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Optimizing Materialized Views
n Two relations Dept(DName, Budget)

and Emp(EName, DName, Salary).
n View (V) defined as follows*

n The salary of an employee is raised,
we need to re-compute SUM(salary)

n To improve view maintenance,
materialize intermediate views

V

Dept Emp

V1 V2

V3

V4

V5

SELECT         Dept.DName
FROM            Emp, Dept
WHERE         Dept.DName = Emp.DName
GROUP BY   Dept.DName, Budget
HAVING        SUM(Salary) > Budget 

SELECT         Dname, SUM(Salary)
FROM            Emp
GROUP BY   DName 

(*) Ross 1996



Optimizing Quasi-views
n T1,..,Tm be quasi -views or

relations names
n A1,…,An be attributes names

DEFINE QUASI-VIEW  QV AS
SELECT  A1,…,An

FROM     T1,….,Tm

WHERE  C
REFRESH WHEN Ω(V,Ω)

R1 R2 R3

(V1,Ω 11) (V2,Ω 21)

(V3,Ω 31)(V4,Ω 41)

(V5,Ω 51)

….. (V1,Ω 1n)



Distributed Constraint Management

Global Constraint   X1 + X2 + X3 +X4 ≤ 10,
                               X1, X2, X3, X4  ≥ 0

    site 1
      X1

    site 2
       X2 

    site 3
       X3 

    site 4
       X4



Overview of Contributions
n Distributed Constraint Management and Optimal

Constraint Decompositions.

n Optimizing Materialized Views

n Quasi-views and their Optimization.

• Protocol with guaranteed Consistency, Availability, and Optimality.
• Decomposition Optimization Framework.
• Parametric Mathematical Programming Characterization.
• Algorithms and implementation.

• Generic optimization framework.
• Complete characterization to represent view evaluation plans.
• Recursive Optimization Problem (Shortest Path Problem).
• Algorithms.

• Quasi-views optimization framework.
• Solution based on concurrent view and constraint optimization problems.
• Special refresh condition case corresponds to constraint decomposition.



Safe Decompositions for two Sites
Ω  is    X1 +  X2 ≤ 10
           X1, X2 ≥ 0 

Site 1
   X1

Site 2
  X2
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Decomposition (1):
( {0.0 ≤ X1 ≤ 4.0}, {0.0 ≤ X2 ≤ 6.0} )

X X1 2 10+ ≤

Decomposition (2):
( {1.0 ≤ X1 ≤ 3.0}, {2.0 ≤ X2 ≤ 4.0} )

Decomposition (3):
( {0.0 ≤ X1 ≤ 2.0}, {0.0 ≤ X2 ≤ 8.0} )



Feasible Decompositions

n Safety of (C1,…,CM), i.e.,

n Local Consistency, i.e., for a given instance yi,
it must satisfy its local constraint Ci, 1 ≤ i ≤ Μ.

n Partial-constraint preservation, i.e., some
constraints are fixed.

n Resource bound partition, i.e., the global
resource bound is partitioned in subset of sites,
and each subset cannot increase such bound.

Each scenario is defined by one or more of
the following properties.

Ω=∧∧    .... 1 MCC



Optimizing Decompositions

M a x    f ( s )

  s . t .    s   S∈

n Ω  is a global constraint
n S the set of FEASIBLE decompositions C1,…,CM of Ω
n f: S → R an optimization function

n probability of not violating local constraints
n the expected number of updates before an update violates local

constraints
n the average of the expected overall cost of manipulations during

an update



Problems in Reduction

n No FINITE Parametric Characterization of S

n Concurrent Decompositions: No Full
Knowledge of Constraints and Instances

n How to analytically express optimization
criteria in terms of parameters?

n One variable per site => interval characterization
n Two or more variables per site => ?

n Partial decomposition (small number of sites)
n How do we guarantee safety, local consistency, and

optimality?



Solutions - Finite Characterization

n Split:                   is a tuple of constraints
such that

n Split finitely characterized.
n Optimal safe

decomposition can
ALWAYS be found
among SPLITS.
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Safe Decomposition Parametric Characterization

n Ω  be A x ≤  b, Ai be the columns of A associated to yi, ri real
vectors, and f a monotonic function

n Sites K+1,…,M define subset θ.

Theorem. Solving the original optimization problem is equivalent
to solving the following parametric problem
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Partial-constraint preservation

Local Consistency

Theorem. Let S be the set of all safe decompositions of Ω , and
SS the set of all Splits of Ω.  Then

max ( ) . . max ( ) . .    =     f s s t s S f s s t s SS∈ ∈



Solutions - Resource Distribution

n Compact Splits                                are
represented by resource distributions

n Compact representation
n Autonomous decompositions
n Optimality (by a subsets

and all sites)

 ∆i δi 

lri ri uri

active slack passive slack

lower bound

resource

upper bound
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Resource Distribution

n                  be a global constraint,     a monotonic
function and      be its θ-localizer,                    be a
partial compact split, and       be a resource partition,

n If                       is a
solution of

n Then,
is a solution of
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Solutions - Objective Function Characterization

n Assumption: Database instances are
uniformly distributed over the space defined
by Ω, i.e., each database instance on Ω has the same
probability of occurring.

n Consider f as maximizing the probability of
not violating local constraints.

n Then, f is proportional to the volume of a split
(parametric characterization), f is a
monotonic function, and f can be expressed
in terms of a subset θ of sites (θ−localizer).



Algorithm and Experiments

n The optimization problem has linear constraints, and
a non-linear objective function (based on volume
representation).

n For design-time and the individual variable partition
case we use the Frank-Wolfe algorithm (concave
objective function).

n For the general variable partition case, we use a local
search algorithm, where for each local search we use
the Frank-Wolfe algorithm.



Distributed Protocol Assumptions

Global Constraint   XGlobal Constraint   X11 + X + X22 + X + X3 3 +X+X44  ≤ 10,
                               X1, X2, X3, X4  ≥ 0

    site 1    site 1
      XX11

    site 2    site 2
       XX22  

    site 3    site 3
       XX33  

    site 4    site 4
       XX44

n M distributed sites, each one has a local
transaction manager.

n Global constraint           , each site maintains
a triple

n If an update violates a local constraint, then a
coordinator is selected. It tries to create a new
resource distribution in a (small) subset of
sites, checking for

n To move resources, the primitive TRANSFER-
RESOURCE runs under a distributed
transaction manager

n Failure Model: both sites and communication
links may fail.
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CSOL - Properties

n Consistency
n Decomposition Safety
n Last-resort Update Refusal
n Optimality

Theorem: Any protocol that uses exclusively the RESOURCE-
TRANSFER primitive for exchanging resources, is guaranteed
to satisfy CSOL-properties.



Related Work on Distributed Constraint Management

n Local Verification of Global Constraints
• Garcia-Molina, Gupta, Qian, Simon, Grufman, Huyn.
• Barbará, Soparkar, Mazumdar

n Local Verification on Numerical Constraints
• D. Barbará and H. Garcia-Molina, 1992.
• N. Soparkar and A. Silberschatz, 1990.

• S. Mazumdar and Z. Yuan, 1998.

n Our work can significantly extend previous work because:
• General linear constraints.
• Optimization-based framework.
• Different decomposition scenarios.

• Compact local constraint representation.



Related Work on Quasi-View Optimization

n Quasi-copies, R. Alonso, 1990.
n Quasi-views, L. Seligman, 1994, 1997.



Conclusions- Constraint Management

n We have presented a generic and powerful domain-
independent framework for finding optimal
decompositions for a range of design and update-
time scenarios.

n A comprehensive solution for the case of general
linear constraints.
• Reducing the problem to mathematical

programming.
• Developing algorithms for it.
• Providing a distributed protocol to manage local

updates and concurrent distributed constraint
decompositions.



Conclusions

n Optimizing Materialized Views

n Optimizing Quasi-views

n Characterization of View Decomposition using Expression-
DAGs.

n The optimization problem can be represented as finding the
Shortest Path in an expression-DAG.

n Linear time Algorithm for a Expression-DAG, when a complete
path is materialized.

n We extend the quasi-view concept to multiple DBs,
n Optimization Framework in terms of view and constraint

decomposition.
n Framework is useful for both distributed and non distributed

environments.



Future Work

n Constraint Decomposition (new types of
constraints, replicated variables, different types of
objective functions)

n Distributed Protocol (architecture instantiations,
level of service)

n Materialized views (special classes of problems).
n Quasi views (different types of refresh conditions,

and different models of level of service).


