Chapter 3

OPTIMIZING MATERIALIZED VIEWS

3.1 Introduction

The evaluation of materialized views (queries) may require considerable computational
effort because some materialized views (1) can share some intermediate results (views)
with other materialized views, or (2) are complex enough to justify some intermediate
pre-computed views. To reduce the effort to maintain views updated, some intermedi-
ate views can be materialized. However, how many and which intermediate views will
be materialized will depend on many factors, such as view maintenance costs, response
time, available storage, etc.

The materialized view (query) optimization problem has been studied in different
contexts, such as: query optimization, view maintenance, and data warehouse design
and configuration. However, none of these works have provided an explicit problem
formulation in terms of materialized view interrelations, neglecting the possibility to

take advantage from it.

83

84

In this chapter we consider the optimizing materialized views problem, i.e., selecting
views to materialize in order to optimize a criterion, subject to a set of materialization
constraints (maintenance time, available storage, etc.). We propose an optimization
framework to decide the optimum way to materialize views, i.e., which additional views
need to be materialized. We use an expression-DAG to express equivalent view evalu-
ation plans. Then, we formulate an optimization problem to make a decision.

This chapter is organized as follows: Section 3.2 presents related work. Section 3.3
presents the contributions. Section 3.4 presents the problem characterization, where
the view optimization is formulated based on shortest (cheapest) path in an expression-
DAG. In Section 3.5 we present a linear-time algorithm when all possible view evalua-
tion alternatives are available, and a local search strategy for the general case. Finally,
Section 3.6 presents some experiments and the implementation of the general shortest

path algorithm.

3.2 Related Work

The view (query) selection problem has been studied in different contexts, such as:
query optimizations [NKOD95], view maintenance [CW91, GL95, GMS93, GM95,
RSS96], and data warehouse design [Gup97, HRU96, GHRU97, YKL97, BPT97] and
configuration [T'S97]. However, in terms of the solution, current research provides near-

optimal heuristics (without guarantee of the solutions’ quality), very expensive optimal

85

exhaustive search algorithms, or they just address to special cases.

In particular, works [BPT97, RSS96, T'S97, YKL97] provide frameworks, heuristics,
and an exhaustive search algorithm in order to optimize the sum of response and
maintenance time without any constraints. Ross [RSS96] has proposed view selection
based on a minimization of maintenance cost. However, [RSS96] presents an exhaustive
search algorithm, which is exponential (double exponential) in the number of possible
views to be materialized. Work [YKL97] formulates the problem as one of integer
programming in terms of the view evaluation plan. However, the number of evaluation
plans is exponential in terms of the number of possible views to be materialized.

The results reported in [Gup97, HRU96, GHRU97, GM98] provide a formula-
tion with storage constraint and time evaluation constraint. Three of them provide
near-optimal heuristics (greedy algorithm). In particular, [Gup97, GHRU97] extend
[HRU96], and present a formulation as an optimization problem. Works [Gup97,
GHRU97] provide polynomial-time heuristics (in terms of the number of possible views
to be materialized) for two special cases (AND and OR graphs), and near-optimal
exponential-time greedy algorithm for AND-OR graphs. However, the solution qual-
ity is not guaranteed. Finally, [GM98] extends previous works, which minimizes the
response and maintenance time of selected views, subject to a maximum maintenance

time. However, the heuristics and algorithms still present the same previous behavior.

86

3.3 Contributions

This chapter addresses the optimal view materialization problem, where for a given
set of materialized views (queries), one must decide which additional (intermediate)
views should be materialized in order to reduce the overall maintenance effort, under
some materialization constraints. A standard mechanism to represent intermediate
views corresponds to AND-OR graphs [Gup97, HRU96, GHRU97, GM98]. However,
there is no work in which the structural properties of such graphs are exploited. In
general, this problem is NP-hard [RSS96, Gup97], because it corresponds to selecting a
subset of elements from the set of all intermediate views, where the number of subsets
is exponential in the number of additional views.

This research exploits the structure of the representation mechanism for interme-
diates views. More specifically, the contributions are as follows. First, it extends
the expression-DAG (Direct Acyclic Graphs) [RSS96] as mechanism to represent com-
pactly intermediate views (queries) using equivalence and operation nodes. It shows
that equivalence nodes correspond to nodes in an AND-OR graph, and operation nodes
correspond to AND arcs. It characterizes an expression-DAG in terms of its size and
expression-paths ! (i.e., complete view evaluation plans). However, while the size of
a standard AND-OR graph is defined in terms of its nodes and arcs, the size of an
expression-DAG is defined in terms of the cardinality of its operational nodes.

Second, an optimization framework is formulated in terms of the expression-DAG

INote that, under certain conditions, AND-paths are equivalent to expression-paths.

87

structure. Thus, under certain objective function conditions, the problem of optimal
selection of materialized views can be formulated as the constrained shortest path in
an expression-DAG, i.e., a complete expression-path or AND-path. For this case, a
linear-time algorithm (in terms of the expression-DAG size) is presented. Note that
this special case can be found in important applications such as the case when the
evaluation time is the critical variable, and therefore, while more intermediate views
are materialized, the complete evaluation should be more efficient. A set of experiments
was run, and the results suggest that our approach is feasible.

Third, for the general optimization problem and if the expression-DAG has all
possible view evaluation plans, then the linear-time algorithm can be applied to obtain
a solution. Note that this algorithm does not evaluate all possible equivalent evaluation
plans, because all those which are subsumed by others are eliminated earlier. Finally,
if the expression-DAG with all possible view evaluation plans is not available, a local

search algorithm is presented. However, further research is necessary in this area.

3.4 View Materialization Characterization

In this section we characterize the optimization problem to support an efficient and cost
effective view materialization and maintenance. First, we present the basic definitions
based on the relational model. Then, we formulate the optimization problem, charac-

terizing the search space and the objective function. Finally, we present an equivalent

88

formulation and we discuss their effective solutions.

3.4.1 Definitions

This subsection describes basic definitions and concepts based on the relational data-

base model [UlI88]. In particular, view and view evaluation plan are described.

Definition 18. A database DB is a collection of n-relations (r1, ... ,r,) over relational
schemes (Ry,... , R,). The set of relational schemes is called a database schema. Fach
relational schema is formed by a finite set of attributes names, A; = {An,..., A},

and each attribute has a set of its possible values called domain.

We consider the set A as the set of all attributes in DB, i.e., A = A; U... U A,.

The n-relations (ry,...,r,) is called an extensional database or simply database.

Definition 19. A view V over a database DB is an expression of the form:

DEFINE VIEW V AS
SELECT B
FROM 7., Ts,...,Tu

WHERE C

where B is a subset of the set of attributes A, T; could be either a relational name (R;’s)
or other view name (V;’s) on DB, called base relations, and C is a constraint called

selection condition. We will denote view V as V(T,... ,Tn).

89

Note that a view V is a derived relation, i.e., it is not included in the database
schema. Therefore, in order to keep view V consistent with the data sources, it has to

be maintained or re-evaluated from any relevant change produced at Ti,... ,Thy.

Definition 20. LetV, and V; be two views. We say that Vy is subsumed by Vy, denoted
by Vo E V1, if Vo C Vi, where C refers to view containment. Vy is equivalent to Vs,

Vl = VQ, ZfV1 |: VQ and VQ |: Vl.

Intuitively, view V; subsumes view V, if for any legal database instance V; can be
derived from Vi, i.e., Vs is contained by V;. In general, a view V can be decomposed

into a set of equivalent views {Vo, V1,... , V., }, such that ¥V = Vo(Vy,...,V,). Then,

we can use either {Vo, Vq,...,V,} or V to answer V. Note that V can be decomposed
recursively, i.e., each one of its V;, 1 <1 < n, can be decomposed in (Vo, Vi1, .., Vin,),
and so on.

We will say that a view decomposition is a view evaluation plan if a view V is
decomposed recursively until all its base relations are reached. Note that two or more

different view evaluation plans may share one or more intermediate views.

3.4.2 Optimal View Materialization Problem

In this subsection we formulate and characterize the problem of selecting a set of ma-
terialized views as an optimization one. Informally, given a set of materialized views
(queries) V, defined over a set of base-relations or views R, we have to decide what ad-

ditional views V* should be materialized in order to optimize a criterion (maintenance

90

costs, response time, etc.), satisfying a set of materialization constraints (maintenance
time, available storage, budget, etc.). Selecting one subset of additional views (evalu-

ation plan) or another requires that the following issues be considered.

1. Incremental Evaluation Tradeoff: Selecting an evaluation plan with few views
may spoil the performance, because materializing views will require more effort.
On the other hand, evaluation plans with many views will require, when some
data sources change (due to update, insert or delete) occurrences, more materi-

alized view recalculations.

2. Design Constraints: There are some constraints that restrict the solutions, and
some evaluation plans may not satisfy them. For instance, available storage,
processing and view maintenance time, a limited budget, and any other resource

constraints.

3. Selection Criteria: When several alternatives satisfy our design constraints, we
need to define some criteria to select one among all possible. For example, time,
cost, and storage measures of view materialization and maintenance could be the

selected criterion.

The following definition is a general characterization of the optimization criterion

and search space for the optimization problem formulation.

Definition 21. Let V be a view. We say that the set V is the set of all equivalent

91

evaluation plans (subset of materialized views) for V, the function f:V — R is a real

function that characterizes our selection criterion, and ¥(v),v € V is a constraint.

Therefore, the view selection problem corresponds to select a set of views (V*), i.e.,
an evaluation plan for V, among all feasible alternatives (i.e., those v € V that satisfy
U(v)), such that a criterion f is optimized. We will assume that the optimization
is a minimization, and then the following optimization problem formulates the view

selection problem.

min { f(v)}
v (3.1)

st.U(v),veV
Note that [RSS96] uses a similar formulation to (3.1) but without constraints. Be-
fore we discuss how problem (3.1) can be solved effectively, we will concentrate on
the more precisely characterization of set V, function f, and constraint W(v). The

following subsections address these characterizations.

3.4.3 Expression DAG

In this subsection we introduce expression-DAGs as a mechanism to represent equiv-
alent view (query) evaluation plans, i.e., a characterization of the set V. Expression-

DAGs were originally introduced in [RSS96], we adopt the original definition of [RSS96],

and extend the expression-DAG concept with some useful properties.

92

Definition 22. Anexpression DAG Epag is a directed acyclic graph (acyclic digraph),
represented by the pair Epac = (E,0O), where E = {eq,... ,e,} is the set of equivalence

nodes, and O = {Oy,... ,0,,} the set of operation nodes, with the following properties:
1. An equivalence node has edges to one or more operation nodes.

2. An operation node contains an operator, has edges to one or more equivalence

nodes, and its parent is an equivalence node.

We denote by | O; | the cardinality of the operation node O, i.e., the total number
of incoming and out-coming edges on O;. In addition to that, we denote by C(O;)
and C(e;) the children set (equivalence nodes and operation node respectively) of the
operation node O; and equivalence node ¢;, respectively. Finally, we denote by P(0;)
the parent (equivalence node) of O;, and L(Fpac) the set of all leaf nodes, i.e., those

nodes without children.

Definition 23. Let Fpae = (E,0) be an expression DAG, with equivalence node
E = {e,...,e,} and operation nodes O = {Oy,...,0,,}. We denote the size of

Epac by size(Epac) and the average cardinality by Epaa, defined as follow:

, _ 1
SZZG(EDAg) == Z | OZ | and EDAG == E Z | OZ |

0;€0 0,€0

Expression-DAGs are used to compactly represent the space of equivalent view

(query) evaluation plansin [RSS96], where equivalence nodes represent views, operation

93

nodes represent relational equivalence between parent and children, and the leaves of
an expression -DAG correspond to the base relations. Furthermore, expression-DAGs
are equivalent to AND-OR graphs (used in [Gup97, RSS96]) if the equivalence nodes
are equivalent to the nodes in the AND-OR graph, and for each AND arc there exists

an operation node and vice versa.

Definition 24. A path Py of length q, in an expression-DAG Epac = (F,0), is a se-
quence of equivalence and operations nodes, Py = (e1 = 5,04,,€2,04,, ... , 05, €441 =

t), where:

s € P(Oy),t € C(O;,), ande; € C(Os,_)N P(Oy;), g =2,... ,q

2] Z]—l

nodes s and t are the origin and destination respectively, and we say that t is connected

to s.

Note that a path is simply a sequence of equivalence and operation nodes. However,
we would like to extend that concept to one that provides the notion of view evaluation

plans. This extension is as follows.

Definition 25. Let Epag be an expression-DAG, we say that an expression-Path,
denoted by m = (F,,0;), is a rooted expression-DAG, where for each e; € F, there

exists only one O; € O selected.

It is easy to see that an expression-Path, from the root of Fp s to the base relations,

94

represents a view evaluation plan, because each view is materialized using only one
operation node.
An expression-DAG can be subdivided in sub expression-DAGs, which are a portion

of an expression-DAG. We formalize this concept as follows.

Definition 26 (Sub-expression-DAG). Let Epac = (F,O) be an expression-DAG,
we say that Espac = (E',0') is a sub-expression-DAG of Epag rooted in node e; if

Espac is an expression-DAG with the following sets:

E'={ej|e;€ EATP.., #0} and O ={0;|0; € OA3IP.0, # 0}

The following example shows an expression-DAG to represent view V. Note that
we use a different notation than [RSS96], where the equivalence nodes are represented

as a circle (views), and the operation nodes as an inverted black triangle.

Example 2. Consider the relation schema (AB), (CDE), and (FG'), where A, B, C,

D, F, GG are the attribute names, and a view V defined over this schema as follows:

V = 7m4,p,6(0(a=c)aB<ovB<DING<ENF=1)aB=b)(AB X CDE X FG))

Figure 3.1 presents an expression-DAG Epac = (E,O) for view V, where the set
of equivalence nodes is £ = {V, V1, V5, V3, Vi, AB,CDE, FG}, and the set of operation

nodes O = {01, 03,03,04,05}, each one associated with a specific operation.

95

Moo (0 ac(Vy))

Figure 3.1: An Expression-DAG of V

An expression-DAG represents equivalent view evaluation plans for a given view.
However, there are some of those evaluation plans that are implicitly represented. Thus,
from Figure 3.1, view Vj can directly evaluated from base relations AB, CDE, and FG,
and in the same sense, view V, from AB and CDE. We formalize those additional and

implicit ways to evaluate view V' as follows.

Definition 27. Let Epac = (E,0) be an expression-DAG for a view V. Then, we say
that B, = (E,0%) is the transitive closure of Epac if Ef . is an acyclic digraph

and set OF is defined as follows:

OF = {OF |Ve; # e; € B, 3Puse, £ 0 A
(3.2)

O} € C(e)) A C(0}) = Uo,er,, CO)}

96

The transitive closure EEAG of an Epas has all possible equivalent evaluation
plans for a given view V), i.e., it characterizes the search space (V) for the view selec-
tion problem. However, the main drawback in this concept is that size(E}) grows

exponentially in the number of equivalence nodes (views) in Epag.

3.4.4 Objective Function

In this subsection we characterize the optimization criterion by means of a function f.
To characterize f we adopt the same optimization function proposed in [Gup97]. We
consider that a set of views (queries) V need to be answered and that a set of views V*
have been selected to be additionally materialized. Then, function f has the following

items.

Requirement Cost: this cost is associated to answer views in V, i.e., each time that
a view V; € V is required, the system will compute it from the additional materi-
alized views V* (if there are some) or from the base relations. Therefore, the cost
incurred by such operations represent the requirement cost. We use C4(V;, V*)

to denote this cost.

Maintenance Cost: this cost is associated with the marginal maintenance of views
in V*. Since views in V* are all materialized views, when a base relation changes
(update, delete, or insert), views in V* have to be maintained. The cost of such

maintenance is captured in the maintenance cost. We use Cp(V7, V*) to denote

97

the maintenance cost of materialized view V.

Finally, we consider that for each view V; € V there exists a frequency 3; represent-
ing the number of times that view V; is required per unit time. In the same way, for
each materialized view V¥ € V* there exists a frequency A; representing the number of
times that view V7 is maintained per unit time. Therefore, the objective function f is

expressed as follows.

F=BCaV V) + Y XCu(V5, V) (3.3)

% JEV*

Function f models the trade off between the number of materialized views and the
total cost. Thus, when more additional views are materialized, the cost to answer views
in V is reduced, but the cost to maintain materialized views increases. The tradeoff
associated between these costs forms the crux of the materialization view problem. The

next subsection presents two additional, but equivalent, formulations for our problem.

3.4.5 Optimization Problem

In this section we re-formulate problem (3.1) in two equivalent formulations. One
of them is based on selecting a subset of views V* among all candidate views to be
materialized, the other, is based on recursive programming, taking advantage from

the Epaq representation. Before we present such formulations, we define the resource

98

constraint concept as follows.

Definition 28 (Resource Constraint). Let V* be the set of selected materialized
views, and T be the marimum resource available. Then, a resource constraint is a

constraint saying that the resource used by views in V* must be lower or equal to T.

In general, this type of constraint has been associated with storage (hard disk
capacity), processing time, or budget [Gup97, HRU96, GM98]. Independently of which
meaning the constraint has, we formulate the optimization problem in terms of that

type of constraint.

Definition 29. Let V be a set of views, and V* be the set of materialized views. We

say that the function S : V* — R represents the resource used by views in V*.

Proposition 12. Let V = {Vy,... ,V,.} be a set of views (queries) to be answered,
Epac = (E,0) be their expression-DAG, V* be a subset of (views) E, and S(V*) be
the resource utilization by V*. Then, the following optimization problem

min D BCAVLV)+ D N Cu(VE V)

% JEV*

st. S(YV)<L<T (3.4)

V'CFE
is equivalent to (3.1), if ¥(v),v € V is equivalent to S(V*) <T and V* C E.

Proof. The proof follows directly from the fact that an evaluation plan of V (i.e., an

element v € V) is a subset V* of E. Then, if U(v),v € Vis equivalent to S(V*) < T and

99

V* C FE, both search spaces are equivalent, and the objective function are equivalent

too. This completes the proof. O

Optimization problem (3.4) is the same problem formulated in [Gup97, GHRU97,
GM98], and it is clearly NP-hard problem, because (3.4) selects a subset of elements
(views) V* from the set E on Epaq, and the number of subsets is exponential in the
number of elements in E. However, [Gup97, GHRU97, GM98] provide near-optimal
greedy heuristics for some special Fpai cases. These heuristics perform the following
three steps: (1) select a subset V* C FE, (2) check if it is feasible (i.e., if it satisfies
the constraints), and (3) evaluate the objective function and compare with previous
solutions.

In general, these heuristics have been applied to some particular cases (AND and
OR graphs), and they do not guarantee quality in their solutions. We extend for-

mulation (3.4) taking advantage of the Epaq structure, i.e., the interrelation between

equivalence and operation nodes, as follows.

Proposition 13. Let Epac = (F,0) be an expression-DAG, and Ef ., be its transi-
tive closure. Then, for every solution V* € F of (3.4), there exists an expression-Path

™= (E;,O.) in Ef ., such that V* = E,.

Proof. Let V* be a solution of (3.4), i.e., it is an evaluation plan. Then, as E; . has

all possible of those plans, there exists an expression-Path with those selected views,

le,m=(V*,0;). O

100

Therefore, selecting an optimal subset of views V* using (3.4) is equivalent to find

the cheapest expression-Paths in E} . that satisfies the resource constraint.

Definition 30. Let V = {Vi,...,V} be a set of views (queries) to be answered,
and Epac = (E,0) be the expression-DAG of V, and E}, ., = (E,07%) its transitive
closure. Then, we say that Vy is a dummy view of V, if its expression-DAG Ep o =
(E',0") and transitive closure EE/AG = (B, 0% are defined by B' = EU{Vy}, O' =

O U {Oo}, O+/ == O+ U {Oo}, C(Vo) == {Oo}, and C(Oo) == {Vl, Ce ,Vm}

A dummy view is a concept to create an expression-DAG with a unique root (Vy).

All the following results are based on this concept.

Definition 31. Let Epag = (E,0) be an expression-DAG rooted at ey, {eq,... e}
the set of all children of O;, where O; € Cley), and E¥ . = (Ex, O) be a sub-
expression-DAG rooted at er. Then, we say that f : E — R is an additive function if
there exists f; : By — R, 1 <1 < nj, a nondecreasing function F; : R™ — R, for all

J € Clen), and v : O; = R, such that f(eo) = v(O;) + Fi(filer), ..., falen,)).

Additive functions allow us to write functions recursively in terms of an expression-

DAG structure. In particular, we are interested in rewriting optimization problem of

(3.4).

Proposition 14. Let Vy be a view with closure expression-DAG Ef ,. = (E,0%)
rooted at ey, L(Ef,) be the set of base relations of Ef 4, {e1,... ,en,} the set of

all children of O;, where O; € C(eo), Efphe = (EF,0F) be a sub-expression-DAG

101

of Ef o rooted at ey, and 7 = (E.,0,) be a expression-Path on E} ., such thal

0; € O. Then,

1. Let T be the available resource, S(E;) be a resource utilization function, and
g(eo) =T — S(E;) be the available resource at eq. Then, if S(F;) is an additive
resource utilization function, with r(O;) the resource utilization of operation node

O;, constraint S(FE,) < T is equivalent to

N

S(eo) = min { S(es) b = 1(0,) > 0

S(ek) =T, ex € L(ES46)

2. Let n(eo,m) = BoCa(Vo, Ex)+ EeieEﬁ NiCwn(eiy Er) the cost of expression-Path .
Then, if function C4(Vo, Ex) and Cy(e;, Er) are additive with C4(Vo, €0) = u(0O;)

and CM(eo, Er) = ¢(Oj)}

Proof. (1) If operational node O; € m, and as S(FE;) is an additive function, the

resource utilization at ey is the maximum resource utilization at {ey,... , e, } plus the

102

resource utilization at node O; (i.e., r(0;)). Therefore,

S(E.) < T & r(0;) + max {S(E-)} < T

& 0 < —r(0)) + min{T — S(E,)}

N

& mkin{S(ek)} —r(0;) >0
This completes this part of the proof.
(2) From the n(eg, m) definition, and since C'4 and Cys are additive functions,

n(eo,m) = BoCa(Vo, Ex) + Y NiCu(ei, Er)

e; €L

= ﬁOCA(Vov 60) +)‘OCM(eov EW) + Z {n(ekv Eﬂk) + ﬁOCA(Vm EWk)}
keC(0;)

= M(Oj) + @/J(O]) + Z 77(% Wk)

keC(0;)
This completes the proof. O
Theorem 7. Let V = {Vy,...,V,} be a set of views (queries) to be answered, Vy be

its dummy view with expression-DAG transitive closure Ef,, = (E,07), and n(e;)

be the minimum cost at equivalence node e;, i.e., n(e;) = ming {n(e;,7x)}. Then, the

103

following optimization problem is equivalent to (3.4)

n(ei) = min § 1(0;) +(0;) + D nler) | 05 € Cles)

keC(0;)
s.t. e € BN — L(ES) (3.5)
S(er) > 0

n(e,) =0, Ca(Vo,en) =0, S(e,) =T, u € L(ES)
If functions Cyy and Cy are additive.

Proof. First, problem (3.1) can be expressed as follows, min, {n(Vo,7) | S(F,) < T},
i.e., finding the cheapest evaluation plan for Vg, subject to the resource constraint.
From Proposition 13 and using the fact that C'4 and Cy; are additive functions, then

we can re-write (3.1) as follows:

min 4 #(0;) + ¥ (0;) + > minn(Vo, i) | Ser) = 0} [S(Vo) > 0

ex€0(0;)

Now, renaming min; {M(Oj) +(0;) + Ekec(oj) niex) | O; € C(ei)} by n(e;), we get

3.5). This complete the proof. O
(3.5) p p

Problem (3.5) finds the cheapest evaluation plan for Vy, when there exist resource

constraints. In the next section we present two algorithms to solve (3.5).

104

3.5 Solution and Algorithms

In this section we propose two algorithms to solve (3.5). We first consider that the
solution is a complete expression-Path in an expression-DAG, and present a linear time
algorithm (in terms of the expression-DAG size). Then, we consider the case where
the solution is a subset of views, and it is not necessarily a complete expression-Path.
We present a local search algorithm to solve (3.5), where we use a special case of the

unconstrained shortest path algorithm as global search.

3.5.1 Shortest Path Algorithm in an Expression-DAG

The algorithm is a general one in the sense that it finds the shortest path in an
expression-DAG. However, to guarantee that the algorithm solves (3.5), we need some
additional conditions. The algorithm uses as input a general expression-DAG FEpag,
the available resource T, and a vector y with value y; = 1 if view ¢; can be materialized
and y; = 0 otherwise. The output is a set {P; | ¢+ € F'} indicating, for each equivalence
node (view) ¢, which operation node has been selected . Therefore, selected views are
found starting from Vy and recursively selecting views from F;’s. The algorithm as-
sumes that Fpaqg 1s ordered in inverse topological order, i.e., its nodes are enumerated,

such that the following condition is satisfied:

(P(Ox) = {i}) A (j € C(OR) = j < i. (3.6)

105

Since Fpac is ordered in inverse topological order, the root Vy has the highest
order. Finally, we consider that the set BS(e;) is the set of all operation nodes having

node ¢; as parent, i.e., BS(e;) = {0; |1 € P(O;)}. The algorithm is as follows.

ViewSelection(Epag = (F,0), T.y)
for each: € I/ do
FP=0
if (i € L(Epag)) then
n(i)=0,5()=T
else n(i) =
for each j € O do k; =0
for i=1to |E£|-1do
for each O; = ({z},C(0;)) € BS(i) do
ki=kj+1
if k; =| C(O;) | then
f=G{n(er), g | er € C(O;)})
S* = ming{S(ex) | ex € C(0;)} —r(0;)

if ((z) > f A S*>0) then

106

Function G({n(ex),y | ex € C(O;)}) evaluates the cost from all children of opera-
tion node O;. Note that vector ¥ modifies this evaluation, allowing some equivalence
nodes not to be considered. In general, when § = f, all nodes are considered to be

materialized. The next theorem provides the correctness of our algorithm.

Theorem 8. Lel Vy be a view, and Ef, ., be the transitive closure of Vy expression-
DAG. Then, algorithm ViewSelection(Ef 40, T, f) produces an optimal solution V* to

the optimization problem (3.5).

Proof. Since Ej; ,, has all possible V evaluation plans, and ViewSelection(Ef ., T, f)
finds the shortest (cheapest) path that satisfies the resource constraint, then, all views
belonging to this path are the solution of (3.5), because they satisfy the constraint and

produce the cheapest cost. This completes the proof. O

To analyze the complexity of the ViewSelection() algorithm, we first note that each
node and each edge is selected at most once, and for each operation node O; we evaluate
f using all nodes belonging to its children, i.e., C(0O;), we consider this evaluation has
a complexity O(f). Therefore, the overall complexity is O(O(f) x size(Epac))-

Although ViewSelection(Ef ., T, f) produces the optimal solution of (3.5), the
complexity of Ef . is still exponential in the number of views. However, if the solu-
tion of (3.5) is a complete expression-Path in Epag, then, ViewSelection() algorithm

provides the optimal solution. The next subsection presents a local search algorithm

to solve (3.5).

107

3.5.2 Local Search Algorithm for Expression-DAG

Algorithm ViewSelection(Ef 0, T, f) requires an exponential time to solve problem
(3.5), because size(Ef) is exponential in terms of the number of views. We propose
a local search algorithm [LH96, Glo89, Jea9l] to overcome this drawback. The local
search algorithm is structured as follows: a number of local searches are performed,
where for each one, the algorithm checks if the local optimum is better than the cur-
rent objective function value. This procedure is repeated until there is no acceptable
neighborhood possible. Before describing the algorithm, we define the concept of ma-

terialization vector.

Definition 32. Let Vg be a view, and Epsc = (F,O) be the expression-DAG of Vy,
where = (e1,...,e,) and O = (Oy,...,0,). We say that a vector § = (y1,... ,Yn)

is a materialization vector if

1 if view e; € E can be materialized,
Yi =

0 otherwise

Materialization vectors represent a mechanism to define neighborhoods, i.e., initial

solutions for each local search. The local search framework is described as follows.

Step 0. Assign 0 to k, ¢ = (1,...,1), and f* = oc.

108

Step 1. Perform a local search, solving the following problem

Hgiﬂ (& /9x)

s.t. U(T/Tr)

Step 2. if f(Z¥) < f*, then f* = f(&), and y* = 7.

Step 3. Increase k by 1, select a new ¢, and go to step 2. If there is no g, additional,

go to step 4.

Step 4. Report objective function f* and solution y*.

We have to explain how procedures local search (step 1) and selection of a new g

are performed (step 4). First, we explain local search.

Local-Search We iteratively solve ViewSelection(FEpac, oo, y) and put the solution
in vector . Then, we evaluate if the constraint is satisfied. If it is not, then
we select a victim and eliminate it. We solve ViewSelection(Epac, o0, §) again.

The procedure is as follows.

Local-Search(Fpac = (E,0),T,7)
i = ViewSelection(Epac, 0, Y)
repeat until (S(Vy) <7
EliminateMaterialized(y, ¥)

i = ViewSelection(Epac, 00, V)

109

Procedure EliminateMaterialized(y,) selects a victim, i.e., a view k with the
highest resource occupancy index. When the victim has been selected, we assign

yk:().

Neighborhood Selection Vector § is used to defined a neighborhood, because se-
lecting some y; = 0 we do not allow some solutions. We propose an aggressive
strategy to move from neighborhood to neighborhood. This strategy eliminates

a certain number N of views with the lowest resource occupancy index.

Although we do not offer a complexity analysis for this algorithm, the global com-
plexity will depend of the number of internal iteration in ViewSelection(Epac, o0, §)
(] £ | in the worse case), and the number of neighborhoods visited (2/¥! in the worse
case). However, there are many of those alternatives that are subsumed by others, and
therefore, they do not need to be visited. A more exhaustive work is needed in this

area to create an efficient mechanism to select neighborhoods.

3.6 Implementation and Experiments

This section presents the main results of our ViewSelection(FEpac,T,y) algorithm.
Table 3.1 summarizes the results for 25 experiments, where Size is the expression-

DAG size, F is the average cardinality, o is its standard deviation, and Time is the

110

running time measured in milliseconds. The algorithm was implemented using visual
C++ 4.0, and it was run on a 120 Mhz PC compatible.
In general, expression-DAGs with a lower number of equivalence and operation

nodes than those shown in Table 3.1, reported a time less than 10 milliseconds.

Table 3.1: Empirical Results
Size FE o Time| Size E o Time
15818 3.7 3.0 170 | 6168 4.3 5.2 110
10089 5.2 5.7 110 | 9504 4.3 4.2 110
7716 2.6 1.9 50 | 16950 2.5 1.2 110
23759 2.9 2.1 280 | 4475 5.1 44 60
20128 2.4 0.8 160 | 39777 84 13.6 770
39921 4.1 3.5 550 | 19856 3.2 1.8 220
21881 2.8 1.3 280 | 27548 4.3 3.4 440
24890 2.3 0.8 270 | 25496 2.7 1.1 280
18226 3.1 1.6 170 | 30355 3.2 2.1 440
21188 2.6 1.4 270 | 33875 2.6 1.2 390
37047 2.5 1.2 490 | 39163 5.5 48 820
35241 2.4 1.1 440 | 27549 85 7.7 660

The experiments where generated randomly, where the minimum and maximum
number of equivalence nodes were approximately 2,000 and 15,000 respectively, and
operation nodes were 1,400 and 15,000 respectively.

Note that in this case (when all possible views are candidates to be materialized),
function G({n(ex),y | ex € C(O;)}) corresponds to a simple summation of all n(ey),
for all e, € C'(O;), which reduces the complexity of our algorithm.

Figure 3.2 shows that the running time against the expression-DAG size. This

time presents a positive linear behavior when the expression-DAG size increases. The

111

Algorithm running Time

900
800 + <
700 1 -

600 T
500 + -
400 + -

300 +
200 + *

100 + o o -
* >
0

Time [msec]
*
*
*

0 5000 10000 15000 20000 25000 30000 35000 40000
Hypergraph Size

Figure 3.2: Experimental Run Time

variance produced in this relation is due to different expression-DAG structures, i.e.,
expression-DAG depth and average density (number of children at each node).

The main conclusion of these experiments, is that for a given view expression-DAG,
the time to find the shortest (cheapest) path between the root and all base relations is
a linear function of the expression-DAG size. Therefore, if the transitive closure £3
is available, the algorithm is a good alternative, and when E7 ,. is not available, we

can apply our local search algorithm in a reasonable searching time.

