, Usa,
., Uz2p,). We use the notation @; < iy to denote that uy; < wuy;, for all 7, 1 <i < n.

To create a parametric characterization of the set of all safe decompositions we

introduce the notion of characterization matrix as follows.

Definition 11. Given an n x m matriz A, the characterization matriz A’ of A is

defined as (AT A7), where both are n xm matrices with elements a;»"j and a;; respectively,

defined as follows:

a;; if a;; > 0,

0 otherwise

aij Zf a;; < 0,

0 otherwise

In fact, we have developed the notion of characterization matrix so that the follow-

ing holds:

Theorem 1. Let S be the system Ax < b. Let A’ be the characterization matriz of A,
-

and S’ be the system A'u < b and @, < iy, where U = (U, uy). Then, for every 5,5

the following are equivalent:

39

.
1. @ is a solution of S', i.e., AW° < b and uf <

2. Bvery 0, u§ <0 <@, is a solution of S, i.e., AT < b

Proof. First, we prove (1) = (2). Assume that @ = (a9, @9) is a solution of S’. Let ¢

be a vector such that u?;, < v; < u). for all 7, ¢ < i < n. By multiplying v; < u9; by

|

a non-negative number af , we get afv; < aful; for all i, 1 < i < n. Now, choosing

|

af’s as the elements of ;% column of A*, and making a summation for all possible

elements in that row, we get:

3

n

a}"ivi < a;ugi (2.5)
=1 =1
and extending for all possible rows in AT, we get:
ATT < AT (2.6)

Repeating the same operations for uf, < v;, i.e., multiplying by a non-positive number

a7, we get: ajuf;, > ajv; for all i, 1 < i < n. Now, choosing a; s as the elements of

7 column of A, and making a summation for all possible elements in that row, we

get:

Z ajug; > Z azv; (2.7)

40

and extending for all possible rows in A™, we get:

AT@ > AT (2.8)

Now, adding (2.6) and (2.8) we get:

AT+ AT < ATa) + AT (2.9)

We know that «° = (@), ") is a solution of A'd < g, then:

(2.10)

Therefore, by definition of A* and A~, Av < g, i.e., ¥is a solution of 5, which completes
the proof (1) = (2).

We prove now that (2) = (1),by proving = (1) = — (2). Assume that @° is not a
solution of S’, i.e., vector @ does not satisfy A'd < b. Then, there exists a column j

such that:

3
3

atuy; + Z ajuy; > b (2.11)

41

Consider a vector ¢ defined as follows:

P
uy; if af; >0,

Vi= Yuy; ifay; <0,

ot
us; 1faij—aij—0

Clearly, @) < ¢ < . Then, we can rewrite (2.11) as

n

Zazjvi > b]‘ (212)

=1

Therefore, ¥ is not a solution to A7 < b. This completes the proof. O

2.4.2 Parametric Optimization Problem

We are now ready to characterize parametrically the optimization problem of safe

decompositions of €.

Proposition 7 (Parametric Feasible Properties). Let) = AZ¥ < b be a global
satisfiable constraint, P = (x1,... ,x,) be an individual variable partition of &, A’ the
characterization matriz of A, @° = (29,...,2%) be an instance of T, 0 be a subset {k +
1,..., M} of sites {1,... , M} and 0 be its complement, and D(u%,,uS,, ... ,ub,,u3,.) be
a (partial) 0-safe decomposition that satisfies (29,... ,2%). Then, for any decomposition

D(uu,... s Ulp,s U21y « ooy UQn)

42

1. D(uiy, ... Ui, Uz, ... ,U2p) is safe iff AU < b and U < uy. We denote this

condition by ®, . (U).

2. D(uity .. Ui, Uat, - .. 4 Uz,) salisfies local consistency w.r.t. Z° iff for all i, 1 <

i <n, uy <Y <uy. We denote this condition by @,.(u).

3. D(u1y... yUip, Ui, ... ,Usz,) satisfies partial constraint preservation w. r.t. 6-
”» 0 .0 0 L0 ; _ 0 _ 0 _
safe decomposition D(uly, udy, ... ulp,us,) iff i = uly,ua = udy, .. ug, =

uly, uzy = u3,. We denote this condition by ®,.,(1).

Proof. 1) follows directly from Theorem 1 and Proposition 6. IF-part: if A'v < b
and Wy < Uz, by Theorem 1 (i.e., (1) = (2)), D(u) is safe. ONLY-IF-part: if
D(u11y. v yUin, Ua1, ..., Uzg,) is safe, e, @ < Wy, Since D(u) is a safe decomposi-
tion, the condition (2) of Theorem 1 holds, and thus the condition (1), namely A’d < b
and @ < iy, which completes this part of the proof.

Now, 2) follows from the definition of local consistency, and 3) This follows directly

from partial constraint preservation definition. O

We denote by Sy, fe, Sic, Spep the set of safe decompositions, the set of decompositions
satisfying local consistency w.r.t. #°, and decompositions satisfying partial constraint
preservation w.r.t. a 6-safe decomposition D(uf,,u3,, ..., uf,,ul,) respectively. We
will use Pr to denote a subset of the set of properties {safety,lc,pep}. Finally, set
Sp, will denote the set of all decompositions that satisfy the properties Pr, i.e., Sp, =

NperrSy, and ®p.(u) will be the conjunction of the corresponding conditions, i.e.,

43

Op, () = NpeprPp(t). We can present the optimization problem in terms of resource

characterization.

Theorem 2 (Parametric Optimization Problem). Let @ = AT < b be a salisfi-

able global constraint, f be a monotonic function from the set of all safe decompositions

to R, P = (Zy,...,7,) a individual variable partition of ¥, ° = (29,...,7%) be an in-
stance of @, D(ufy,udy, ... ul,,ul), 1 < k < M, a partial safe decomposition that
satisfies (29,...,2%), and Pr be the subset of properties {safety,lc,pcp} that must

contain safety. Then, solving the optimization problem

max f(s)

s.t.s € Sp,

is equivalent to solving the parametric problem

maz f(D(u))

s.t. (I)pr(ﬁ)

Proof. First, by Proposition 6, every decomposition C in Sp, has an equivalent de-
composition C' of the form D(u"), where @ < @9. Then, by Proposition 7, Sp, and

O p, (i) represent equivalent search spaces. Therefore, both problems yield the same

maximum. This completes the proof. O

44

2.5 General Variable Partitions

This section addresses the general partition case. Let P = (y1,%5,... ,ym) be a parti-
tion of &, where y; is the subset of variables at site ¢, (| ¥; |= n;), and & is the vector
of all variables in our problem.

The problem in the general case is that, for a safe decomposition, a constraint C; at
site ¢ may be characterized by an unbounded set of atomic linear constraints; thus the
size of a parametric description (using coefficients of those constraints) is unbounded.
To overcome this problem, we reduce the search space to the set of what we call
compact split decompositions, for which we prove that: (1) there does exist a parametric
description of bounded size and (2) the optimum of the objective function among all

safe decompositions can always be found in the subspace of split decompositions.

2.5.1 Split Decompositions

Definition 12. Let Q@ = AZ < b be a constraint on Z, and P = (§1,... ,ym) be a
variable partition of &. A split of Q, denoted by D(vy,...,7m), is a tuple (A1 <
Fiyeoo s Apyy < Tar) of constraints, where A;, 1 <1 < M, are those columns of A
associated with ;. We say that a split D(71,... ,7"yv) is safe (respectively minimally-
constrained) if it is a safe (respectively minimally-constrained) decomposition of €.

For a subset 8§ of sites, say {k + 1,..., M}, a (partial) 0-split of 2, denoted by

D(Frg1s.vo y7ar), @5 a tuple (Aps18it1r < Thtts .- s Ay < 7ar) of constraints.

45

Recall that, by Proposition 4, D(7,... 7) is satisfiable if and only if for all 7,
1 <i< M, A;ij; <7; is satisfiable.
For our classification we introduce the notion of tight form for a system A7 < g,

which states, intuitively, that the values of b are tight. This is formalized as follows.

Definition 13. We say that a constraint A¥ < b is tight, if there does not exist [_))’}
such that b < [;} o +* [_))} and A7 < b is equivalent to A7 < . We say that a split
D(71, ... ,7xm) is tight if every satisfiable constraint A;y; < 7 in it (1 <1 < M) is

tight.

Claim 1. For any satisfiable system Ax < b (respectively safe split) there exists an
equivalent system (respectively split) that is tight. Furthermore, every tight constraint
AZ < b is satisfiable.
Definition 14. We say that a split D(vy,... ,7v) of Q is compact if
M
Sr<l
=1
Lemma 1 (Split Properties). Let O = A7 < b. Then:
1. Fvery compact split is safe.

2. If D(v1, ... ,7m) is a tight split, it is compact iff it is safe.

3. For every safe decomposition C of Q), there exists a minimally-constrained safe

split D(71, ... ,7ar) of Q, that subsumes C, i.e., C = D(Fy,... ,7u).

46

4. BEvery minimally-constrained safe decomposition of Q is equivalent to (1) a min-

imally - constrained safe split of Q and to (2) a compact split of Q.

Proof. (1) Let 2° = (4,... ,4%,) be an arbitrary point that satisfies D(7y, ..., 7a),
e, A <r; forall i, 1 <i< M. Then,

M M

YA <Y i <b

=1 =1

Finally, since Ef\il A = AZ°) we get that AZ° < g, i.e., 7° satisfy €.

(2) The IF-direction is subsumed by (1). For the ONLY-IF-direction, suppose Ef\il
< b is not true. Then, there exists a row j, such that Ef\il ri; > b;. Now, we select
2 ={g, 99,55}, as follows. Foreachi,1 <i < M, we take y? to be the point that
achieves Max /Ljyj, subject to Ay; < 7, with %Lj is the 7% row of matrix A. Because
the system Ay; < 7; is in reduced form, %_l)”y_? = r;;. Thus, 79 satisfies D(7y,... ,7um)
but not Q = A¥ < g, because

M M
%Ljfo = Z A)”yf? = Z ri; > b;

=1 =1

This complete the ONLY-IF direction of (2).

(3) We first prove that:

47

Claim 2. For every safe decomposition C of Q, there exists a safe split D(7y, ..., 7m)

that subsumes C.

Let C = (C4,...,Cyn) be a safe decomposition of Q. We want to construct
D(71,..., 7am). Consider first the case when C is satisfiable. For every i,1 < < m,
where m is the number of rows in matrix A, we construct 7 = (ri1,... ,rim) as follows:

for every 7,1 < j < m, we take r;; to be the minimal value such that

—

Ci | Aijgi < i

Then, C; E Ajy; < 7, and therefore C |= D(#,... 7). Therefore, by (1) of this

Theorem, to prove that D(r,... ,7a) is a safe decomposition, it is sufficient to prove
that D(r,...,ma) is a safe split, i.e., Ef\ilf; < b We prove that for every row

jvl S.] S m, i'e'v Ej\il Ty S bj-

Selecting #U) = (y_’y), e ,y_’(]\?) is done as follows: y_;(j) is the value of y; that max-
imizes the function giij, subject to A;y; < 7. Because D(,... ,7y) is constructed

A7)

so that it is in a reduced form, f_l}jy/ = r;;. Then, for every 5,1 <7 <m

This completes the proof of Claim 2 for the case when C is satisfiable.

If C is not satisfiable, consider C' = (7 = #°), where #° is an arbitrary point that

48

satisfies . Clearly,C' is satisfiable. By what has been proved, we can construct a safe

decomposition D(r,... ,7ar) of € such that:

C E D71y 7u)

and, since C | €, it follows that C = D(ry,...,7m). This complete the proof of

Claim 2.

Claim 3. Fvery minimally-constrained safe decomposition C' is equivalent to a mini-

mally - constrained safe split D(71,... ,7a).

Indeed, by Claim 2, there exists a safe split D(r1, ..., 7ar) such that C' |= D(r,. ..,
7ar). Then, because C' is minimally-constrained, D(7,... ,7a) must be equivalent to
C'. Therefore, D(7, ..., ar) is @ minimally-constrained safe split.

Now, to prove (3) given a safe decomposition C, we construct a minimally-constrained
safe decomposition €', such that C = C'. Then, by Claim 3, there exists a minimally-
constrained safe split D(ry, ... ,7y) that is equivalent to C'. Therefore, D(ry, ... ,7y)

is a minimally-constrained safe split that subsumes C. This completes the proof of (3).

(4) Tt is essentially Claim 3 that has been proved in (3). O

The next theorem shows that the maximum of a monotonic function in the space

of safe decompositions can always be found in the subspace of compact splits.

49

Theorem 3. Let = A7 < b be a satisfiable global constraint, f be a monotonic
function from the set of all safe decompositions of Q to R, P = (y1,...,9m) be a
variable partition of ¥, and 2° = (§?,... ,4%;) be an instance of ¥. Let S and SS be the
sets of all safe decompositions and all compact splits of 0, respectively, and let Sz and

SSzo be the sets S and SS restricted to decompositions that satisfy 7°. Then,
1. max f(s) s.t. s €S = max f(s) s.t. s €SS
2. max f(s) s.t. s € Sp = max f(s) s.t. s € SSp

Proof. (1) The proof follows from the fact that SS C S. Thus, by Lemma 1, SS is
a monotonic cover of S. Then, using Proposition 5, both problems yield the same
maximum.

(2) The proof follows directly from 1), because 2) is a particular case of 1). This

completes the proof. O

Following Theorem 3, from now on we only consider compact splits. Vectors
(1,..., "ar) can be considered as resources assigned to sites, because they represent
how much of vector b is distributed to each site. The following subsection presents
a parametric resource characterization of splits and a parametric formulation of the

optimization problem in terms of resources.

50

2.5.2 Resource Characterization

This subsection characterizes (compact) splits in terms of resources. This resource-
based characterization supports a concurrent constraint (re-) decompositions.

In particular, we formulate the properties of compactness, local consistency (lc),
partial constraint preservation (pep), and resource bound partition (rp) for splits in
terms of resources. Then, the optimization problem is formulated in terms of such a

characterization. First, we introduce the concept of resources of (compact) splits.

Definition 15 (Resource Parameters). Let Q = A7 < b be a satisfiable global
constraint, D(7y,... ,7ar) be a tight compact split of Q, Z° = (§0,...,9%) be an in-
stance of ¥, and 0 be a subset {k + 1,... , M} of sites {1,... ,M}. Then, we say

that:
1. b is the global upper bound of resources in €.
2. 1 is the resource assigned to site 1, 1 <1< M.

3. 7= Ef\il i is the global resource.

4. §=0b—Fis the global passive slack of Q w.r.t. D(ry, ... 7m).

—

5. (61,... ,XM) such that &; > 0,1 <i< M and Ef\iﬂi = (i is a partition of 5.

Fach 5;, 1 <e¢ < M, is called the passive slack at site 1.

6. 1ir; =7 + 0, is the upper resource bound at site 1, (1 <1< M).

51

7. Given an instance § at site 1, Ir; = AP, 1 < i < M, is the lower resource

bound at site i w.r.t. 7.

8. Given an instance y9 at site 1, A =7 — l;:i, 1 <1< M, is the active slack at

site 1 w.r.t. y_?

Finally, we define all the parameters for 0 by 75 = > o Ti, ulg = Y. cq Uy, Irg =
Eieé’ ZTZ', (S@ = Eieé’ (Si, and A@ = Eieé’ AZ

The above resource parameters are shown in Figure 2.2. In this figure, each resource
7; is bounded between its lower and upper bound (l_;“Z and uf;), the difference between
upper bound (ur;) and the resource is the passive slack 5;', and the difference between
the resource (7;) and its lower bound (l_;“z) is the active slack (52)

active slack passive slack
N~ Ny
A 5

NN s

i
IF; FI ur;
lower bound upper bound

resource

Figure 2.2: Resource Representation at Site ¢

The following proposition characterizes the split properties of compactness, local
consistency (le), partial constraint preservation (pep), and resource bound partition
(rp) in terms of the resource parameters.

Proposition 8 (Parametric Feasible Properties). Let) = AZ¥ < b be a global

satisfiable constraint, P = (yi,... ,Yu) be a variable partition of ¥, 2° = (§},... ,y%)

52

be an instance of ¥, 0 be a subset of sites, say § = {k +1,..., M}, 0 be the set
{1,...,k}, and D(7%,... 7)) be a (partial) O-split that satisfies (3°,...,5%). Then,
for any split D(vy, ..., 7"m)

1. D(#, ... Fa) is compact iff the global resource 7 is bounded by the global upper

bound [_): e, < b. We denote this condition by Peompact (F1,y -+ TA1).

2. D(Th, ... ,Ta) satisfies local consistency w.r.t. @° iff the resource 7; assigned to

site 1 is bounded from below by its lower bound l;:i, i.e., for every siter, 1 <1 < M,

l_;“i < 7i. We denote this condition by ®.(ry, ..., 7).

3. D(7,...,7u) satisfies partial constraint preservation w.r.t. O-split D(7%9, ... %)
iff the resources at each site outside 0 are fived, i.e., ry = r{ ... rp =r). We
denote this condition by ®,ep (71, ... 7).

We will also denote by @ _ 5 (F1,...,7m) the condition stating that D(7,..., Tum)

-
satisfies resource partition w.r.t. a resource bound partition By.

Proof. 1) follows directly from Lemma 1 part 1, 2) follows from the definition of local

iy

consistency, i.e., for a given instance ¢?, it satisfies its local constraint iff A;y? < 7,

and 3) follows directly from partial constraint preservation definition. O

In the following, we denote by SS.ompact, SSic, SSyep and SS,, the set of splits sat-
isfying compactness, local consistency w.r.t. Z°, partial constraint preservation w.r.t.
a O-split D(7,...,7%), and resource bound partition w.r.t. 6 and bound Bj respec-

tively. We will use Pr to denote a subset of the set of properties {compact, lc, pcp,rp}.

33

Finally, set Sp, will denote the set of all splits that satisfy the properties Pr, i.e.,
SSp, = Nuyep,SS,, and ®p,(r,...7a) will be the conjunction of the corresponding

conditions, i.e., ®p, (71, ...7m) = Npepr P, (71, ... 7ar). We can present the optimiza-

tion problem in terms of resource characterization.

Theorem 4 (Resource Optimization). Let = A7 < b be a satisfiable global

constraint, f be a monotonic function from the set of all safe decompositions to R,

P = (¢1,...,Yu) a variable partition of ¥, 7° = (y7,... ,4%,) be an instance of T, and

Pr be the subset of properties {compactness,le, pep,rp} that must contain compactness

or resource bound partition. Then, solving the optimization problem

mazx f(s)

s.t.s € SSp,

is equivalent to solving the parametric problem *°

mazx f(D(F1,... ,7v))
s.t. (I)pr(Fl, Ce ,FM)
Proof. The proof follows from Lemma 1, Proposition 8, and the fact that resource

bound partition is a stronger property than compactness as follows:

(1) The compactness part. By Proposition 8, the set SS.ompactness 18 characterized

YOwe will sometimes write f(D(7,...,7x)) as f(7, ..., 7u)-

54

—

by condition @ ompactness (71, - - ,7ar). Then, both problems yield the same maximum.

The other Pr cases follow directly from Proposition 8. This completes the proof. [

2.5.3 Concurrent Split Decompositions

The resource characterization of the previous subsection assumes that information from
all sites is used. However, in order to support distributed and autonomous protocols
we would like to make constraint decompositions and re-decompositions involving only
a (small) subset of sites, say § = {(k+1),..., M} of sites {1,... ,M}. To do that a
formulation of the decomposition problem can only involve or affect information that

is stored in sites .

Definition 16. Let Q = A7 < b be a global constraint, D(ry,... ,7y) be a compact
split of QQ, (51, . ,XM) be a partition of the global passive slack S: = (g0, ..., 9% be
a database instance, 0 is a subset, say {k+1,... , M}, of sites. A resource distribution
is a tuple (of triples) ((l;l,ﬂ,u_’rl),... \ (Z;M,FM,U_;“M)) Y- a O-resource distribution

08 (I g1y Thg1, Urkg1)y - oo (Uragy Pagytiiag). We say that the resource distribution is

permissible if

M
Zu_h — b and l_;“i <7 < g, for every 1 <o < M
=1

Given a resource bound partition ég, we say that the O-resource distribution ((l;k+17

HNote (l;i, 7, ul;)’s are defined in Definition 15.

35

Pl 1y Ul kg1)y« v s (Z;M,FM,U_;“M)) is permissible w.r.t. 59 if

Z ur; = é@ and l;:i <7 < kg, for every 1 € 0
€6
Note that if 4 is the set of all sites, the resource distribution permissibility is equiv-
alent to é resource distribution permissibility.
The following proposition motivates the notion of permissible distribution and pro-
vides a local criterion for a subset 6 of sites to decide whether a feasible resource

distribution exists, after database instances have been updated (i.e., lower bounds).

Proposition 9 (-Resource Distribution Feasibility). Let 0 be a subset, say {k+
1,..., M}, of sites {1,... ., M}, and 0 be its complement, By be a resource bound

partition. Then,

1. Given a database instance (ify,,, ... ,y;) at sites 0 (and thus lower bounds (l_;“;ﬂ_l,

,Z;M)), the following are equivalent:

(a) There exists a compact split of Q satisfying resource partition By and local

consistency w.r.t. (iff s)

(b) There exists a 0-permissible resource distribution w.r.t. By (with the above

lower bounds).
(c) l;é‘ = Eiee l;:i < éé’

2. The combination of 0-permissible resource distribution w.r.t. By and 0-permissible

56

.
resource distribution w.r.t. By constitutes a permissible resource distribution.

Proof. (1) To prove this part, we first prove that (c¢) implies (a), (a) implies (b), and
(b) implies (c).
(c) implies (a). Using the definition of l_;“@,
lrg < By & Zﬁ“i < By
€6
& Z A < By

1€0

Then, selecting 7 = A;i?, for all i, k+1 <7< M —1, and 7y = By — Ef\i;_ll_l T, we

build a #-compact split of () satisfying resource partition By and local consistency w.r.t.
(Ups1s- - Uar)- Now, selecting 7 = (3—55)/k, for 1 <o <k, D, ... 7, Mgty - »TM)
is a compact split of 2. This completes this part of the proof.

(a) implies (b). Let D(,...,7,) be a compact split of Q satisfying resource
partition By and local consistency w.r.t. (§0,,...,9%). Then, Ir; < 7% for all ¢,
kF+1<1< M, and) ,7 < é@. Then, selecting ur; = 7, for all 1, k +1 <1 <
M — 1, and iy = By — Ef\i;_ll_l 7. Therefore, Ir; < m<ur, k+1 <1< M, e,
((l;k+17 Phg 1> Ul kg1)5 - -+ (Z;M, s Utar)) is a permissible f-resource distribution. This

completes this part of the proof.

(b) implies (c). If there exists a #-permissible resource distribution w.r.t. By (with

57

lower bounds [r; = Ay? for all 4, k+1 < i< M). Then,

1€0 €6 €6
A= Z [7:9 < é@
1€0
This completes this part of the proof.
(2) Let ((Iry, 7oty)s - ooy (g s tit)) and (gt Pogts kgt - -+ 5 (Irag, Pars W)

be a - and 0- permissible resource distribution w.r.t. ég and By respectively. Since,
ég—l— By = g, (-,0-) permissible resource distributions constitute a permissible resource

distribution. O

The optimization functions f are defined in terms of the information of all sites
(i.e., D(71,... ,7m)), whereas we need to work with the information only on a subset

f of sites. To do that, we define the notion of #-localizer as follows.

Definition 17. Let be a constraint over &, and S be the set of all splits of €1,
f:S = R be a function. Let 0 = {k+1,... , M} be a subset of sites {1,... , M}, 0

its complement, Sy be the set of all 8-splits. Then, function f; 1 Sy — R is called 8-

localizer of f if for any 1Y, ... 7%, and for every two splits D(77, ... 79 Frity- -, Ta)
and D(7), ... 70, iqs oo Ty) inS,
f(f{ljv 77:27Fk+17"' 7FM) Zf(f{ljv 77:277:24—17"' 7FIM) <

Jo(Frgrs oo Par) > fo(Fgrs oo s Far)

38

(i.e., fo preserves monotonicity for any resource instantiation outside of 6).

We are now ready to formulate a theorem to be used for concurrent (re-) decom-

positions of the global constraints.

Theorem 5. LetQ = AZ < b bea global constraints, 8 be a subset, say {k+1,... M},
of sites {1,... , M} and 0 be its complement, S be the set of all compact splits of Q,
f S = R be a monotonic function and fy be its O-localizer, By be a resource bound
partition, and D(°,... | 72) be a (partial) O-split for sites outside 0. Let Pr be a subset
of properties that contains rp and ®g_p, be the condition (1) 7y < By for the case that
Pr contains just tp, and the conditions (2) 7y < ég,ﬁ“i < 7 for every 1 € 0, for the

case of Pr that contains both rp and lc. Then,

1. For Pr being the set of properties {rp, pcp} or {rp,pep,lc}, let (P, ..., Ty) be

a solution to the problem

max fo(Pty - ™M)
S.t.q)g_pr
Then, (7Y, ... 7, Tey1s--- »Tag) is a solution to the problem
max f(r, ..., 7ar)
S.t.q)pr

2. For Pr being the set of properties {rp} or {rp,lc}, let (¥, ,...) be a solution

59

to the problem

ma:z;fg(FkH, ceey FM)
S.t.q)g_pr
and (7, ... ,7,) be a solution to the problem
max f(Feg1y - ™M)
S.t.q)g_Pr
Then, (7, ... T Thyrs--- 2 Tar) 5 @ solution to the problem
max f(r, ..., 7ar)
S.t.q)pr

Proof. The proof follows from the fact that f has a #-localizer, and from Propositions 8

and 9. O

The next subsection presents the analytical expression for the objective function,

under uniformity assumptions on updates.

60

2.6 Optimization Function

While the optimization problems from previous section are applicable to an arbitrary

monotonic objective function, we now consider a specific optimization criterion in this

section in more detail: maximizing the probability of not violating local constraints.
We provide an analytical expression of this probability function in terms of a para-

metric characterization of compact split decompositions, and polyhedron volume func-

tion (V) [CHT79, Las83, Bea96].

2.6.1 Uniformity Assumptions

Assumptions described in this section are related to how the database instances are
distributed over the space defined by). We consider this distribution as a uniform
one, i.e., each database instance on) has the same probability of occurrence. More

formally, our assumptions are as follows:

e () is fully dimensional, and therefore Volume(€2) # 0.

e Not using local consistency (Ic) property (fn,—i.): updates & of the database are
uniformly distributed on the space defined by constraint 2. Thus, if Volume(Q)

0, then

Volume(C)

prob|Z satisfies C/¥ satisfies] = m
olume

61

e Using local consistency (Ic) property (fi.): we define the following two predicates
a: ¥ satisfy Q and site 1 is being updated, and (: ¥ satisfies) and one of the

sites k+1,..., M is updated.

1. The probability p; that a site 2 is being updated is given, for every 1 <1 <

M. Therefore, for full decomposition:

M
prob[¥ satisfies C/ T satisfies)] = Zpi X prob[i satisfies C/a]

=1
and for #-decomposition:

M

prob|Z satisfies C/f3] = Z P prob|Z satisfies C/ 3]

M
i=k+1 E]‘:k—l—l P

2. The distribution of updates at site ¢ (on variables ¢;) is uniformly distributed
on £, when values for all variables, except y;, are fixed. We denote by Z; all

variables on ¥ except those on ;. Then for full decompositions:

Volume(C[Z;\Z?])

K3

Z
Volume(Q[Z\ZY])
Z

prob[¥ satisfies C/a] =

K3

[
_ Volume(C;)
~ Volume(Q[Z\29])

where zZ¥ are the values for Z before the update, C[Z;\ 2P| and Q[Z;\Z?] denote

the formulas after Z; is replaced with z¥ values.

62

For #-compact split decompositions, we also assume that updates on the

space defined by D(7,... 7)) are uniformly distributed, and, therefore,

4 .. dif°

L. Volume(C;)
prob|¥ satisfies C/B] = / —
| = Loy Volume Q1202

K3

2.6.2 Parametric Representation

The following is a parametric description of the optimization criteria for the probability

of not violating local constraints.

Proposition 10. Let Q = A7 < b be a constraint, 7° = (¢7,...,4%) be a database
instance, p; be the probability that an update arrives at site 1, 6 be a subset of sites
(say {k+1,...,M}) and 0 be its complement, D(7y,... ,7) be a (partial) O-split of
Q, and fho_i. and fi. are the probability of not violating local constraints as defined

in Subsection 2.6.1. Then, under the uniformity assumptions of Subsection 2.6.1, the

following holds:

1. Not using local consistency (le) property: the function f,.—i. is monotonic and

has a O-localizer as follows:
fgo—lc(Fk-l'l? cee 7FM) = H V(nlv Aiv FZ)

2. Using local consistency (le) property: the function fi. is monotonic and has a

63

O-localizer as follows:
flec(Fk-l-l? s 7FM) = Z %V(nMAHFZ) x 1

where b; = (g— EM)%ij?), P = E]‘]\ikﬂ pj. and

(7=1,5#1

1
[:/ — i} .. AP
D(7,... ,Tk) V(n“A“bz) g !

Proof. First, f is monotonic since it is a probability function. Now, we prove that f

has 0-localizers.

Proof of 1 (not using local consistency). We know that the probability to satisfy C
given that (2 is satisfied, is given by:

Volume(C)
Volume(Q)

but, Volume(C) = Hf\il Volume(C;), since different C;’s are defined in disjoint set of
variables. We denote Volume(C;) as V(n;, A;, 7). Then,
_ Hf\il V(niv A f;)

no—le(T1yevn s T _
FroctelFiy-- - 7u) Vin, A,B)

Let V = Hle V(ni, A;,7:). Then, it is easy to see that for any two splits of €,

64

- > o — - Sy —y1
D(Fy, o Ty Thyqs oo Tyy) and D(7Fy, oo T, Ty - s Thy)

7 7

Vo i Vi A7)V JTE e Vi As)

- -

V(n, A,b) N V(n, A,b)
Hﬁ\ik-l—l V(niv A, 7:1) > H£k+1 V(niv A 7::/)
V(n, A, b) - V(n, A, b)

because V is a non-negative constant. Therefore, f,,_;. is monotonic and its #-localizer

is equivalent to

M
fgo—lc = H V(nHAHFZ)

i=k+1

This completes this part of the proof.

Proof of 2 (using local consistency). We know that the probability to satisfy C

given that € is satisfied by #°, is given by:

i - Volume(C;)
— b Volume(Q[Z\Z9])

—

but, Q[Z:\zP] is equivalent to A;7; < (b— Zf\f:l’#i)

A;3?), and denoting the right hand
side by EZ Then, Volume(Q[Z:\zP]) is the volume A;y; < Z;Z», ie., V(ni,Ai,gi). Let

V = Ele pZ'V(ni,Ai,f})/V(ni,Ai,gZ»). Then, for any two splits of Q, D(7,... 7k,

65

F;C-H"" 7FM) and D(Flv 7Fk7 FZ-I—I?"' 777/]\/4)7
M M
V 7 Az 3 |% : AZ 4
V+sz>< (ri, ’CZ)ZV-I-Z}%X (ni, 77})@
i=k+1 V(nivAiv 2) i=k+1 V(n“A“bl)
) (2.13)
M M
Z pi X V(nzv Aiv i:) 2 Z i X V(n“ AZ'7 71’;/)
i=k+1 V(ni7Ai7 2) i=k+1 V(nz,A“bl)
because V is a non-negative constant for D(7y,... , 7, Fyq, ..., 7y) and D(7y, ..., 7,
Thgts - , 7). Now, we show which is the #-localizer of f.. Since, Z;Z = E_E?JQL#Z,) A],y—??

for all i, 1 <1 < M, function V(n;, A;,b;) depends of values (77,... i) and (47,
S W, YRy, for all i B+ 1 <@ < M. However, (§7,...,4)) are values

outside of 8, that satisfy C,. Then, for every (¢7,...,9}) with those properties,

al |
g pi X V(m,Ai,F;)/ ——dy} .. . dif}
eyt D1,) Vg, Aiy by)

Finally, dividing by the constant E?ikH P,

M
bi —y 1 0 0
— X V(ni,Ai,ri)/ ——dy; ... dy;
Z':zk;_l Z]‘]\ik.u Pj D(71,... ,/7) V(nia A, bi)
This is the #-localizer of f;.. This completes the proof. O

Proposition 10 characterizes the #-localizer for the probability of not violating lo-
cal constraints, based on uniformity update assumptions (Section 2.6.1), and con-

vex polyhedron volume (V(n;, A;,7;)). This volume calculation has been addressed

66

in [CH79, Las83, Bea96]. Those papers prove that under certain conditions the volume
exists, and provide algorithms to compute it.

For the individual partition case, the volume calculation is easy, since local con-
straints are on individual variables. Those constraints define a (multi-dimensional)

rectangle. More specifically,

V(Crpr,oo Co) =[] s (2.14)

k+1

where [; is the length of the i** side of the rectangle. This simple formula gives Proposi-
tion 11 below, which is the simplification of Proposition 10 for the individual partition

case.

Proposition 11. Let Q = A7 < b be a constraint, 7° = (@9,...,22) be a database
instance, p; be the probability that an update arrives at site i, § be a subset of sites (say
{E+1,...,n}), Cyugr, uzt, ... ,urk, ugx) be a partial split of Q, and fh,—i. and fi. are
the probability of not violating local constraints as defined in Subsection 2.6.1. Then,

under the uniformity assumptions of Subsection 2.6.1 hold,

1. Not using local consistency (le) property: the function f,.—i. is monotonic and

its O-localizer is as follows:

n

fgo_lc(u1k+17 U2k+15 -+ 5 Uln, Uzn) = H (U2i - uu)
i=k+1

67

2. Using local consistency (lc) property: the function fi. is monotonic and its -

localizer is as follows:

e
s
flec(ulk+17u2k+17 - 7u1n7u2n) = Z -

X (U2i - Uu)

n
i=k+1 Zi:kﬂ Pi

where

U21 U2k 1
1:/ / L dn.dy
r1=u11 r1=U1g (U2’i - Uli)

b/
vii = Mazyja,,<o) {—l})

a;

bi
Voi = Min(b;/al,'>0) {_} ’

a;

b = (g— Z ij?), and
(j=1.5#1)

Ajusthe " column of A.

x I

Therefore, optimization problems defined in Theorems 4 and 5 can use f° _, . f?

or equivalent objective functions. Note that the optimization problem has linear con-

straints, and a non-linear objective function. An algorithm to solve this problem is

presented in Section 2.8. Now, we present our distributed protocol.

68

2.7 Distributed Protocol

In this section we describe a protocol to manage linear arithmetic constraints over a
distributed system. In fact, the protocol manages resource distributions as a mechanism
to manage updates and constraint decompositions (as is described in Subsection 2.5.3).
The protocol is general, in the sense that it can be applied to different network and
system architectures.

First, we explain a distributed transaction primitive called RESOURCE - TRANS-
FER that is used in the protocol. RESOURCE-TRANSFER(¢,j,7¢) works on a pair of
sites, and transfers the resource-contribution r¢ from the giving site ¢ to the receiving
site 5. The effect of the transfers is that the upper resource bound wur; at site 7 will
be decreased by re, after which wur; at site 7 will be increased by re. It is assumed
that standard distributed transaction techniques are used to assure that (1) under no
circumstances (possibly involving failures) resource-contribution is added to ui; of the
receiving site before it has been reduced from ur; of the giving site, and (2) the standard
ACID properties (i.e., atomicity, consistency, isolation, and durability) of distributed
transactions. Important to note is that distributed transaction protocols to ensure
these properties (e.g., two phase commit) are less expensive for transactions involving
two sites only, as is done in our RESOURCE-TRANSFER.

We can now provide the basic assumptions for our protocol which are as follows:

69

Distributed Protocol Assumptions

1. The global database is abstracted by real values for the vector of variables ¥ =

(J1,--- ,Ym), where (&1, ... ,Yn) is a partition of & 2.

2. A set of M distributed sites, where at each site 7, 1 < ¢ < M, variables ¥;
are maintained. Since (¥1,...,%n) is a partition of Z, i.e., there is no variable

S de., yiNg; =0, for every i # j. Furthermore, each site ¢, 1 <

replication !
¢ < M, has a local transaction manager that guarantees the standard ACID

properties (i.e., atomicity, consistency, isolation, and durability), as well as back-

up and recovery from failure.

3. The global constraint is of the form Q = A7 < g, i.e.,) is a system of linear
constraints. Local constraints are given by compact splits of). Every site 2
maintains in addition to its local instance ¥ and the global constraint §2, the triple
(l;i,f},u_’ri), where ((l;l,ﬂ,u_’rl), . ,(Z;M,FM, urpr)) is a permissible resource
distribution (thus the local constraint A,y; < 7 is also implicitly given). Safe (re-)

decompositions will be done by updating the permissible resource distribution.

4. When an update is required at site k, and if the new update (i.e., for 7;) satisfies
the current local constraint at site k£, the update is performed. If it does not

satisfy its local constraint, then, site k designates one site as a coordinator and

12 Any database model, e.g., relational or object-oriented, can be used, we assume that values for ¥
are either explicitly stored in the actual database or expressed as views (e.g., aggregations).

I3If there is replication, i.e., a variable & appears at two sites, it can be reduced to a non-replica
case by replacing ¢ with z; and z, and adding the constraint ; = x5 to 2.

70

sends to it a request for the minimal resource-contribution necessary to make the
—/ —/
update (i.e., by Proposition 9, the minimal re¢y is uiy — lr),, where [r, is the new

lower bound of k reflecting the new update).

5. The task of a coordinator is to facilitate a local update at site k& (when the
local update does not satisfy the local constraint C}), coordinating the (re-)
decomposition process. This is done by finding a set of sites #, containing site k.,
and trying to create a new permissible f-resource distribution, as follows. The

coordinator asks for resource contribution from sites until either:

(a) A subset of connected ' (to the coordinator) and operational sites 6 is found,
for which l_;“; < trg, where l_;“; is the cumulative lower bound for 4 (i.e., l_;“; =

: l;/ if the new update(s) in 6 were reflected, (i.e., by Proposition 9

=14 7 p 9 , DY p 9

there exists a compact split of satisfying resource partition ury and local

consistency w.r.t. database instances in #), and a new permissible §-resource

distribution is created, or

(b) For the maximal set 6* of sites that are connected (to the coordinator) and
operational, and l_;“;* & uige (i.e., by Proposition 9 there does not exist a
compact split of Q satisfying resource partition wurg and local consistency

w.r.t. database instances in #). Then, the update is refused.

In case (a), resources will be re-distributed in the optimal way in the sense of

1By ”connected” we mean that every site on # can send messages to any other site in 6.

71

Theorem 3.

6. Exchanging resource contributions (thus modifying the current upper resource
bounds in the resource distribution) is only done via the distributed transac-
tion primitive RESOURCE-TRANSFER. Each giving site can provide a resource
contribution 7c such that 0 < 7e < up; — l;:i, i.e., local consistency will still be
preserved. When the upper resource bound u¥; is reduced or increased at site ¢,

the local protocol adjusts its resource 7; accordingly (see Section 2.5.3).

7. Failure model: both sites and communication links may fail, but persistent stor-
age does not fail. We assume that the site failures stop site execution without
performing any incorrect actions. Communication link failures may separate the

sites into more than one connected component of communicating sites (6’s).

First, we discuss the properties we would like to guarantee, and then, a single

coordinator protocol is presented as a specific architecture case implementation.

2.7.1 Properties

When a local constraint is violated, our protocol performs distribute processing. In

order to guarantee a correct distributed processing, we propose the following properties.

72

CSOL Properties

1. Global and Local Consistency: every database instance ¥ = (4,... ,) must
satisfy the global constraint €); every local instance y; at every site ¢ must satisfy

the local constraint C;.

2. Partial (6-)Decomposition Soundness: If the protocol performs a (re-) decomposi-
tion of constraints in #, then there must exist a safe (compact split) decomposition
of 2 that satisfies resource partition ufy (i.e., the global resource bound in 6) and

local consistency w.r.t. the current database instance.

3. Last-Resort Update Refusal: Let §? be a new update for site 7, and let §* be
a maximal set of operational and connected sites that contains the site ¢ (i.e.,
no resources outside §* are available). Last-Resort Update Refusal means that
the protocol refuses the update y? at site i only if there does not exist a safe
(compact split) decomposition of € that satisfies resource partition wigs (i.e., the
global resource bound in 6*) and local consistency w.r.t. the current database

instance.

4. 6-Optimality: if a protocol performs (re-)decompositions of sites in 8, it is must

be optimal in the sense of Theorem 5.

Global and local consistency are standard properties that we would like to preserve.
Partial #-Decomposition Soundness says, intuitively, that the protocol does the best

under the circumstances, i.e., using only the knowledge of resources at sites in . It also

73

implies that resources are not lost because of failures, because Partial §-Decomposition
Soundness must hold at all times, including times after (local) recoveries from failures.
Finally, Last-Resort Update Refusal says that the protocol refuses updates (and re-
decompositions), only when there is no choice under the circumstances, i.e., no site
outside of §* can be reached (that is, a #* is maximal set) and, based just on the infor-
mation at sites in §*, we cannot guarantee satisfaction of global and local consistency.

Now we are able to present the main result of this section, which is a theorem

guaranteeing CSOL-properties under the distributed protocol assumptions.

Theorem 6. Any protocol that uses exclusively RESOURCE — TRANSFER prim-
itive for exchanging resources, is guaranteed to satisfy (1) safety and local consistency
(and thus global consistency), (2) partial 0-decomposition soundness, (3) last-resort

update refusal, and (4) 0-decomposition optimality.

Proof. Local consistency follows from the fact that RESOURCE-TRANSFER can only
reduce resources such that local consistency is satisfied (Distributed Protocol Assump-

tion 6). Global consistency follows from the fact that RESOURCE-TRANSFER never

—

create resources (i.e., r¢ < ur; — Ir;) and it first reduces resource-contribution from
the giving site and then add it to the receiving site (RESOURCE-TRANSFER as-
sumption). Therefore, the protocol only produces permissible resource distribution.
Finally, partial #-decomposition soundness, last-resort update refusal, and # decom-
position optimality follow directly from assumption 5) of our Distributed Protocol

Assumptions. O

74

We exemplify an instance of the protocol, which has a single coordinator, in the

next subsection.

2.7.2 Protocol with one Coordinator

Here we exemplify an instance of the distributed protocol for one-coordinator archi-
tecture. The suggested protocol is based on RESOURCE-TRANSFER primitive, and

the Distributed Protocol Assumptions. In addition to that, we assume the following.

1. Coordinator corresponds to site p. Since, there is only one coordinator, it knows
the complete resource distribution among sites, and time to time decides to (1)
collect information from sites (i.e., lower bounds), and (2) re-decompose without

any non-coordinator site requirement.

2. Each site ¢ has an underlying layer mechanism to inform whether or not a site j is
connected and operative. We assume that such a mechanism triggers a variable

ALERT;; which indicates that site j is disconnected (w.r.t. site) or inoperative.

Now we are ready to describe the implementation of our protocol at non coordinator

(regular) and coordinator sites.

Activities by Non-Coordinator Sites

Each site checks if local updates satisfies the current local constraints. When an update

Yr arrives to site k, this site performs the following.

75

1. (a) If y) satisfies the local constraint, then perform the update.

(b) If yi does not satisfy the local constraint. Then, site k sends a request to
the coordinator with the necessary resource-contribution rc¢p to make the

update. This resource-contribution is calculated as follows:

A —ury i Ayl > urg,

0 otherwise.

Then, site k waits until the coordinator provides the resource-contribution

needed or ALFERTy, is triggered.

2. When site k receives resource-contribution from the coordinator, then the re-
sources are updated. If there are enough resources, then the update is performed.

Otherwise, site k rejects the update.

3. If site k£ receives the ALFERT}, saying that the coordinator is not connected or

operative, site k reject the update.

When a site k receives a request from the coordinator, asking for resource - contri-

bution, site k£ performs the following:

1. Site k decides resource-contribution r¢y to provide to the coordinator as follows:
0<regp < max{ﬁ, u_’rk—l;k}. Then, site k initiates RESOURCE-TRANSFER(k,p,r¢x)

to the coordinator.

76

Activities by Coordinator p

Coordinator p maintains set £ for all sites requesting resource-contribution from it, and
a vector re, with the current resource-contribution holds by the coordinator. Then,

the coordinator performs the following:

1. When a request re¢ is received from a site k£, and the coordinator has enough
resources (i.e., ¢, > reg) and € is empty. Then, the coordinator reduces r¢y, from

r¢, and provides resource-contribution rey to site k using primitive RESOURCE-

TRANSFER(p,k,r¢). Otherwise, the following is performed.

2. The coordinator include site k in ¢ and decides an initial set 8 of sites to ask for
resource-contribution. For each site 1 € § sends a request asking for it. Coordi-

nator waits until the resource-contributions arrive or ALERT),; is triggered.

3. All possible answers from 6 have been received (i.e., all connected and operational
sites in 6 have ended RESOURCE-TRANSFER primitive), and there are no

—/
enough resources, i.e., [r, £ urg. Then,

(a) 0 can be increased, the coordinator increases it and sends a request asking
for resource-contribution for the new sites in 6.
(b) @ can not be increased. Then, for each site ¢ € &, the coordinator initiates

primitive RESOURCE—TRANSFER(p,i,ﬁ), and deletes site ¢ from &.

—/
4. If enough resources have been collected, i.e., i.e., Ir, < urg, coordinator decides

77

according to Theorem 5, how much resource-contribution re! is distributed to
sites in £ and . Then, for each site initiates RESOURCE-TRANSFER(p,¢,r¢))

and deletes sites from ¢£.

This implementation satisfies the Distributed Protocol Assumptions (see Section 2.7)
and uses the primitive RESOURCE-TRANSFER to exchange resources, thus by The-
orem 6 it satisfies all our CSOL-properties. The following section presents the imple-

mentation and some experiment of our optimization framework.

2.8 Algorithms, Implementation and Experiments

This section presents a general algorithm to solve the optimization problems presented
in Sections 2.4 and 2.5. Experimental results are presented for a single partition case.
We use a set of experimental linear systems to show the algorithm behavior for varying
numbers of constraints and variables. We use the problem size (product of the number
of variables and the number of constraints) and the algorithm’s running time as main
measures. The algorithm was implemented using visual C++ 4.0, and was run it on a
120 Mhz PC compatible.

The optimization problem has linear constraints, and a non-linear objective func-
tion, based on volume representation. In general, volume representation is based on
vertex enumeration (implicit or explicit), or recursive representations [Las83, Bea96],

where some of its properties are: positive homogeneous function of its right-hand-side

78

vector, local convexity, and local concavity. However, these properties are not enough
to guarantee optimal solutions using a global search algorithm.

We use a local search algorithm [LLH96, Glo89, Jea91] to solve our optimization prob-
lem. The structure is as follows: a number of local searches are performed, where for
each one, the algorithm checks if the local optimum is better than the current objective
function value. This procedure is repeated until there is no acceptable neighborhood

possible, i.e., a neighborhood where the objective function is locally concave.

Minimally-Constrained Safe Decomposition Algorithm

Let Pr be a subset of properties {compactness,lc, pcp,rp}, where properties compact-

ness or rp must be included, and 6 = {k 4+ 1,... , M} be a subset of sites {1,..., M}.

e Step 0. Assign an initial solution to 7y1,... ,7ar, the objective function f}. =

fi(D(Frg1, ... ,7ar)), and select an initial acceptable neighborhood s.

—

e Step 1. Perform a local search in s, obtain the solution ﬁz+1, oo by, of

maximizefpr(D(ﬁk+17 e ﬁM))

—

s.t. q)pr(ﬁk+1, ce ,hM) A

—

(s o) € 5

o Step 2. If fp (D(Rfyys-.- By)) > fp,, then fp. = fo (D(Rfyy,. .. Biy)), and

—

r=hi(k+1) <i<M.

79

o Step 3. Select a new acceptable neighborhood s, and go to step 2. If there is no

acceptable neighborhood, go to step 4.

e Step 4. Report the solution as: objective function fj,, and the solution 741, ...,

—

M.

The local search (step 1) is a non-linear optimization problem, with concave ob-
jective function. We use the Frank-Wolfe algorithm [BS79, Kam84], and volume algo-
rithms [Las83, Bea96] to calculate at each iteration the gradient of fp,. This algorithm

is as follows:

o Step 1.1 Let ¢ < 0 be an iteration index, and e a stop condition. Obtain an

initial solution and assign it to w0,
e Step 1.2 Obtain the solution of the following linear optimization problem:
Maz N fp,(D(,)) (higas - - . s hiar)
s.t. q)pr(ﬁk+1, Ce ,ﬁM)

where V fp,.(D(1,)) is the gradient of fp, evaluated at the point @,. Analyze the
solution, and if: (a) it is not feasible, then the original system is infeasible, then

stop, and (b) there exists the solution, then assign it to v.

80

o Step 1.3 Get the optimal step A* as the solution of the problem:

Maz fp,(D(AT 4 (1 — X))

s.t. 0< A<

o Step 1.4 Assign to wyq1 ¢ XU+ (1 — X))y, if || wyq1 — wy || < € then go to step

1.5, 0or ¢ < g+ 1, and go to step 1.2.

e Step 1.5 Report w,4; as the solution.

Note that steps 1.2 and 1.3 require additional algorithms. We use the simplex algorithm
[BS79, CZ96] to solve the linear problem (step 1.2), and we use the bisecting search
method [BS79] to solve the one-variable optimization problem (step 1.3).

The algorithm’s complexity depends on the complexity of finding an acceptable
neighborhood, and for each neighborhood visited, the complexity of n linear programs
(Frank-Wolfe algorithm), and for each linear program, the complexity of M volume cal-
culations. However, volume calculation complexity is mitigated for the smaller matrix
range associated with each partition element.

Note that for the schema-based and individual partition case, we have only one
acceptable neighborhood, and therefore we need to solve just step 2. The results for
this special case are depicted in Table 2.1.

Table 2.1 summarizes the results for 21 experiments, where P is the problem number

assigned, N is the number of variables, M the number of constraints, and Time is the

81

Table 2.1: Empirical Results

N M Tme| P N M Time
4 3 066 |12 50 50 9.01
7 030 | 13 80 80 40.86
12 0.66 | 14 100 100 92.16
100 10 1.05 |15 6 5 0.44
6 12.00 |16 12 7 1.10
6 121 |17 21 10 1.76
5 187 |18 33 14 3.79
6 039 |19 55 16 10.21
0.88 |20 80 18 20.38
20 094 |21 100 20 35.05
30 2.58 | - -

— =
Do © 00~ O Ot W =Y

Lo Do — —
S S o PP P
—_
o

running time measured in seconds. The general structure of the experiments is as
follows: experiments from 1 to 7 are random linear systems (with at least one solution),
experiments from 8 to 14 correspond to scheduling problems, and experiments from 15
to 21 have a transportation problem structure.

Figure 2.3 shows that the running time does not behave exponentially in the size
of the problem (notice that the x axis is the natural logarithm of the problem size).
However, there is a high variance in this relation. The following figures present the
time for each class of problem.

However, the relation between problem size and run time for the transportation
type problem is clearer as shown in Figure 2.4. One observes a smoother relation
between these variables.

Figure 2.5 shows the relation between these variables for the scheduling type prob-

lem. In the same way that the transportation case, this relation is smother than the

82

100

a0 | u
a0 +
_, Toq
S B0+
& 50l
Q
£ a0 =
preri -
ao 4
20 + []
10 + = [] n
o4 m e meom g N 000000
o 2 4 & = 10
Lnisize)
Figure 2.3: Experimental Run Time
Transpomtion Case
40
35 4 3
30 A
= 254
a
=204
L=
,g 15 4
10 4
5 4
Lu]
o 500 1000 1500 2000
Size

Figure 2.4: Run Time for Transportation Case

general case.

Scheduling Case

100
a0 4 4
80
70
B0 4
a0 4
A0 1
30
20 4
10 4

time

o 2000 4000 BOO0 |000 10000
Size

Figure 2.5: Run Time for Scheduling Case

The main conclusion of this experiment, is that the decomposition algorithm is
feasible and scalable, especially when one considers that the restructuring of local

constraints occurs infrequently. However, more experiments are necessary.

Chapter 3

OPTIMIZING MATERIALIZED VIEWS

3.1 Introduction

The evaluation of materialized views (queries) may require considerable computational
effort because some materialized views (1) can share some intermediate results (views)
with other materialized views, or (2) are complex enough to justify some intermediate
pre-computed views. To reduce the effort to maintain views updated, some intermedi-
ate views can be materialized. However, how many and which intermediate views will
be materialized will depend on many factors, such as view maintenance costs, response
time, available storage, etc.

The materialized view (query) optimization problem has been studied in different
contexts, such as: query optimization, view maintenance, and data warehouse design
and configuration. However, none of these works have provided an explicit problem
formulation in terms of materialized view interrelations, neglecting the possibility to

take advantage from it.

83

84

In this chapter we consider the optimizing materialized views problem, i.e., selecting
views to materialize in order to optimize a criterion, subject to a set of materialization
constraints (maintenance time, available storage, etc.). We propose an optimization
framework to decide the optimum way to materialize views, i.e., which additional views
need to be materialized. We use an expression-DAG to express equivalent view evalu-
ation plans. Then, we formulate an optimization problem to make a decision.

This chapter is organized as follows: Section 3.2 presents related work. Section 3.3
presents the contributions. Section 3.4 presents the problem characterization, where
the view optimization is formulated based on shortest (cheapest) path in an expression-
DAG. In Section 3.5 we present a linear-time algorithm when all possible view evalua-
tion alternatives are available, and a local search strategy for the general case. Finally,
Section 3.6 presents some experiments and the implementation of the general shortest

path algorithm.

3.2 Related Work

The view (query) selection problem has been studied in different contexts, such as:
query optimizations [NKOD95], view maintenance [CW91, GL95, GMS93, GM95,
RSS96], and data warehouse design [Gup97, HRU96, GHRU97, YKL97, BPT97] and
configuration [T'S97]. However, in terms of the solution, current research provides near-

optimal heuristics (without guarantee of the solutions’ quality), very expensive optimal

85

exhaustive search algorithms, or they just address to special cases.

In particular, works [BPT97, RSS96, T'S97, YKL97] provide frameworks, heuristics,
and an exhaustive search algorithm in order to optimize the sum of response and
maintenance time without any constraints. Ross [RSS96] has proposed view selection
based on a minimization of maintenance cost. However, [RSS96] presents an exhaustive
search algorithm, which is exponential (double exponential) in the number of possible
views to be materialized. Work [YKL97] formulates the problem as one of integer
programming in terms of the view evaluation plan. However, the number of evaluation
plans is exponential in terms of the number of possible views to be materialized.

The results reported in [Gup97, HRU96, GHRU97, GM98] provide a formula-
tion with storage constraint and time evaluation constraint. Three of them provide
near-optimal heuristics (greedy algorithm). In particular, [Gup97, GHRU97] extend
[HRU96], and present a formulation as an optimization problem. Works [Gup97,
GHRU97] provide polynomial-time heuristics (in terms of the number of possible views
to be materialized) for two special cases (AND and OR graphs), and near-optimal
exponential-time greedy algorithm for AND-OR graphs. However, the solution qual-
ity is not guaranteed. Finally, [GM98] extends previous works, which minimizes the
response and maintenance time of selected views, subject to a maximum maintenance

time. However, the heuristics and algorithms still present the same previous behavior.

86

3.3 Contributions

This chapter addresses the optimal view materialization problem, where for a given
set of materialized views (queries), one must decide which additional (intermediate)
views should be materialized in order to reduce the overall maintenance effort, under
some materialization constraints. A standard mechanism to represent intermediate
views corresponds to AND-OR graphs [Gup97, HRU96, GHRU97, GM98]. However,
there is no work in which the structural properties of such graphs are exploited. In
general, this problem is NP-hard [RSS96, Gup97], because it corresponds to selecting a
subset of elements from the set of all intermediate views, where the number of subsets
is exponential in the number of additional views.

This research exploits the structure of the representation mechanism for interme-
diates views. More specifically, the contributions are as follows. First, it extends
the expression-DAG (Direct Acyclic Graphs) [RSS96] as mechanism to represent com-
pactly intermediate views (queries) using equivalence and operation nodes. It shows
that equivalence nodes correspond to nodes in an AND-OR graph, and operation nodes
correspond to AND arcs. It characterizes an expression-DAG in terms of its size and
expression-paths ! (i.e., complete view evaluation plans). However, while the size of
a standard AND-OR graph is defined in terms of its nodes and arcs, the size of an
expression-DAG is defined in terms of the cardinality of its operational nodes.

Second, an optimization framework is formulated in terms of the expression-DAG

INote that, under certain conditions, AND-paths are equivalent to expression-paths.

87

structure. Thus, under certain objective function conditions, the problem of optimal
selection of materialized views can be formulated as the constrained shortest path in
an expression-DAG, i.e., a complete expression-path or AND-path. For this case, a
linear-time algorithm (in terms of the expression-DAG size) is presented. Note that
this special case can be found in important applications such as the case when the
evaluation time is the critical variable, and therefore, while more intermediate views
are materialized, the complete evaluation should be more efficient. A set of experiments
was run, and the results suggest that our approach is feasible.

Third, for the general optimization problem and if the expression-DAG has all
possible view evaluation plans, then the linear-time algorithm can be applied to obtain
a solution. Note that this algorithm does not evaluate all possible equivalent evaluation
plans, because all those which are subsumed by others are eliminated earlier. Finally,
if the expression-DAG with all possible view evaluation plans is not available, a local

search algorithm is presented. However, further research is necessary in this area.

3.4 View Materialization Characterization

In this section we characterize the optimization problem to support an efficient and cost
effective view materialization and maintenance. First, we present the basic definitions
based on the relational model. Then, we formulate the optimization problem, charac-

terizing the search space and the objective function. Finally, we present an equivalent

88

formulation and we discuss their effective solutions.

3.4.1 Definitions

This subsection describes basic definitions and concepts based on the relational data-

base model [UlI88]. In particular, view and view evaluation plan are described.

Definition 18. A database DB is a collection of n-relations (r1, ... ,r,) over relational
schemes (Ry,... , R,). The set of relational schemes is called a database schema. Fach
relational schema is formed by a finite set of attributes names, A; = {An,..., A},

and each attribute has a set of its possible values called domain.

We consider the set A as the set of all attributes in DB, i.e., A = A; U... U A,.

The n-relations (ry,...,r,) is called an extensional database or simply database.

Definition 19. A view V over a database DB is an expression of the form:

DEFINE VIEW V AS
SELECT B
FROM 7., Ts,...,Tu

WHERE C

where B is a subset of the set of attributes A, T; could be either a relational name (R;’s)
or other view name (V;’s) on DB, called base relations, and C is a constraint called

selection condition. We will denote view V as V(T,... ,Tn).

89

Note that a view V is a derived relation, i.e., it is not included in the database
schema. Therefore, in order to keep view V consistent with the data sources, it has to

be maintained or re-evaluated from any relevant change produced at Ti,... ,Thy.

Definition 20. LetV, and V; be two views. We say that Vy is subsumed by Vy, denoted
by Vo E V1, if Vo C Vi, where C refers to view containment. Vy is equivalent to Vs,

Vl = VQ, ZfV1 |: VQ and VQ |: Vl.

Intuitively, view V; subsumes view V, if for any legal database instance V; can be
derived from Vi, i.e., Vs is contained by V;. In general, a view V can be decomposed

into a set of equivalent views {Vo, V1,... , V., }, such that ¥V = Vo(Vy,...,V,). Then,

we can use either {Vo, Vq,...,V,} or V to answer V. Note that V can be decomposed
recursively, i.e., each one of its V;, 1 <1 < n, can be decomposed in (Vo, Vi1, .., Vin,),
and so on.

We will say that a view decomposition is a view evaluation plan if a view V is
decomposed recursively until all its base relations are reached. Note that two or more

different view evaluation plans may share one or more intermediate views.

3.4.2 Optimal View Materialization Problem

In this subsection we formulate and characterize the problem of selecting a set of ma-
terialized views as an optimization one. Informally, given a set of materialized views
(queries) V, defined over a set of base-relations or views R, we have to decide what ad-

ditional views V* should be materialized in order to optimize a criterion (maintenance

90

costs, response time, etc.), satisfying a set of materialization constraints (maintenance
time, available storage, budget, etc.). Selecting one subset of additional views (evalu-

ation plan) or another requires that the following issues be considered.

1. Incremental Evaluation Tradeoff: Selecting an evaluation plan with few views
may spoil the performance, because materializing views will require more effort.
On the other hand, evaluation plans with many views will require, when some
data sources change (due to update, insert or delete) occurrences, more materi-

alized view recalculations.

2. Design Constraints: There are some constraints that restrict the solutions, and
some evaluation plans may not satisfy them. For instance, available storage,
processing and view maintenance time, a limited budget, and any other resource

constraints.

3. Selection Criteria: When several alternatives satisfy our design constraints, we
need to define some criteria to select one among all possible. For example, time,
cost, and storage measures of view materialization and maintenance could be the

selected criterion.

The following definition is a general characterization of the optimization criterion

and search space for the optimization problem formulation.

Definition 21. Let V be a view. We say that the set V is the set of all equivalent

91

evaluation plans (subset of materialized views) for V, the function f:V — R is a real

function that characterizes our selection criterion, and ¥(v),v € V is a constraint.

Therefore, the view selection problem corresponds to select a set of views (V*), i.e.,
an evaluation plan for V, among all feasible alternatives (i.e., those v € V that satisfy
U(v)), such that a criterion f is optimized. We will assume that the optimization
is a minimization, and then the following optimization problem formulates the view

selection problem.

min { f(v)}
v (3.1)

st.U(v),veV
Note that [RSS96] uses a similar formulation to (3.1) but without constraints. Be-
fore we discuss how problem (3.1) can be solved effectively, we will concentrate on
the more precisely characterization of set V, function f, and constraint W(v). The

following subsections address these characterizations.

3.4.3 Expression DAG

In this subsection we introduce expression-DAGs as a mechanism to represent equiv-
alent view (query) evaluation plans, i.e., a characterization of the set V. Expression-

DAGs were originally introduced in [RSS96], we adopt the original definition of [RSS96],

and extend the expression-DAG concept with some useful properties.

92

Definition 22. Anexpression DAG Epag is a directed acyclic graph (acyclic digraph),
represented by the pair Epac = (E,0O), where E = {eq,... ,e,} is the set of equivalence

nodes, and O = {Oy,... ,0,,} the set of operation nodes, with the following properties:
1. An equivalence node has edges to one or more operation nodes.

2. An operation node contains an operator, has edges to one or more equivalence

nodes, and its parent is an equivalence node.

We denote by | O; | the cardinality of the operation node O, i.e., the total number
of incoming and out-coming edges on O;. In addition to that, we denote by C(O;)
and C(e;) the children set (equivalence nodes and operation node respectively) of the
operation node O; and equivalence node ¢;, respectively. Finally, we denote by P(0;)
the parent (equivalence node) of O;, and L(Fpac) the set of all leaf nodes, i.e., those

nodes without children.

Definition 23. Let Fpae = (E,0) be an expression DAG, with equivalence node
E = {e,...,e,} and operation nodes O = {Oy,...,0,,}. We denote the size of

Epac by size(Epac) and the average cardinality by Epaa, defined as follow:

, _ 1
SZZG(EDAg) == Z | OZ | and EDAG == E Z | OZ |

0;€0 0,€0

Expression-DAGs are used to compactly represent the space of equivalent view

(query) evaluation plansin [RSS96], where equivalence nodes represent views, operation

93

nodes represent relational equivalence between parent and children, and the leaves of
an expression -DAG correspond to the base relations. Furthermore, expression-DAGs
are equivalent to AND-OR graphs (used in [Gup97, RSS96]) if the equivalence nodes
are equivalent to the nodes in the AND-OR graph, and for each AND arc there exists

an operation node and vice versa.

Definition 24. A path Py of length q, in an expression-DAG Epac = (F,0), is a se-
quence of equivalence and operations nodes, Py = (e1 = 5,04,,€2,04,, ... , 05, €441 =

t), where:

s € P(Oy),t € C(O;,), ande; € C(Os,_)N P(Oy;), g =2,... ,q

2] Z]—l

nodes s and t are the origin and destination respectively, and we say that t is connected

to s.

Note that a path is simply a sequence of equivalence and operation nodes. However,
we would like to extend that concept to one that provides the notion of view evaluation

plans. This extension is as follows.

Definition 25. Let Epag be an expression-DAG, we say that an expression-Path,
denoted by m = (F,,0;), is a rooted expression-DAG, where for each e; € F, there

exists only one O; € O selected.

It is easy to see that an expression-Path, from the root of Fp s to the base relations,

94

represents a view evaluation plan, because each view is materialized using only one
operation node.
An expression-DAG can be subdivided in sub expression-DAGs, which are a portion

of an expression-DAG. We formalize this concept as follows.

Definition 26 (Sub-expression-DAG). Let Epac = (F,O) be an expression-DAG,
we say that Espac = (E',0') is a sub-expression-DAG of Epag rooted in node e; if

Espac is an expression-DAG with the following sets:

E'={ej|e;€ EATP.., #0} and O ={0;|0; € OA3IP.0, # 0}

The following example shows an expression-DAG to represent view V. Note that
we use a different notation than [RSS96], where the equivalence nodes are represented

as a circle (views), and the operation nodes as an inverted black triangle.

Example 2. Consider the relation schema (AB), (CDE), and (FG'), where A, B, C,

D, F, GG are the attribute names, and a view V defined over this schema as follows:

V = 7m4,p,6(0(a=c)aB<ovB<DING<ENF=1)aB=b)(AB X CDE X FG))

Figure 3.1 presents an expression-DAG Epac = (E,O) for view V, where the set
of equivalence nodes is £ = {V, V1, V5, V3, Vi, AB,CDE, FG}, and the set of operation

nodes O = {01, 03,03,04,05}, each one associated with a specific operation.

95

Moo (0 ac(Vy))

Figure 3.1: An Expression-DAG of V

An expression-DAG represents equivalent view evaluation plans for a given view.
However, there are some of those evaluation plans that are implicitly represented. Thus,
from Figure 3.1, view Vj can directly evaluated from base relations AB, CDE, and FG,
and in the same sense, view V, from AB and CDE. We formalize those additional and

implicit ways to evaluate view V' as follows.

Definition 27. Let Epac = (E,0) be an expression-DAG for a view V. Then, we say
that B, = (E,0%) is the transitive closure of Epac if Ef . is an acyclic digraph

and set OF is defined as follows:

OF = {OF |Ve; # e; € B, 3Puse, £ 0 A
(3.2)

O} € C(e)) A C(0}) = Uo,er,, CO)}

96

The transitive closure EEAG of an Epas has all possible equivalent evaluation
plans for a given view V), i.e., it characterizes the search space (V) for the view selec-
tion problem. However, the main drawback in this concept is that size(E}) grows

exponentially in the number of equivalence nodes (views) in Epag.

3.4.4 Objective Function

In this subsection we characterize the optimization criterion by means of a function f.
To characterize f we adopt the same optimization function proposed in [Gup97]. We
consider that a set of views (queries) V need to be answered and that a set of views V*
have been selected to be additionally materialized. Then, function f has the following

items.

Requirement Cost: this cost is associated to answer views in V, i.e., each time that
a view V; € V is required, the system will compute it from the additional materi-
alized views V* (if there are some) or from the base relations. Therefore, the cost
incurred by such operations represent the requirement cost. We use C4(V;, V*)

to denote this cost.

Maintenance Cost: this cost is associated with the marginal maintenance of views
in V*. Since views in V* are all materialized views, when a base relation changes
(update, delete, or insert), views in V* have to be maintained. The cost of such

maintenance is captured in the maintenance cost. We use Cp(V7, V*) to denote

97

the maintenance cost of materialized view V.

Finally, we consider that for each view V; € V there exists a frequency 3; represent-
ing the number of times that view V; is required per unit time. In the same way, for
each materialized view V¥ € V* there exists a frequency A; representing the number of
times that view V7 is maintained per unit time. Therefore, the objective function f is

expressed as follows.

F=BCaV V) + Y XCu(V5, V) (3.3)

% JEV*

Function f models the trade off between the number of materialized views and the
total cost. Thus, when more additional views are materialized, the cost to answer views
in V is reduced, but the cost to maintain materialized views increases. The tradeoff
associated between these costs forms the crux of the materialization view problem. The

next subsection presents two additional, but equivalent, formulations for our problem.

3.4.5 Optimization Problem

In this section we re-formulate problem (3.1) in two equivalent formulations. One
of them is based on selecting a subset of views V* among all candidate views to be
materialized, the other, is based on recursive programming, taking advantage from

the Epaq representation. Before we present such formulations, we define the resource

98

constraint concept as follows.

Definition 28 (Resource Constraint). Let V* be the set of selected materialized
views, and T be the marimum resource available. Then, a resource constraint is a

constraint saying that the resource used by views in V* must be lower or equal to T.

In general, this type of constraint has been associated with storage (hard disk
capacity), processing time, or budget [Gup97, HRU96, GM98]. Independently of which
meaning the constraint has, we formulate the optimization problem in terms of that

type of constraint.

Definition 29. Let V be a set of views, and V* be the set of materialized views. We

say that the function S : V* — R represents the resource used by views in V*.

Proposition 12. Let V = {Vy,... ,V,.} be a set of views (queries) to be answered,
Epac = (E,0) be their expression-DAG, V* be a subset of (views) E, and S(V*) be
the resource utilization by V*. Then, the following optimization problem

min D BCAVLV)+ D N Cu(VE V)

% JEV*

st. S(YV)<L<T (3.4)

V'CFE
is equivalent to (3.1), if ¥(v),v € V is equivalent to S(V*) <T and V* C E.

Proof. The proof follows directly from the fact that an evaluation plan of V (i.e., an

element v € V) is a subset V* of E. Then, if U(v),v € Vis equivalent to S(V*) < T and

99

V* C FE, both search spaces are equivalent, and the objective function are equivalent

too. This completes the proof. O

Optimization problem (3.4) is the same problem formulated in [Gup97, GHRU97,
GM98], and it is clearly NP-hard problem, because (3.4) selects a subset of elements
(views) V* from the set E on Epaq, and the number of subsets is exponential in the
number of elements in E. However, [Gup97, GHRU97, GM98] provide near-optimal
greedy heuristics for some special Fpai cases. These heuristics perform the following
three steps: (1) select a subset V* C FE, (2) check if it is feasible (i.e., if it satisfies
the constraints), and (3) evaluate the objective function and compare with previous
solutions.

In general, these heuristics have been applied to some particular cases (AND and
OR graphs), and they do not guarantee quality in their solutions. We extend for-

mulation (3.4) taking advantage of the Epaq structure, i.e., the interrelation between

equivalence and operation nodes, as follows.

Proposition 13. Let Epac = (F,0) be an expression-DAG, and Ef ., be its transi-
tive closure. Then, for every solution V* € F of (3.4), there exists an expression-Path

™= (E;,O.) in Ef ., such that V* = E,.

Proof. Let V* be a solution of (3.4), i.e., it is an evaluation plan. Then, as E; . has

all possible of those plans, there exists an expression-Path with those selected views,

le,m=(V*,0;). O

100

Therefore, selecting an optimal subset of views V* using (3.4) is equivalent to find

the cheapest expression-Paths in E} . that satisfies the resource constraint.

Definition 30. Let V = {Vi,...,V} be a set of views (queries) to be answered,
and Epac = (E,0) be the expression-DAG of V, and E}, ., = (E,07%) its transitive
closure. Then, we say that Vy is a dummy view of V, if its expression-DAG Ep o =
(E',0") and transitive closure EE/AG = (B, 0% are defined by B' = EU{Vy}, O' =

O U {Oo}, O+/ == O+ U {Oo}, C(Vo) == {Oo}, and C(Oo) == {Vl, Ce ,Vm}

A dummy view is a concept to create an expression-DAG with a unique root (Vy).

All the following results are based on this concept.

Definition 31. Let Epag = (E,0) be an expression-DAG rooted at ey, {eq,... e}
the set of all children of O;, where O; € Cley), and E¥ . = (Ex, O) be a sub-
expression-DAG rooted at er. Then, we say that f : E — R is an additive function if
there exists f; : By — R, 1 <1 < nj, a nondecreasing function F; : R™ — R, for all

J € Clen), and v : O; = R, such that f(eo) = v(O;) + Fi(filer), ..., falen,)).

Additive functions allow us to write functions recursively in terms of an expression-

DAG structure. In particular, we are interested in rewriting optimization problem of

(3.4).

Proposition 14. Let Vy be a view with closure expression-DAG Ef ,. = (E,0%)
rooted at ey, L(Ef,) be the set of base relations of Ef 4, {e1,... ,en,} the set of

all children of O;, where O; € C(eo), Efphe = (EF,0F) be a sub-expression-DAG

101

of Ef o rooted at ey, and 7 = (E.,0,) be a expression-Path on E} ., such thal

0; € O. Then,

1. Let T be the available resource, S(E;) be a resource utilization function, and
g(eo) =T — S(E;) be the available resource at eq. Then, if S(F;) is an additive
resource utilization function, with r(O;) the resource utilization of operation node

O;, constraint S(FE,) < T is equivalent to

N

S(eo) = min { S(es) b = 1(0,) > 0

S(ek) =T, ex € L(ES46)

2. Let n(eo,m) = BoCa(Vo, Ex)+ EeieEﬁ NiCwn(eiy Er) the cost of expression-Path .
Then, if function C4(Vo, Ex) and Cy(e;, Er) are additive with C4(Vo, €0) = u(0O;)

and CM(eo, Er) = ¢(Oj)}

Proof. (1) If operational node O; € m, and as S(FE;) is an additive function, the

resource utilization at ey is the maximum resource utilization at {ey,... , e, } plus the

102

resource utilization at node O; (i.e., r(0;)). Therefore,

S(E.) < T & r(0;) + max {S(E-)} < T

& 0 < —r(0)) + min{T — S(E,)}

N

& mkin{S(ek)} —r(0;) >0
This completes this part of the proof.
(2) From the n(eg, m) definition, and since C'4 and Cys are additive functions,

n(eo,m) = BoCa(Vo, Ex) + Y NiCu(ei, Er)

e; €L

= ﬁOCA(Vov 60) +)‘OCM(eov EW) + Z {n(ekv Eﬂk) + ﬁOCA(Vm EWk)}
keC(0;)

= M(Oj) + @/J(O]) + Z 77(% Wk)

keC(0;)
This completes the proof. O
Theorem 7. Let V = {Vy,...,V,} be a set of views (queries) to be answered, Vy be

its dummy view with expression-DAG transitive closure Ef,, = (E,07), and n(e;)

be the minimum cost at equivalence node e;, i.e., n(e;) = ming {n(e;,7x)}. Then, the

103

following optimization problem is equivalent to (3.4)

n(ei) = min § 1(0;) +(0;) + D nler) | 05 € Cles)

keC(0;)
s.t. e € BN — L(ES) (3.5)
S(er) > 0

n(e,) =0, Ca(Vo,en) =0, S(e,) =T, u € L(ES)
If functions Cyy and Cy are additive.

Proof. First, problem (3.1) can be expressed as follows, min, {n(Vo,7) | S(F,) < T},
i.e., finding the cheapest evaluation plan for Vg, subject to the resource constraint.
From Proposition 13 and using the fact that C'4 and Cy; are additive functions, then

we can re-write (3.1) as follows:

min 4 #(0;) + ¥ (0;) + > minn(Vo, i) | Ser) = 0} [S(Vo) > 0

ex€0(0;)

Now, renaming min; {M(Oj) +(0;) + Ekec(oj) niex) | O; € C(ei)} by n(e;), we get

3.5). This complete the proof. O
(3.5) p p

Problem (3.5) finds the cheapest evaluation plan for Vy, when there exist resource

constraints. In the next section we present two algorithms to solve (3.5).

104

3.5 Solution and Algorithms

In this section we propose two algorithms to solve (3.5). We first consider that the
solution is a complete expression-Path in an expression-DAG, and present a linear time
algorithm (in terms of the expression-DAG size). Then, we consider the case where
the solution is a subset of views, and it is not necessarily a complete expression-Path.
We present a local search algorithm to solve (3.5), where we use a special case of the

unconstrained shortest path algorithm as global search.

3.5.1 Shortest Path Algorithm in an Expression-DAG

The algorithm is a general one in the sense that it finds the shortest path in an
expression-DAG. However, to guarantee that the algorithm solves (3.5), we need some
additional conditions. The algorithm uses as input a general expression-DAG FEpag,
the available resource T, and a vector y with value y; = 1 if view ¢; can be materialized
and y; = 0 otherwise. The output is a set {P; | ¢+ € F'} indicating, for each equivalence
node (view) ¢, which operation node has been selected . Therefore, selected views are
found starting from Vy and recursively selecting views from F;’s. The algorithm as-
sumes that Fpaqg 1s ordered in inverse topological order, i.e., its nodes are enumerated,

such that the following condition is satisfied:

(P(Ox) = {i}) A (j € C(OR) = j < i. (3.6)

105

Since Fpac is ordered in inverse topological order, the root Vy has the highest
order. Finally, we consider that the set BS(e;) is the set of all operation nodes having

node ¢; as parent, i.e., BS(e;) = {0; |1 € P(O;)}. The algorithm is as follows.

ViewSelection(Epag = (F,0), T.y)
for each: € I/ do
FP=0
if (i € L(Epag)) then
n(i)=0,5()=T
else n(i) =
for each j € O do k; =0
for i=1to |E£|-1do
for each O; = ({z},C(0;)) € BS(i) do
ki=kj+1
if k; =| C(O;) | then
f=G{n(er), g | er € C(O;)})
S* = ming{S(ex) | ex € C(0;)} —r(0;)

if ((z) > f A S*>0) then

106

Function G({n(ex),y | ex € C(O;)}) evaluates the cost from all children of opera-
tion node O;. Note that vector ¥ modifies this evaluation, allowing some equivalence
nodes not to be considered. In general, when § = f, all nodes are considered to be

materialized. The next theorem provides the correctness of our algorithm.

Theorem 8. Lel Vy be a view, and Ef, ., be the transitive closure of Vy expression-
DAG. Then, algorithm ViewSelection(Ef 40, T, f) produces an optimal solution V* to

the optimization problem (3.5).

Proof. Since Ej; ,, has all possible V evaluation plans, and ViewSelection(Ef ., T, f)
finds the shortest (cheapest) path that satisfies the resource constraint, then, all views
belonging to this path are the solution of (3.5), because they satisfy the constraint and

produce the cheapest cost. This completes the proof. O

To analyze the complexity of the ViewSelection() algorithm, we first note that each
node and each edge is selected at most once, and for each operation node O; we evaluate
f using all nodes belonging to its children, i.e., C(0O;), we consider this evaluation has
a complexity O(f). Therefore, the overall complexity is O(O(f) x size(Epac))-

Although ViewSelection(Ef ., T, f) produces the optimal solution of (3.5), the
complexity of Ef . is still exponential in the number of views. However, if the solu-
tion of (3.5) is a complete expression-Path in Epag, then, ViewSelection() algorithm

provides the optimal solution. The next subsection presents a local search algorithm

to solve (3.5).

107

3.5.2 Local Search Algorithm for Expression-DAG

Algorithm ViewSelection(Ef 0, T, f) requires an exponential time to solve problem
(3.5), because size(Ef) is exponential in terms of the number of views. We propose
a local search algorithm [LH96, Glo89, Jea9l] to overcome this drawback. The local
search algorithm is structured as follows: a number of local searches are performed,
where for each one, the algorithm checks if the local optimum is better than the cur-
rent objective function value. This procedure is repeated until there is no acceptable
neighborhood possible. Before describing the algorithm, we define the concept of ma-

terialization vector.

Definition 32. Let Vg be a view, and Epsc = (F,O) be the expression-DAG of Vy,
where = (e1,...,e,) and O = (Oy,...,0,). We say that a vector § = (y1,... ,Yn)

is a materialization vector if

1 if view e; € E can be materialized,
Yi =

0 otherwise

Materialization vectors represent a mechanism to define neighborhoods, i.e., initial

solutions for each local search. The local search framework is described as follows.

Step 0. Assign 0 to k, ¢ = (1,...,1), and f* = oc.

108

Step 1. Perform a local search, solving the following problem

Hgiﬂ (& /9x)

s.t. U(T/Tr)

Step 2. if f(Z¥) < f*, then f* = f(&), and y* = 7.

Step 3. Increase k by 1, select a new ¢, and go to step 2. If there is no g, additional,

go to step 4.

Step 4. Report objective function f* and solution y*.

We have to explain how procedures local search (step 1) and selection of a new g

are performed (step 4). First, we explain local search.

Local-Search We iteratively solve ViewSelection(FEpac, oo, y) and put the solution
in vector . Then, we evaluate if the constraint is satisfied. If it is not, then
we select a victim and eliminate it. We solve ViewSelection(Epac, o0, §) again.

The procedure is as follows.

Local-Search(Fpac = (E,0),T,7)
i = ViewSelection(Epac, 0, Y)
repeat until (S(Vy) <7
EliminateMaterialized(y, ¥)

i = ViewSelection(Epac, 00, V)

109

Procedure EliminateMaterialized(y,) selects a victim, i.e., a view k with the
highest resource occupancy index. When the victim has been selected, we assign

yk:().

Neighborhood Selection Vector § is used to defined a neighborhood, because se-
lecting some y; = 0 we do not allow some solutions. We propose an aggressive
strategy to move from neighborhood to neighborhood. This strategy eliminates

a certain number N of views with the lowest resource occupancy index.

Although we do not offer a complexity analysis for this algorithm, the global com-
plexity will depend of the number of internal iteration in ViewSelection(Epac, o0, §)
(] £ | in the worse case), and the number of neighborhoods visited (2/¥! in the worse
case). However, there are many of those alternatives that are subsumed by others, and
therefore, they do not need to be visited. A more exhaustive work is needed in this

area to create an efficient mechanism to select neighborhoods.

3.6 Implementation and Experiments

This section presents the main results of our ViewSelection(FEpac,T,y) algorithm.
Table 3.1 summarizes the results for 25 experiments, where Size is the expression-

DAG size, F is the average cardinality, o is its standard deviation, and Time is the

110

running time measured in milliseconds. The algorithm was implemented using visual
C++ 4.0, and it was run on a 120 Mhz PC compatible.
In general, expression-DAGs with a lower number of equivalence and operation

nodes than those shown in Table 3.1, reported a time less than 10 milliseconds.

Table 3.1: Empirical Results
Size FE o Time| Size E o Time
15818 3.7 3.0 170 | 6168 4.3 5.2 110
10089 5.2 5.7 110 | 9504 4.3 4.2 110
7716 2.6 1.9 50 | 16950 2.5 1.2 110
23759 2.9 2.1 280 | 4475 5.1 44 60
20128 2.4 0.8 160 | 39777 84 13.6 770
39921 4.1 3.5 550 | 19856 3.2 1.8 220
21881 2.8 1.3 280 | 27548 4.3 3.4 440
24890 2.3 0.8 270 | 25496 2.7 1.1 280
18226 3.1 1.6 170 | 30355 3.2 2.1 440
21188 2.6 1.4 270 | 33875 2.6 1.2 390
37047 2.5 1.2 490 | 39163 5.5 48 820
35241 2.4 1.1 440 | 27549 85 7.7 660

The experiments where generated randomly, where the minimum and maximum
number of equivalence nodes were approximately 2,000 and 15,000 respectively, and
operation nodes were 1,400 and 15,000 respectively.

Note that in this case (when all possible views are candidates to be materialized),
function G({n(ex),y | ex € C(O;)}) corresponds to a simple summation of all n(ey),
for all e, € C'(O;), which reduces the complexity of our algorithm.

Figure 3.2 shows that the running time against the expression-DAG size. This

time presents a positive linear behavior when the expression-DAG size increases. The

111

Algorithm running Time

900
800 + <
700 1 -

600 T
500 + -
400 + -

300 +
200 + *

100 + o o -
* >
0

Time [msec]
*
*
*

0 5000 10000 15000 20000 25000 30000 35000 40000
Hypergraph Size

Figure 3.2: Experimental Run Time

variance produced in this relation is due to different expression-DAG structures, i.e.,
expression-DAG depth and average density (number of children at each node).

The main conclusion of these experiments, is that for a given view expression-DAG,
the time to find the shortest (cheapest) path between the root and all base relations is
a linear function of the expression-DAG size. Therefore, if the transitive closure £3
is available, the algorithm is a good alternative, and when E7 ,. is not available, we

can apply our local search algorithm in a reasonable searching time.

Chapter 4

OPTIMAL DECOMPOSITION IN QUASI-VIEWS

4.1 Introduction

Many applications must support the monitoring of distributed data for the occurrence
of critical events or complex conditions among data items. Furthermore, much of that
information is not necessarily required to be up-to-date, allowing some (controlled)
degree of incoherence between users and information sources.

This chapter introduces and extends quasi-views as mechanism to materialize infor-
mation in distributed environments with controlled incoherence. Quasi-views are views
with explicit materialization conditions called refresh conditions. They were originally
introduced in [Sel94, SK97] based on the quasi-copies concept [ABGM90]. We pro-
pose an optimization problem to materialize quasi-views optimally, based on results
regarding constraints (Chapter 2) and view materialization (Chapter 3). We show
that, in general, a quasi-view decomposition can not be considered as two independent

problems (i.e., constraint decomposition and view materialization), and we provide

112

113

an iterative framework to solve this problem. Finally, we consider a special case of
refresh conditions (disjunctive set of atomic linear arithmetic constraints), where the
algorithms proposed in Chapter 2 to find a safe decomposition can be used.

This chapter is organized as follows. Section 4.2 presents the related work, Sec-
tion 4.3 presents the contributions. Section 4.4 presents the problem characterization,
where quasi-views are introduced, and the general materialization problem is formu-
lated as an optimization one. We show, through an example, that the problem is not
separable. Section 4.5 presents the solution strategy based on an iterative procedure,

and we provide a solution algorithm for a special refresh condition case.

4.2 Related Work

Quasi-views were originally introduced in [Sel94, SK97] as an extension and generaliza-
tion of quasi-caching [ABGM90]. This two concepts have been used as mechanisms to
reduce the overhead cost incurred when derived data or multiple copies are maintained.
quasi-views are regular views with formal materialization conditions, called refresh con-
ditions. Quasi-caches contain quasi-copies, which are client-cached copies of database
objects which are allowed to deviate in controlled ways from the primary copies. In
particular, [Sel94, SK97] extend quasi-caching by: resolving active and passive data
sources heterogeneity, new types of coherency (refresh) conditions, supporting trans-

formation of cached data by view definition. However, both works have been limited

114

to refresh conditions over only one data source.

Since quasi-views and quasi-caching cache information from data sources (primary
copies), they differ from the traditional cache concept [ASAT95, C197, Vah97], in the
sense that both quasi-views and quasi-caching maintain an approzimate coherency
between views (quasi-copies) and data sources (primary copies) rather than complete
coherency as cache techniques do.

Finally, quasi-views (quasi-caching) are in somewhat related to materialized views
[BLT86, Cer91, CWOI1, GL95, GMS93, LMSS95, GM95], in the sense that when a
base relation is modified, views may have to be refreshed. However, materialized view
techniques are more related to cache techniques, because views have to be refreshed
when base relations do. Therefore, quasi-views are an extension of those techniques,

allowing a controlled materialization (refreshing) policy through the refresh conditions.

4.3 Contributions

The problem addressed in this chapter is how a quasi-view may be evaluated efficiently
in a distributed environment. In general, this problem is complex because it requires
the efficient coordination of both the view materialization strategy (i.e., the optimal
view materialization problem) and the refresh condition strategy. The contributions
are as follows.

First, we show that the quasi-view decomposition problem is not a separable, that is,

115

it has to be considered as both decomposing materialized views and refresh conditions
together. This formulation is completely new, since previous work addressed individual
problems (constraint and view decompositions separately).

Second, a general solution strategy is proposed, which introduces the notion of a
conditional problem, i.e., an optimization problem where some of its variables are fixed.
Then, the quasi-view decomposition problem is reduced to the optimal view materi-
alization and the constraint decomposition problems; a general solution framework,
based on iterative conditional problem is proposed.

Third, for the special case of refresh conditions represented as disjunctive arith-
metic linear constraints, we prove that the conditional refresh condition decomposition
problem is equivalent to finding a (compact) safe decomposition, and therefore, all the

results from Chapter 2 can be applied.

4.4 Problem Characterization

In this section we introduce and extend the quasi-views concept [Sel94] and we provide
a formal quasi-view specification based on an extension of the relational model. Finally,
we provide an optimization framework to decide the best quasi-view design for a given

quasi-view definition, i.e., a mechanism to materialize and maintain a quasi-view.

116

4.4.1 Quasi-views

Intuitively a quasi-view is a view (see Chapter 4) with explicit re-evaluation conditions,
called refresh conditions. A refresh condition is a concept that provides a controlled
mechanism to maintain a view, i.e., it specifies when or under what conditions a view
should be refreshed. In this subsection we extend [Sel94] characterizing a quasi-view
over a distributed environment. We use the relational model presented in previous

chapters.

Definition 33. A quasi-database QDB is a pair (DB, RB), where DB is a regular
database called passive database, and RB is a data set used on refresh conditions of

views, called refresh database.

Note that a quasi-database could have an empty refresh database RB, i.e., there
is no variables defined for refresh conditions, and in this case the quasi-database is a
regular one. Furthermore, in a quasi-database DB and RB are not necessarily disjoint,

i.e., they can share some data.

Definition 34. A quasi-view QV over a quasi-database QDB = (DB, RB) is a pair

(V,Q), where V is a view over DB, and Q is a refresh condition over RB. A quasi-view

117

is expressed of the form:

DEFINE QUASI — VIEW QV AS
SELECT B

FROM 7., T,...,Tu

WHERE C

REFRESH WHEN

where T;’s can be either a relational name, a view name, or a quasi-view name, €} is

the refresh condition, and B and C have the same interpretation as in Definition 19.

The semantics of a quasi-view QV over QDB is defined as a particular case of event-
condition-action (ECA) rule [Cer91, CW91], and it is as follows: an event is any change
in RB, the condition is {2, and the action is re-materializing the view V. In other words,
every time when RB is changed, check), and if it is satisfied, then re-materialize the

view.

Definition 35. Let QV = (V,Q) be a quasi-view, we say that the refreshing frequency
of QV is the number of changes in RB that satisfy (), i.e., those changes that refresh

QV. We will denote this frequency by r,, .

Note that the refreshing frequency rov will depend of how restrictive is . Thus, if
1 is very restrictive, i.e., few values in RB satisfy 2, then rgy will be small, and vice

versa. Therefore, defining () is the mechanism to define the refresh policy.

118

Now, we concentrate on the multi-database concept, and how the quasi-view con-

cept can be re-defined over a multi-database.

Definition 36. A multi-database system MDBS is (Gg, LS1,...,LS,), where Gg is
a quasi-database called global source, and each LS;, called local sources, is either a

reqular or a quasi-database.

The global schema (G's is the union of all local schemes. Hence, the global DB is a
collection of all relations in all sources, and the global RB is the collection of all RB;’s.
We assume here for simplicity that the relation names used at different sources are

unique. If this is not the case, an appropriate renaming can be done.

Definition 37. A quasi-view over a multi database system MDBS is simply a quasi-

view over the global schema MDBS.

Note that this is a natural extension of the quasi-view concept. However, checking if
Q is satisfied or not for local RB changes becomes a complex problem, as we have shown
in Chapter 2. In the next section we discuss how refresh conditions and quasi-view

materialization problem are interrelated.

4.4.2 Motivation Example

Consider a quasi-view QV = (V,Q) defined over two relations R; and Ry, where
Ry = (ABC), Ry = (DEFG), and A, B,C, D, F, and G are attribute names. View V'

is defined by Il c.c(0p<anB=p(f1, K2)), and the refresh conditions are two disjunctive

119

atomic linear arithmetic constraints define as follows: F' > fV A+ F > g. We assume
that A and F' are non-negative variables ranging over the Real numbers. Further-
more, we assume that both A and F' values are distributed according to a probability
distribution h4() and hg(), respectively.

We consider that view V' can be evaluated using the following two alternatives: a)
direct evaluation, i.e., using original view V., or b) using Vi = g ca(op=p(R1, V2))
and V3 = Ilpc(op<a(R2)). Figure 4.1 shows the expression-DAG to represent these

alternatives.

O

Vo =1 B‘C,G(U(Dsd\ B= D)(Rlv R,)) Vi=n B'C'G(G(B: D)(Rl'vz))

V,=MNgge (O(Dsd)(Rz))

Ri= (ABC) R: = (DEFG)

Figure 4.1: View V Expression-DAG

We will consider the following cost model: using direct evaluation the cost is (r4 +

rr)Ch, and using (V4,V2) the cost is (ra + rp)Cs + rpCs, where Cy, Cy, and C5 are

120

constants (Cy < Cy), and r4 and rp are the refresh frequencies from site 1 and 2
respectively.

We consider that the refresh conditions can be decomposed in two alternative de-
compositions: s; = ((a11 > AV A > a12),(fi1 > FVF > fi2)) with refresh frequencies
(rai,rri) and sy = ((a21 > AV A > a),(far > FVF > f5)) with refresh frequencies

(raz, rr2). The following figure shows these decompositions.

A A
F F
F>f F>f
\ 22
A+F =g A+F 2g
f12
1l 411 al? A f21 A

la2l | a2

/

Decomposition s Decomposition s

Figure 4.2: Refresh Conditions Alternatives

From Figure 4.2 we can conclude that locally r4; < rpy and ras > rpo, and ryy <
r42 and rpy > rEe, because the probability to violate local constraints in variable A of
s1 1s greater than sy, and vice versa for variable F'. Therefore, the following scenarios

are possible:

121

1. If sy is selected as decomposition of). Then, site 2, variable F', will refresh more
often than if s, is selected (rp; > rpq). Thus, we will select V' rather than (17, V2)
if

Cy — O

TFIZTAIXC—I—C—C
2 3— 0

Otherwise, we select (Vi, V3).

2. If s, is selected as decomposition of €). Then, site 1, variable F', will refresh less
often than if s; is selected (rp; > rpq). Thus, we will select V' rather than (17, V2)
if

Cy — O

TFQZTAQXC—I—C—C
2 3— 0

Otherwise, we select (Vi, V3).

In particular, since r4y < rpy, we will probably select V' if s; has been selected,
and as rq2 > 72, we probably select (Vi,V:) if sy has been selected. This clear
dependency among views and refresh conditions problems indicate that the quasi-
view design problem should consider both problems simultaneously (views and refresh

conditions). In the next section we formulate formally the quasi-view problem.

122

4.4.3 Quasi-view Design Problem

In this section we define an optimization problem to decompose and evaluate a quasi-

view defined over a multi-database.

Definition 38. Let QV = (V,Q) be a quasi-view defined over a multi-database, V be
the set of all feasible equivalent view evaluation plans for V', and S be the set of all
decompositions for Q. We say that fov : (V,S) — R is a real function that provides

the selection criterion.

The quasi-view design problem corresponds to selecting a set of views, i.e., an eval-
uation plan of V., and a © decomposition, such that the criterion (fgv) is optimized.
We will assume that the optimization is a minimization, and then the following opti-

mization problem formulates the quasi-view design problem.

min {fov (v,))
st.veyvV (4.1)

SES

Note that optimization problem (4.1) requires decomposing views and refresh con-
ditions simultaneously. Even though the search space (V,S) is completely orthogonal
(i.e., independent), the selection criterion fov (objective function) depends of both

variables, i.e., v and s, simultaneously.

123

This inseparability characteristic adds an additional complexity to the quasi-view

design problem. Since, the view selection problem is a NP-hard one, the quasi-view is

also a NP-hard problem.

4.5 Solution Strategy

Solving (4.1) entirely as an optimization problem may require a huge amount of com-
putational effort, or simply may be impossible. In this section, we take advantage of
structure of (4.1), i.e., its space search is composed of two independent search spaces

(V and S) and the objective function shares variables.

4.5.1 Framework

We propose an iterative framework based on Bender’s decomposition [Geo72]. This
framework is basically one of “learning from one’s mistakes”. It assigns a decom-
position of € and solves the view problem, then this solution is used to find a new
Q0 decomposition. This process is repeated until both solutions converge. Before we

describe this framework, we need to define the following concept.

Definition 39 (Conditional Problem). Let P be an optimization problem in terms

of variables x and y, and P, be an optimization problem in terms of variable x, described

124

as follows

P min f(z,y) P, : min f(x,y)
Y T
st.x €S, and st. v €S,
y €S,

we say that P, is the conditional optimization problem of P with respect to x, if y € S,.

Note that conditional problems have similarities with optimization problems for-
mulated in previous chapters. In particular, the view conditional problem for a given
refresh condition P,, corresponds to the view materialization problem (Chapter 4).
However, the refresh condition conditional optimization problem for a given view de-
composition P, is not the same optimization problem formulated in Chapter 2, because
our refresh conditions have different semantics. This particular problem is addressed in
Section 4.5.2, and we prove that for a special case of refresh conditions, the optimization
problem can be reduced to the constraint decomposition problem (2.1).

Conditional problems can reduce the complexity of (4.1). However, solving each
conditional problem independently may produce suboptimal solutions, and therefore,
the solution quality may be compromised. To overcome to this problem we use an

iterative solving strategy based on Bender’s decomposition [Geo72].

125

Quasi View Framework
Step 0 Let k = 0, assign an initial solution of P, to v*.
Step 1 Solve P, with v*, and assign its solution to s*.
+1

Step 2 Solve P, with s*, and assign its solution to v**!.

Step 3 If v* = v**! stop. Otherwise, k = k + 1 and go to 1.

The complexity of this framework is based on the complexity of each conditional
optimization problem, i.e., refresh decomposition and view selection problems, multi-
plied by the number of iterations necessary to reach the solution. In the next section
we address to special case for the refresh condition decomposition problem, and we
prove that it is a special case of the constraint decomposition problem presented in

Chapter 2.

4.5.2 Refresh Condition Decomposition

In this subsection we discuss the refresh condition decomposition problem, i.e., our
conditional optimization problem F;. In the general case, we provide a formulation in
terms of cover decompositions (see Chapter 2), and for the special case of disjunctive
linear arithmetic constraints we are able to provide an effective algorithm.

Since a refresh condition is a constraint that can be evaluated as true or false
in light of quasi-database changes, we would like to derive a test, such that we can

locally decide if a quasi-database change will not refresh our quasi-view. The following

126

theorem provides this test in terms of the cover decomposition concept.

Theorem 9. Let QV = (V,Q) be a quasi-view defined over a quasi-database QDB =
(DB, RB), with RB a partitioned data set, and (G, ... ,Gy) be a cover decomposition

of Q. Then, QV will not be refreshed if all Gy, ... Gy are not satisfied.

Proof. The proof follows directly from the cover definition (see Chapter 2), because if
(Gy,...,Gh) is a cover decomposition of) then Q = Gy V...V Gy However, this
is equivalent to =Gy A ... A =Gy |E -, which is our local test. This completes the

proof. O

Therefore, our conditional optimization problem for refresh condition decomposi-
tion P; corresponds to finding a cover decomposition of €0, such that a criterion is
optimized. However, in the general case, like safe decompositions, cover decomposi-
tions are hard to calculate effectively, but for a special case (a set of disjunctive atomic
linear arithmetic constraints), and under certain (local) uniformity assumptions, cover
decompositions can be effectively calculated. The following proposition formalizes this

concept.

Proposition 15. Let QV = (V,Q) be a quasi-view defined over a quasi-database
QDB = (DB, RB), with RB a partitioned data set, and) be a set of disjunctive linear
arithmetic constraints. Then, a cover decomposition (Gy,... ,Gpr) of Q is equivalent

to a safe decomposition (=Gy, ... ,~Ghr) of =€),

Proof. The proof follows directly from Proposition 1 in Chapter 2. O

127

Therefore, in this case, all the algorithmic machinery developed in Chapter 2 can be
used to find a cover decomposition of). Note that we first find a safe decomposition
(C1y...,Chr) of =0 (this is a set of conjunctive linear arithmetic constraints), and

then we get the cover decomposition as (=C1,... ,=Ch).

Chapter 5

CONCLUSIONS

This dissertation has addressed to three database management problems: distrib-
uted integrity constraint management, optimal materialized views, and optimal quasi-
view decomposition. Those are interrelated, but their solution can be addressed in-
dividually. In the following, we present the contributions and conclusions, and some
important future research areas.

Chapter 2 addresses the problem of deriving the best possible decompositions, both
during design and at update time, more specifically, the contributions are as follows.
First, we introduce a generic optimization framework for achieving best decompositions:
the search space is the set of all feasible safe decompositions (Cy, ... ,Cyr) of the global
constraint) over M distributed sites, i.e., C1A.. . ACy; imply Q. The objective function
can describe a variety of optimization criteria, such as the probability of an update
satisfying local constraints, the expected number of updates before an update violates
local constraints, or the average of the expected overall cost of manipulations during an

update. Feasible decompositions are characterized by decompositions having the first

128

129

and possibly other properties from the following list): (1) safety, (2) local consistency,
(3) partial constraint preservation, and (4) resource partition. One or more properties
1 through4 are required for various decomposition scenarios, depending on what is
known at the time of a decomposition.

Second, for the case of general linear arithmetic constraints, we reduce the opti-
mization -based framework to a standard, finitely-specified problem of mathematical
programming. To do that, we introduced the notion of compact split (safe) decomposi-
tions, and prove that for any monotonic objective function the optimal safe decompo-
sition can always be found in the subspace of compact split decompositions. Then, we
prove existence and actually developing a finite parametric (i.e., in terms of coefficients)
characterization of the properties 1 through4 of feasible decompositions together with
optimization criteria.

Third, we develop an algorithmic framework to solve the resulting optimization
problems. The constructed optimization problems, formulated in terms of parametric
descriptions, have linear constraints and a non-linear objective function, based on a
parametric representation of the volume function for the constraint space. For the
design-time case, where each local constraint is in a single variable, the constructed
objective function is concave; this property enables us to use a global search algorithm.
We adopt the Frank-Wolfe algorithm to solve it. For other cases, the objective func-
tion is not concave and we use local search techniques in the algorithmic framework,

that incorporate the Frank-Wolfe algorithm for search in local neighborhoods. To run

130

experiments and to show the feasibility of the approach, we have implemented an op-
timization engine for the schema-based full decompositions with local constraints in
single variables. The experiments suggest that the approach is feasible and scalable,
but more experimental study will be necessary to fine-tune the algorithms for specific
cases.

Chapter 2 also proposes a general framework to manage global linear arithmetic
constraints in distributed databases, extending [BGM92]. This framework can be
applied to different network and system architectures (centralized, hierarchical, and
fully distributed). The framework considers two types of sites: coordinators and non-
coordinators. A coordinator is a site that coordinates the constraint decomposition
to facilitate a local update at a non-coordinator site k that violates the current local
constraint. This is done by finding a set of sites #, containing site k, and trying to cre-
ate a new (partial) compact split that would satisfy the new database state (i.e., new
update). We propose a primitive RESOURCE-TRANSFER (a distributed transac-
tion involving two sites) to deal with inter-site communication. We proved that under
standard transaction management properties, any protocol that uses exclusively this
primitive guarantees local and global consistency (i.e., current Cy, ..., Cys, and Q), it
is resilient to failures, and produces an optimal decomposition for sites in 6. Finally,
we exemplify an instance of our distributed framework for the single coordinator case.

Chapter 3 introduces a generic optimization framework to decide optimally materi-

alized views. First, we extend the expression-DAG (Direct Acyclic Graph) [RSS96] as

131

a mechanism to represent equivalent view evaluation plans. We characterize paths and
the transitive closure of an expression-DAG (i.e., an expression-DAG with all possible
equivalent view evaluation plans). We show that, under certain conditions, expression-
DAG and AND-OR graphs are equivalent. However, while the size of a standard AND-
OR graph is defined in terms of its nodes and arcs, the size of an expression-DAG 1is
defined in terms of the cardinality of its operational nodes. Second, the optimiza-
tion framework is formulated in terms of the expression-DAG structure. Thus, under
certain objective function conditions, the problem of optimal selection of materialized
views can be formulated as the constrained shortest path in an expression-DAG,; i.e.,
a complete expression-path or AND-path. For this case, a linear-time algorithm (in
terms of the expression-DAG size) is presented. Note that this special case can handle
important applications such as inventory control and logistics support. We have per-
formed some experiments, and the results suggest that our approach is feasible. Third,
for the general optimization problem and if the expression-DAG has all possible view
evaluation plans, then the linear-time algorithm can be applied to obtain a solution.
Note that this algorithm does not evaluate all possible equivalent evaluation plans,
because all those which are subsumed by others are eliminated earlier. Finally, if the
expression-DAG with all possible view evaluation plans is not available, a local search
algorithm is presented. However, further research is necessary in this area.

In Chapter 4, we formalize and extend considerably the notion of quasi-view (a view

with explicit re-materialization conditions, called refresh conditions) to multi-databases

132

and create an optimization framework to design them. First, we show that the optimal
quasi-view decomposition problem is not a separable problem, i.e., it has to be consid-
ered as both view decomposition and refresh condition evaluation together. Second,
a general solution strategy is proposed, which introduces the notion of a conditional
problem (i.e., optimization problems where some of its variables are fixed), where the
optimization problem is reduced to the optimal view materialization and the constraint
decomposition problems. Third, for the special case of disjunctive refresh conditions,
we prove that the conditional refresh conditions decomposition problem is equivalent
to finding a compact split (safe) decomposition, and therefore, all results from Chapter
2 can be applied.

Finally, this dissertation has presented an integrated framework for the analysis,
design, and optimal decomposition of global database constraints, views, and quasi-
views. This approach is a contribution to the state-of-the-art in constraint, view, and
quasi-view management, in that the general decomposition problems can be formulated

as optimization problems.

Future Work

This dissertation provides a framework to decompose optimally constraints, views and
quasi-views, and it has been shown that this approach is formal, rigorous and feasible.
However, there are many possible extensions to this work.

In the area of constraint decomposition, the most natural is to extend the results

133

to more generic numeric constraints, and to provide effective optimization algorithms.
This is an important topic, since arithmetic linear constraints might be very restrictive
for some domains. A second direction is to explore different objective functions, in
which other criteria may be used. A third direction is to consider replicated data, i.e.,
relaxing the assumption that the variables in the constraint must belong to a partition;
this is of special interest in practical problems.

The framework to manage constraints has based its results for local transactions
(especially local updates). However, when a distributed transaction is processed the
inter-site coordination problem must be solved. Another area is to implement effec-
tively other architecture configurations, especially distributed ones. These instantia-
tions could be used to solve problems related to multiple resource requirements.

In terms of materialized views (Chapter 3), the local search algorithm needs to be
explicitly implemented and studied in terms of its complexity. A very important issue
is related to the transitive closure of an expression-DAG, and whether it can be derived
efficiently from an expression-DAG, the constrained shortest path problem represents
a good alternative. Finally, research is needed to identify the classes of problems to
which our approach can be applied efficiently, for example conjunctive views.

Finally, our quasi-view work can be extended directly to provide a more sophisticate
semantics, 1.e., extending the action part of the ECA paradigm from simply refreshing
a quasi-view, to executing a set of rules. Also, this work can be extended to different

types of refresh conditions, for instance, conjunctive ones.

Bibliography

134

135

Bibliography

[ABGM90] R. Alonso, D. Barbara, and H. Garcia-Molina. Data caching issues in

[ASA+95]

[Bea96]

[BGM92]

[BLCea94]

[BLTS6]

[BPT97]

[BSTY]

[Cer91]

[CHT]

an information retrieval. ACM Transactions on Databases, 15(3):359-384,
1990.

M. Abrams, C. Standbridge, G. Abdulla, S. Williams, and E. Fox. Caching
proxies: Limitations and potentials. In WWW-4, Boston Conference, 1995.

B. Bueler and et al. Exact volume computation for polytopes: A practical
study. Technical report, IFOR, Switzerland, 1996.

D. Barbara and H. Garcia-Molina. The Demarcation Protocol: A Tech-
nique for Maintaining Arithmetic Constraints in Distributed Database Sys-
tems. In Proc. of the 3rd International Conference on Extending Data Base
Technology, EDBT’92, pages 373-388. Springer-Verlag, 1992.

T. Berners-Lee, R. Cailliau, and et al. The world-wide web. Communica-

tions of the ACM, 37(8):76-82, 1994.

J. Blakeley, P. Larson, and F. Tompa. FEfficiently updating materialized
views. In Proceeding of the ACM SIGMOD Conference on Management of
Data. ACM Press, 1986.

E. Baralis, S. Paraboschi, and E. Teniente. Materialized view selection in a
multidimensional database. In Proceeding of the International Conference
on Very Large Data Bases, 1997.

M. Bazara and C. Shethy. Nonlinear Programming, Theory and Algorithms.
John Wiley and Sons, 1979.

S. Ceri. Deriving production rules for incremental view maintenance. In
Very Large Data Bases, 1991.

J. Cohen and T. Hickey. Two algorithms for determining volumes of convex

polyhedra. Journal of the ACM, 26(3):401-414, 1979.

[C197]

[CW91]

[C796]

[GeoT2]

[GHRU97]

[GLYS]

[Glo89]

[GMO91]

[GMY5]

[GMOS]

[GMS93]

[GSE*97]

136

Pei Cao and Sandyn Irani. Cost-aware www proxy caching algorithms.

1997.

S. Ceri and J. Widom. Production rules form incremental view mainte-
nance. In Proceeding of the International Conference on Very Large Data-
bases, Barcelona, Spain, 1991.

E. Chong and S. Zak. An Introduction to Optimization. John Wiley and
Sons, 1996.

A. Geoffrion. Generalized benders decomposition. Journal of Optimization

Theory and Applications, 10:237-260, 1972.

G. Gupta, V. Harinarayan, A. Rajaraman, and J. Ullman. Index selection
in olap. In Proceeding of the International Conference on Data Engineering,

1997.

T. Griffin and L. Libkin. Incremental maintenance of views with duplicates.
In Proceeding of the ACM SIGMOD Conference on Management of Data.
ACM Press, 1995.

F. Glover. Tabu search, part I. ORSA Journal of Computing, 1(3):190-206,
1989.

H. Garcia-Molina. Global consistency constraints considered harmful. In
Proc. First International Workshop on Interoperability in Multidatabase
Systems (IMS 91), pages 248-250, 1991.

H. Gupta and I. Mumick. Maintenance of materialized views: Problems,
techniques, and applications. [FEFE Data Engineering Bulletin, Special
Issue on Materialized Views and Data Warehousing, 18(2):3-18, 1995.

H. Gupta and I. Mumick. Selection of views to materialize under a main-
tenence cost constraint. Technical report, Computer Science Department,
Stanford University, 1998.

A. Gupta, I. Mumick, and V. Subrahmanian. Maintaining views incremen-
tally. In Proceeding of the ACM SIGMOD Conference on Management of
Data. ACM Press, 1993.

S. Grufman, F. Samson, S. Embury, P. Gray, and T. Risch. Distributing
semantic constraints between heterogeneous databases. In 13th Interna-
tional Conference on Data Engineering (ICDE’97), (IEEFE), Birmingham,
England, 1997.

[Gup97]

[GW93]

[HILL]

[HRUY6]

[Huy97]

[Jeadl]

[JKO97)

[Kam84]

[KGea96]

[LH96]

[LM92]

137

H. Gupta. Selection of views to materialize in a data warehouse. In Pro-
ceeding of the International Conference on Data Base Theory, 1997.

A. Gupta and J. Widom. Local verification of global integrity constraints in
distributed databases. In Proc. ACM-SIGMOD International Conference
on Management of Data, pages 49-58, Washington, D.C.; 1993. ACM.

T. Huynh, L. Joskowicz, C. Lassez, and J-L. Lassez. Practical tools for
reasoning about linear constraints. Technical report, IBM T.J. Watson
Research Center.

V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing data cubes
efficiently. In Proceeding of the ACM SIGMOD Conference on Management
of Data. ACM Press, 1996.

N. Huyn. Maintaining global integrity constraints in distributed databases.
Constraint: An Internation Journal, 2(3-4):377-399, 1997.

D. Johnson and et al. Optimization by simulating annealing: An experi-
mental evaluation; PART II, graph coloring and number partitioning. Op-
eration Research, 39(3):378-406, 1991.

S. Jajodia and L. Kerschberg. Advanced Transaction Models and Architec-
tures. Norwall, MA, Kluwer Academic Publishers, first edition, 1997.

N. Kambo. Mathematical Programming Techniques. Affiliated East-West
Press PVT Ltd., 1984.

L. Kerschberg, H. Gomaa, and et al. Data and information architectures
for large-scale distributed data intensive information systems. In Proc.
of the Eighth IFEEE International Conference on Scientific and Statisti-
cal Database Management, Stockholm, Sweden. IEEE Computer Society
Press., 1996.

J-L. Lassez. From LP to LP: Programming with constraints. Technical
report, IBM T.J. Watson Research Center.

J.B. Lasserre. An analytical expression and algorithm for the volume of
a convex polyhedron in Rn. Journal of Optimization Theory and Applica-
tions, 39(3):363-377, 1983.

M. Laurent and P. Van Hentenryck. Localizer: A modeling language for
local search. 1996.

Jean-Louis Lassez and Michael Maher. On Fourier’s algorithm for linear
arithmetic constraints. Journal of Automated Reasoning, 9:373-379, 1992.

[LMSS95]

[Maz93]

[MYOS]

[NKOD95]

[Qia89]

[QS87]

[RSS96]

[Sel94]

[SK95]

[SK97]

[SS90]

138

J. Lu, G. Moerkotte, J. Schue, and V. Subrahmanian. Efficient mainte-
nance of materialized mediated views. In Proceeding of the ACM SIGMOD
Conference on Management of Data. ACM Press, 1995.

S. Mazumdar. Optimizing distributed integrity constraints. In Proc. Third
International Symposium on Database Systems for Advanced Applications

(DASFAA-93), pages 327-334, Taejon, Korea, 1993.

S. Mazumdar and Z. Yuan. Localizing global constraints: A geometric
approach. In In Proceedings of the 9th International Conference on Com-
puting and Information. ICCI'98, 1998.

S. Nural, P. Koksal, F. Ozcan, and A. Dogac. Query decomposition and
processing in multidatabase systems. Technical report, 1995.

X. Qian. Distributed desing of integrity constraints. In L. Kerschberg,
editor, Proc. Second International Conference on FExpert System Database
Systems, pages 417-425, Redwood City, California, 1989. Benjamin Cum-
mings.

X. Qian and D. Smith. Constraint reformulation for efficient validation. In
Proc. Thirteenth International Conference on Very Larqe Databases, pages

622-632, 1987

K. Ross, D. Srivastava, and S. Sudarshan. Materialized view maintenance
and integrity constraint checking: Trading space for time. In SIGMOD,
Montreal, Canada. ACM Press., 1996.

L. Seligman. A Mediator for Approzimate Consistency: Supporting 'Good
Enough’ Materialized Views. PhD thesis, School of Information Technology
and Engineering, George Mason University, Fairfax, VA., 1994.

L. Seligman and L. Kerschberg. Federated knowledge and database sys-
tems: A new architecture for integrating of Al and database systems. Ad-
vances in Databases and Artificial Intelligence, 1, 1995.

L. Seligman and L. Kerschberg. A mediator for approximate consistency:
Supporting 'good enough’ materialized views. Journal of Intelligent Infor-

mation Systems, 8(3):203-225, 1997.

N. Soparkar and A. Silberschatz. Data-value partitioning and virtual mes-
sages. In ACM, editor, Proc. 9th ACM SIGACT-SIGMOD-SIGART Sim-

posium on Principles of Database Systems, Nashville, Tennessee, 1990.

[SV6]

[TS97]

[U1188]

[Vah97]
[YKL97]

139

E. Simon and P. Valduriez. Design and implementation of an extendible

integrity subsystem. In Proc. Nineteenth Hawaii International Conference
on System Sciences, pages 622-632, 1986.

D. Theodoratos and T. Sellis. Data warehose configuration. In Proceeding
of the International Conference on Very Large Data Bases, 1997.

J. Ullman. Principles of Database and Knowledge-base Systems: The New
Technologies. Computer Science Press, 1988.

Amin Vahdat. Transparent result caching. 1997.

J. Yang, K. Karlapalem, and Q. Li. Algorithms for materialized view
design in data warehousing environment. In Proceeding of the International
Conference on Very Large Data Bases, 1997.

140

Curriculum Vitae

Samuel E. Varas was born on June 25, 1964, in San Vicente de T.T., Chile. He gradu-
ated in Industrial Engineering from the University of Chile in 1989, and he received his
Master of Science in Industrial Engineering (minor in Economy) from the University

of Chile in 1989. He is a full time academic at University of Chile since 1989.

Permanent Address: Repiblica 701
Santiago
Chile

Flectronic Address: svaras@dii.uchile.cl

http://www.dii.uchile.cl/~svaras/

This dissertation was typeset with BTEX by the author. ETEX is a document

preparation system developed by Leslie Lamport as a special version of Donald Knuth’s

TEX Program.

