Chapter 4

OPTIMAL DECOMPOSITION IN QUASI-VIEWS

4.1 Introduction

Many applications must support the monitoring of distributed data for the occurrence
of critical events or complex conditions among data items. Furthermore, much of that
information is not necessarily required to be up-to-date, allowing some (controlled)
degree of incoherence between users and information sources.

This chapter introduces and extends quasi-views as mechanism to materialize infor-
mation in distributed environments with controlled incoherence. Quasi-views are views
with explicit materialization conditions called refresh conditions. They were originally
introduced in [Sel94, SK97] based on the quasi-copies concept [ABGM90]. We pro-
pose an optimization problem to materialize quasi-views optimally, based on results
regarding constraints (Chapter 2) and view materialization (Chapter 3). We show
that, in general, a quasi-view decomposition can not be considered as two independent

problems (i.e., constraint decomposition and view materialization), and we provide

112



113

an iterative framework to solve this problem. Finally, we consider a special case of
refresh conditions (disjunctive set of atomic linear arithmetic constraints), where the
algorithms proposed in Chapter 2 to find a safe decomposition can be used.

This chapter is organized as follows. Section 4.2 presents the related work, Sec-
tion 4.3 presents the contributions. Section 4.4 presents the problem characterization,
where quasi-views are introduced, and the general materialization problem is formu-
lated as an optimization one. We show, through an example, that the problem is not
separable. Section 4.5 presents the solution strategy based on an iterative procedure,

and we provide a solution algorithm for a special refresh condition case.

4.2 Related Work

Quasi-views were originally introduced in [Sel94, SK97] as an extension and generaliza-
tion of quasi-caching [ABGM90]. This two concepts have been used as mechanisms to
reduce the overhead cost incurred when derived data or multiple copies are maintained.
quasi-views are regular views with formal materialization conditions, called refresh con-
ditions. Quasi-caches contain quasi-copies, which are client-cached copies of database
objects which are allowed to deviate in controlled ways from the primary copies. In
particular, [Sel94, SK97] extend quasi-caching by: resolving active and passive data
sources heterogeneity, new types of coherency (refresh) conditions, supporting trans-

formation of cached data by view definition. However, both works have been limited



114

to refresh conditions over only one data source.

Since quasi-views and quasi-caching cache information from data sources (primary
copies), they differ from the traditional cache concept [ASAT95, C197, Vah97], in the
sense that both quasi-views and quasi-caching maintain an approzimate coherency
between views (quasi-copies) and data sources (primary copies) rather than complete
coherency as cache techniques do.

Finally, quasi-views (quasi-caching) are in somewhat related to materialized views
[BLT86, Cer91, CWOI1, GL95, GMS93, LMSS95, GM95], in the sense that when a
base relation is modified, views may have to be refreshed. However, materialized view
techniques are more related to cache techniques, because views have to be refreshed
when base relations do. Therefore, quasi-views are an extension of those techniques,

allowing a controlled materialization (refreshing) policy through the refresh conditions.

4.3 Contributions

The problem addressed in this chapter is how a quasi-view may be evaluated efficiently
in a distributed environment. In general, this problem is complex because it requires
the efficient coordination of both the view materialization strategy (i.e., the optimal
view materialization problem) and the refresh condition strategy. The contributions
are as follows.

First, we show that the quasi-view decomposition problem is not a separable, that is,



115

it has to be considered as both decomposing materialized views and refresh conditions
together. This formulation is completely new, since previous work addressed individual
problems (constraint and view decompositions separately).

Second, a general solution strategy is proposed, which introduces the notion of a
conditional problem, i.e., an optimization problem where some of its variables are fixed.
Then, the quasi-view decomposition problem is reduced to the optimal view materi-
alization and the constraint decomposition problems; a general solution framework,
based on iterative conditional problem is proposed.

Third, for the special case of refresh conditions represented as disjunctive arith-
metic linear constraints, we prove that the conditional refresh condition decomposition
problem is equivalent to finding a (compact) safe decomposition, and therefore, all the

results from Chapter 2 can be applied.

4.4 Problem Characterization

In this section we introduce and extend the quasi-views concept [Sel94] and we provide
a formal quasi-view specification based on an extension of the relational model. Finally,
we provide an optimization framework to decide the best quasi-view design for a given

quasi-view definition, i.e., a mechanism to materialize and maintain a quasi-view.



116

4.4.1 Quasi-views

Intuitively a quasi-view is a view (see Chapter 4) with explicit re-evaluation conditions,
called refresh conditions. A refresh condition is a concept that provides a controlled
mechanism to maintain a view, i.e., it specifies when or under what conditions a view
should be refreshed. In this subsection we extend [Sel94] characterizing a quasi-view
over a distributed environment. We use the relational model presented in previous

chapters.

Definition 33. A quasi-database QDB is a pair (DB, RB), where DB is a regular
database called passive database, and RB is a data set used on refresh conditions of

views, called refresh database.

Note that a quasi-database could have an empty refresh database RB, i.e., there
is no variables defined for refresh conditions, and in this case the quasi-database is a
regular one. Furthermore, in a quasi-database DB and RB are not necessarily disjoint,

i.e., they can share some data.

Definition 34. A quasi-view QV over a quasi-database QDB = (DB, RB) is a pair

(V,Q), where V is a view over DB, and Q is a refresh condition over RB. A quasi-view



117

is expressed of the form:

DEFINE QUASI — VIEW QV AS
SELECT B

FROM 7., T,...,Tu

WHERE C

REFRESH WHEN

where T;’s can be either a relational name, a view name, or a quasi-view name, €} is

the refresh condition, and B and C have the same interpretation as in Definition 19.

The semantics of a quasi-view QV over QDB is defined as a particular case of event-
condition-action (ECA) rule [Cer91, CW91], and it is as follows: an event is any change
in RB, the condition is {2, and the action is re-materializing the view V. In other words,
every time when RB is changed, check ), and if it is satisfied, then re-materialize the

view.

Definition 35. Let QV = (V,Q) be a quasi-view, we say that the refreshing frequency
of QV is the number of changes in RB that satisfy (), i.e., those changes that refresh

QV. We will denote this frequency by r,, .

Note that the refreshing frequency rov will depend of how restrictive is . Thus, if
1 is very restrictive, i.e., few values in RB satisfy 2, then rgy will be small, and vice

versa. Therefore, defining () is the mechanism to define the refresh policy.



118

Now, we concentrate on the multi-database concept, and how the quasi-view con-

cept can be re-defined over a multi-database.

Definition 36. A multi-database system MDBS is (Gg, LS1,...,LS,), where Gg is
a quasi-database called global source, and each LS;, called local sources, is either a

reqular or a quasi-database.

The global schema (G's is the union of all local schemes. Hence, the global DB is a
collection of all relations in all sources, and the global RB is the collection of all RB;’s.
We assume here for simplicity that the relation names used at different sources are

unique. If this is not the case, an appropriate renaming can be done.

Definition 37. A quasi-view over a multi database system MDBS is simply a quasi-

view over the global schema MDBS.

Note that this is a natural extension of the quasi-view concept. However, checking if
Q is satisfied or not for local RB changes becomes a complex problem, as we have shown
in Chapter 2. In the next section we discuss how refresh conditions and quasi-view

materialization problem are interrelated.

4.4.2 Motivation Example

Consider a quasi-view QV = (V,Q) defined over two relations R; and Ry, where
Ry = (ABC), Ry = (DEFG), and A, B,C, D, F, and G are attribute names. View V'

is defined by Il c.c(0p<anB=p(f1, K2)), and the refresh conditions are two disjunctive



119

atomic linear arithmetic constraints define as follows: F' > fV A+ F > g. We assume
that A and F' are non-negative variables ranging over the Real numbers. Further-
more, we assume that both A and F' values are distributed according to a probability
distribution h4() and hg(), respectively.

We consider that view V' can be evaluated using the following two alternatives: a)
direct evaluation, i.e., using original view V., or b) using Vi = g ca(op=p(R1, V2))
and V3 = Ilpc(op<a(R2)). Figure 4.1 shows the expression-DAG to represent these

alternatives.

O

Vo =1 B‘C,G(U(Dsd\ B= D)(Rlv R,)) Vi=n B'C'G(G(B: D)(Rl'vz))

V,=MNgge (O(Dsd)(Rz))

Ri= (ABC) R: = (DEFG)

Figure 4.1: View V Expression-DAG

We will consider the following cost model: using direct evaluation the cost is (r4 +

rr)Ch, and using (V4,V2) the cost is (ra + rp)Cs + rpCs, where Cy, Cy, and C5 are



120

constants (Cy < Cy), and r4 and rp are the refresh frequencies from site 1 and 2
respectively.

We consider that the refresh conditions can be decomposed in two alternative de-
compositions: s; = ((a11 > AV A > a12),(fi1 > FVF > fi2)) with refresh frequencies
(rai,rri) and sy = ((a21 > AV A > a),(far > FVF > f5)) with refresh frequencies

(raz, rr2). The following figure shows these decompositions.

A A
F F
F>f F>f
\ 22
A+F =g A+F 2g
f12
1l 411 al? A f21 A

la2l | a2

/

Decomposition s Decomposition s

Figure 4.2: Refresh Conditions Alternatives

From Figure 4.2 we can conclude that locally r4; < rpy and ras > rpo, and ryy <
r42 and rpy > rEe, because the probability to violate local constraints in variable A of
s1 1s greater than sy, and vice versa for variable F'. Therefore, the following scenarios

are possible:



121

1. If sy is selected as decomposition of ). Then, site 2, variable F', will refresh more
often than if s, is selected (rp; > rpq). Thus, we will select V' rather than (17, V2)
if

Cy — O

TFIZTAIXC—I—C—C
2 3— 0

Otherwise, we select (Vi, V3).

2. If s, is selected as decomposition of €). Then, site 1, variable F', will refresh less
often than if s; is selected (rp; > rpq). Thus, we will select V' rather than (17, V2)
if

Cy — O

TFQZTAQXC—I—C—C
2 3— 0

Otherwise, we select (Vi, V3).

In particular, since r4y < rpy, we will probably select V' if s; has been selected,
and as rq2 > 72, we probably select (Vi,V:) if sy has been selected. This clear
dependency among views and refresh conditions problems indicate that the quasi-
view design problem should consider both problems simultaneously (views and refresh

conditions). In the next section we formulate formally the quasi-view problem.



122

4.4.3 Quasi-view Design Problem

In this section we define an optimization problem to decompose and evaluate a quasi-

view defined over a multi-database.

Definition 38. Let QV = (V,Q) be a quasi-view defined over a multi-database, V be
the set of all feasible equivalent view evaluation plans for V', and S be the set of all
decompositions for Q. We say that fov : (V,S) — R is a real function that provides

the selection criterion.

The quasi-view design problem corresponds to selecting a set of views, i.e., an eval-
uation plan of V., and a © decomposition, such that the criterion (fgv) is optimized.
We will assume that the optimization is a minimization, and then the following opti-

mization problem formulates the quasi-view design problem.

min {fov (v, ))
st.veyvV (4.1)

SES

Note that optimization problem (4.1) requires decomposing views and refresh con-
ditions simultaneously. Even though the search space (V,S) is completely orthogonal
(i.e., independent), the selection criterion fov (objective function) depends of both

variables, i.e., v and s, simultaneously.



123

This inseparability characteristic adds an additional complexity to the quasi-view

design problem. Since, the view selection problem is a NP-hard one, the quasi-view is

also a NP-hard problem.

4.5 Solution Strategy

Solving (4.1) entirely as an optimization problem may require a huge amount of com-
putational effort, or simply may be impossible. In this section, we take advantage of
structure of (4.1), i.e., its space search is composed of two independent search spaces

(V and S) and the objective function shares variables.

4.5.1 Framework

We propose an iterative framework based on Bender’s decomposition [Geo72]. This
framework is basically one of “learning from one’s mistakes”. It assigns a decom-
position of € and solves the view problem, then this solution is used to find a new
Q0 decomposition. This process is repeated until both solutions converge. Before we

describe this framework, we need to define the following concept.

Definition 39 (Conditional Problem). Let P be an optimization problem in terms

of variables x and y, and P, be an optimization problem in terms of variable x, described



124

as follows

P min f(z,y) P, : min f(x,y)
Y T
st.x €S, and st. v €S,
y €S,

we say that P, is the conditional optimization problem of P with respect to x, if y € S,.

Note that conditional problems have similarities with optimization problems for-
mulated in previous chapters. In particular, the view conditional problem for a given
refresh condition P,, corresponds to the view materialization problem (Chapter 4).
However, the refresh condition conditional optimization problem for a given view de-
composition P, is not the same optimization problem formulated in Chapter 2, because
our refresh conditions have different semantics. This particular problem is addressed in
Section 4.5.2, and we prove that for a special case of refresh conditions, the optimization
problem can be reduced to the constraint decomposition problem (2.1).

Conditional problems can reduce the complexity of (4.1). However, solving each
conditional problem independently may produce suboptimal solutions, and therefore,
the solution quality may be compromised. To overcome to this problem we use an

iterative solving strategy based on Bender’s decomposition [Geo72].



125

Quasi View Framework
Step 0 Let k = 0, assign an initial solution of P, to v*.
Step 1 Solve P, with v*, and assign its solution to s*.
+1

Step 2 Solve P, with s*, and assign its solution to v**!.

Step 3 If v* = v**! stop. Otherwise, k = k + 1 and go to 1.

The complexity of this framework is based on the complexity of each conditional
optimization problem, i.e., refresh decomposition and view selection problems, multi-
plied by the number of iterations necessary to reach the solution. In the next section
we address to special case for the refresh condition decomposition problem, and we
prove that it is a special case of the constraint decomposition problem presented in

Chapter 2.

4.5.2 Refresh Condition Decomposition

In this subsection we discuss the refresh condition decomposition problem, i.e., our
conditional optimization problem F;. In the general case, we provide a formulation in
terms of cover decompositions (see Chapter 2), and for the special case of disjunctive
linear arithmetic constraints we are able to provide an effective algorithm.

Since a refresh condition is a constraint that can be evaluated as true or false
in light of quasi-database changes, we would like to derive a test, such that we can

locally decide if a quasi-database change will not refresh our quasi-view. The following



126

theorem provides this test in terms of the cover decomposition concept.

Theorem 9. Let QV = (V,Q) be a quasi-view defined over a quasi-database QDB =
(DB, RB), with RB a partitioned data set, and (G, ... ,Gy) be a cover decomposition

of Q. Then, QV will not be refreshed if all Gy, ... Gy are not satisfied.

Proof. The proof follows directly from the cover definition (see Chapter 2), because if
(Gy,...,Gh) is a cover decomposition of ) then Q = Gy V...V Gy However, this
is equivalent to =Gy A ... A =Gy |E -, which is our local test. This completes the

proof. O

Therefore, our conditional optimization problem for refresh condition decomposi-
tion P; corresponds to finding a cover decomposition of €0, such that a criterion is
optimized. However, in the general case, like safe decompositions, cover decomposi-
tions are hard to calculate effectively, but for a special case (a set of disjunctive atomic
linear arithmetic constraints), and under certain (local) uniformity assumptions, cover
decompositions can be effectively calculated. The following proposition formalizes this

concept.

Proposition 15. Let QV = (V,Q) be a quasi-view defined over a quasi-database
QDB = (DB, RB), with RB a partitioned data set, and ) be a set of disjunctive linear
arithmetic constraints. Then, a cover decomposition (Gy,... ,Gpr) of Q is equivalent

to a safe decomposition (=Gy, ... ,~Ghr) of =€),

Proof. The proof follows directly from Proposition 1 in Chapter 2. O



127

Therefore, in this case, all the algorithmic machinery developed in Chapter 2 can be
used to find a cover decomposition of ). Note that we first find a safe decomposition
(C1y...,Chr) of =0 (this is a set of conjunctive linear arithmetic constraints), and

then we get the cover decomposition as (=C1,... ,=Ch).



