60

2.6 Optimization Function

While the optimization problems from previous section are applicable to an arbitrary

monotonic objective function, we now consider a specific optimization criterion in this

section in more detail: maximizing the probability of not violating local constraints.
We provide an analytical expression of this probability function in terms of a para-

metric characterization of compact split decompositions, and polyhedron volume func-

tion (V) [CHT79, Las83, Bea96].

2.6.1 Uniformity Assumptions

Assumptions described in this section are related to how the database instances are
distributed over the space defined by ). We consider this distribution as a uniform
one, i.e., each database instance on ) has the same probability of occurrence. More

formally, our assumptions are as follows:

e () is fully dimensional, and therefore Volume(€2) # 0.

e Not using local consistency (Ic) property (fn,—i.): updates & of the database are
uniformly distributed on the space defined by constraint 2. Thus, if Volume(Q)

# 0, then

Volume(C)

prob|Z satisfies C/¥ satisfies ] = m
olume
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e Using local consistency (Ic) property (fi.): we define the following two predicates
a: ¥ satisfy Q and site 1 is being updated, and (: ¥ satisfies ) and one of the

sites k+1,..., M is updated.

1. The probability p; that a site 2 is being updated is given, for every 1 <1 <

M. Therefore, for full decomposition:

M
prob[¥ satisfies C/ T satisfies )] = Zpi X prob[i satisfies C/a]

=1
and for #-decomposition:

M

prob|Z satisfies C/f3] = Z P prob|Z satisfies C/ 3]

M
i=k+1 E]‘:k—l—l P

2. The distribution of updates at site ¢ (on variables ¢;) is uniformly distributed
on £, when values for all variables, except y;, are fixed. We denote by Z; all

variables on ¥ except those on ;. Then for full decompositions:

Volume(C[Z;\Z?])

K3

Z
Volume(Q[Z\ZY])
Z

prob[¥ satisfies C/a] =

K3

[
_ Volume(C;)
~ Volume(Q[Z\29])

where zZ¥ are the values for Z before the update, C[Z;\ 2P| and Q[Z;\Z?] denote

the formulas after Z; is replaced with z¥ values.
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For #-compact split decompositions, we also assume that updates on the

space defined by D(7,... 7)) are uniformly distributed, and, therefore,

4 .. dif°

L. Volume(C;)
prob|¥ satisfies C/B] = / —
| = Loy Volume Q1202

K3

2.6.2 Parametric Representation

The following is a parametric description of the optimization criteria for the probability

of not violating local constraints.

Proposition 10. Let Q = A7 < b be a constraint, 7° = (¢7,...,4%) be a database
instance, p; be the probability that an update arrives at site 1, 6 be a subset of sites
(say {k+1,...,M}) and 0 be its complement, D(7y,... ,7) be a (partial) O-split of
Q, and fho_i. and fi. are the probability of not violating local constraints as defined

in Subsection 2.6.1. Then, under the uniformity assumptions of Subsection 2.6.1, the

following holds:

1. Not using local consistency (le) property: the function f,.—i. is monotonic and

has a O-localizer as follows:
fgo—lc(Fk-l'l? cee 7FM) = H V(nlv Aiv FZ)

2. Using local consistency (le) property: the function fi. is monotonic and has a
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O-localizer as follows:
flec(Fk-l-l? s 7FM) = Z %V(nMAHFZ) x 1

where b; = (g— EM )%ij?), P = E]‘]\ikﬂ pj. and

(7=1,5#1

1
[:/ — i} .. AP
D(7,... ,Tk) V(n“A“bz) g !

Proof. First, f is monotonic since it is a probability function. Now, we prove that f

has 0-localizers.

Proof of 1 (not using local consistency). We know that the probability to satisfy C
given that (2 is satisfied, is given by:

Volume(C)
Volume(Q)

but, Volume(C) = Hf\il Volume(C;), since different C;’s are defined in disjoint set of
variables. We denote Volume(C;) as V(n;, A;, 7). Then,
_ Hf\il V(niv A f;)

no—le(T1yevn s T _
FroctelFiy-- - 7u) Vin, A,B)

Let V = Hle V(ni, A;,7:). Then, it is easy to see that for any two splits of €,
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- > o — - Sy —y1
D(Fy, o Ty Thyqs oo Tyy) and D(7Fy, oo T, Ty - s Thy)

7 7

Vo i Vi A7)V JTE e Vi As )

- -

V(n, A,b) N V(n, A,b)
Hﬁ\ik-l—l V(niv A, 7:1) > H£k+1 V(niv A 7::/)
V(n, A, b) - V(n, A, b)

because V is a non-negative constant. Therefore, f,,_;. is monotonic and its #-localizer

is equivalent to

M
fgo—lc = H V(nHAHFZ)

i=k+1

This completes this part of the proof.

Proof of 2 (using local consistency). We know that the probability to satisfy C

given that € is satisfied by #°, is given by:

i - Volume(C;)
— b Volume(Q[Z\Z9])

—

but, Q[Z:\zP] is equivalent to A;7; < (b— Zf\f:l’#i)

A;3?), and denoting the right hand
side by EZ Then, Volume(Q[Z:\zP]) is the volume A;y; < Z;Z», ie., V(ni,Ai,gi). Let

V = Ele pZ'V(ni,Ai,f})/V(ni,Ai,gZ»). Then, for any two splits of Q, D(7,... 7k,
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F;C-H"" 7FM) and D(Flv 7Fk7 FZ-I—I?"' 777/]\/4)7
M M
V 7 Az 3 |% : AZ 4
V+sz>< (ri, ’CZ)ZV-I-Z}%X (ni, 77})@
i=k+1 V(nivAiv 2) i=k+1 V(n“A“bl)
) (2.13)
M M
Z pi X V(nzv Aiv i:) 2 Z i X V(n“ AZ'7 71’;/)
i=k+1 V(ni7Ai7 2) i=k+1 V(nz,A“bl)
because V is a non-negative constant for D(7y,... , 7, Fyq, ..., 7y ) and D(7y, ..., 7,
Thgts - , 7). Now, we show which is the #-localizer of f.. Since, Z;Z = E_E?JQL#Z,) A],y—??

for all i, 1 <1 < M, function V(n;, A;,b;) depends of values (77,... i) and (47,
S W, YRy, for all i B+ 1 <@ < M. However, (§7,...,4)) are values

outside of 8, that satisfy C,. Then, for every (¢7,...,9}) with those properties,

al |
g pi X V(m,Ai,F;)/ ——dy} .. . dif}
eyt D1, ) Vg, Aiy by)

Finally, dividing by the constant E?ikH P,

M
bi —y 1 0 0
— X V(ni,Ai,ri)/ ——dy; ... dy;
Z':zk;_l Z]‘]\ik.u Pj D(71,... ,/7) V(nia A, bi)
This is the #-localizer of f;.. This completes the proof. O

Proposition 10 characterizes the #-localizer for the probability of not violating lo-
cal constraints, based on uniformity update assumptions (Section 2.6.1), and con-

vex polyhedron volume (V(n;, A;,7;)). This volume calculation has been addressed
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in [CH79, Las83, Bea96]. Those papers prove that under certain conditions the volume
exists, and provide algorithms to compute it.

For the individual partition case, the volume calculation is easy, since local con-
straints are on individual variables. Those constraints define a (multi-dimensional)

rectangle. More specifically,

V(Crpr,oo Co) =[] s (2.14)

k+1

where [; is the length of the i** side of the rectangle. This simple formula gives Proposi-
tion 11 below, which is the simplification of Proposition 10 for the individual partition

case.

Proposition 11. Let Q = A7 < b be a constraint, 7° = (@9,...,22) be a database
instance, p; be the probability that an update arrives at site i, § be a subset of sites (say
{E+1,...,n}), Cyugr, uzt, ... ,urk, ugx) be a partial split of Q, and fh,—i. and fi. are
the probability of not violating local constraints as defined in Subsection 2.6.1. Then,

under the uniformity assumptions of Subsection 2.6.1 hold,

1. Not using local consistency (le) property: the function f,.—i. is monotonic and

its O-localizer is as follows:

n

fgo_lc(u1k+17 U2k+15 -+ 5 Uln, Uzn) = H (U2i - uu)
i=k+1
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2. Using local consistency (lc) property: the function fi. is monotonic and its -

localizer is as follows:

e
s
flec(ulk+17u2k+17 - 7u1n7u2n) = Z -

X (U2i - Uu)

n
i=k+1 Zi:kﬂ Pi

where

U21 U2k 1
1:/ / L dn.dy
r1=u11 r1=U1g (U2’i - Uli)

b/
vii = Mazyja,,<o) {—l} )

a;

bi
Voi = Min(b;/al,'>0) {_} ’

a;

b = (g— Z ij?), and
(j=1.5#1)

Ajusthe " column of A.

x I

Therefore, optimization problems defined in Theorems 4 and 5 can use f° _, . f?

or equivalent objective functions. Note that the optimization problem has linear con-

straints, and a non-linear objective function. An algorithm to solve this problem is

presented in Section 2.8. Now, we present our distributed protocol.



