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2.5 General Variable Partitions

This section addresses the general partition case. Let P = (y1,%5,... ,ym) be a parti-
tion of &, where y; is the subset of variables at site ¢, (| ¥; |= n;), and & is the vector
of all variables in our problem.

The problem in the general case is that, for a safe decomposition, a constraint C; at
site ¢ may be characterized by an unbounded set of atomic linear constraints; thus the
size of a parametric description (using coefficients of those constraints) is unbounded.
To overcome this problem, we reduce the search space to the set of what we call
compact split decompositions, for which we prove that: (1) there does exist a parametric
description of bounded size and (2) the optimum of the objective function among all

safe decompositions can always be found in the subspace of split decompositions.

2.5.1 Split Decompositions

Definition 12. Let Q@ = AZ < b be a constraint on Z, and P = (§1,... ,ym) be a
variable partition of &. A split of Q, denoted by D(vy,...,7m), is a tuple (A1 <
Fiyeoo s Apyy < Tar) of constraints, where A;, 1 <1 < M, are those columns of A
associated with ;. We say that a split D(71,... ,7"yv) is safe (respectively minimally-
constrained) if it is a safe (respectively minimally-constrained) decomposition of €.

For a subset 8§ of sites, say {k + 1,..., M}, a (partial) 0-split of 2, denoted by

D(Frg1s.vo y7ar), @5 a tuple (Aps18it1r < Thtts .- s Ay < 7ar) of constraints.
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Recall that, by Proposition 4, D(7,... 7 ) is satisfiable if and only if for all 7,
1 <i< M, A;ij; <7; is satisfiable.
For our classification we introduce the notion of tight form for a system A7 < g,

which states, intuitively, that the values of b are tight. This is formalized as follows.

Definition 13. We say that a constraint A¥ < b is tight, if there does not exist [_))’}
such that b < [;} o +* [_))} and A7 < b is equivalent to A7 < . We say that a split
D(71, ... ,7xm) is tight if every satisfiable constraint A;y; < 7 in it (1 <1 < M) is

tight.

Claim 1. For any satisfiable system Ax < b (respectively safe split) there exists an
equivalent system (respectively split) that is tight. Furthermore, every tight constraint
AZ < b is satisfiable.
Definition 14. We say that a split D(vy,... ,7v) of Q is compact if
M
Sr<l
=1
Lemma 1 (Split Properties). Let O = A7 < b. Then:
1. Fvery compact split is safe.

2. If D(v1, ... ,7m) is a tight split, it is compact iff it is safe.

3. For every safe decomposition C of Q), there exists a minimally-constrained safe

split D(71, ... ,7ar) of Q, that subsumes C, i.e., C = D(Fy,... ,7u).
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4. BEvery minimally-constrained safe decomposition of Q is equivalent to (1) a min-

imally - constrained safe split of Q and to (2) a compact split of Q.

Proof. (1) Let 2° = (4,... ,4%,) be an arbitrary point that satisfies D(7y, ..., 7a),
e, A <r; forall i, 1 <i< M. Then,

M M

YA <Y i <b

=1 =1

Finally, since Ef\il A = AZ°) we get that AZ° < g, i.e., 7° satisfy €.

(2) The IF-direction is subsumed by (1). For the ONLY-IF-direction, suppose Ef\il
< b is not true. Then, there exists a row j, such that Ef\il ri; > b;. Now, we select
2 ={g, 99, ... .55}, as follows. Foreachi,1 <i < M, we take y? to be the point that
achieves Max /Ljyj, subject to Ay; < 7, with %Lj is the 7% row of matrix A. Because
the system Ay; < 7; is in reduced form, %_l)”y_? = r;;. Thus, 79 satisfies D(7y,... ,7um)
but not Q = A¥ < g, because

M M
%Ljfo = Z A)”yf? = Z ri; > b;

=1 =1

This complete the ONLY-IF direction of (2).

(3) We first prove that:
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Claim 2. For every safe decomposition C of Q, there exists a safe split D(7y, ..., 7m)

that subsumes C.

Let C = (C4,...,Cyn) be a safe decomposition of Q. We want to construct
D(71,..., 7am). Consider first the case when C is satisfiable. For every i,1 < < m,
where m is the number of rows in matrix A, we construct 7 = (ri1,... ,rim) as follows:

for every 7,1 < j < m, we take r;; to be the minimal value such that

—

Ci | Aijgi < i

Then, C; E Ajy; < 7, and therefore C |= D(#,... 7). Therefore, by (1) of this

Theorem, to prove that D(r,... ,7a) is a safe decomposition, it is sufficient to prove
that D(r,...,ma) is a safe split, i.e., Ef\ilf; < b We prove that for every row

jvl S.] S m, i'e'v Ej\il Ty S bj-

Selecting #U) = (y_’y), e ,y_’(]\?) is done as follows: y_;(j) is the value of y; that max-
imizes the function giij, subject to A;y; < 7. Because D(,... ,7y) is constructed

A7)

so that it is in a reduced form, f_l}jy/ = r;;. Then, for every 5,1 <7 <m

This completes the proof of Claim 2 for the case when C is satisfiable.

If C is not satisfiable, consider C' = (7 = #°), where #° is an arbitrary point that
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satisfies . Clearly,C' is satisfiable. By what has been proved, we can construct a safe

decomposition D(r,... ,7ar) of € such that:

C E D71y 7u)

and, since C | €, it follows that C = D(ry,...,7m). This complete the proof of

Claim 2.

Claim 3. Fvery minimally-constrained safe decomposition C' is equivalent to a mini-

mally - constrained safe split D(71,... ,7a).

Indeed, by Claim 2, there exists a safe split D(r1, ..., 7ar) such that C' |= D(r,. ..,
7ar). Then, because C' is minimally-constrained, D(7,... ,7a) must be equivalent to
C'. Therefore, D(7, ..., ar) is @ minimally-constrained safe split.

Now, to prove (3) given a safe decomposition C, we construct a minimally-constrained
safe decomposition €', such that C = C'. Then, by Claim 3, there exists a minimally-
constrained safe split D(ry, ... ,7y) that is equivalent to C'. Therefore, D(ry, ... ,7y)

is a minimally-constrained safe split that subsumes C. This completes the proof of (3).

(4) Tt is essentially Claim 3 that has been proved in (3). O

The next theorem shows that the maximum of a monotonic function in the space

of safe decompositions can always be found in the subspace of compact splits.
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Theorem 3. Let = A7 < b be a satisfiable global constraint, f be a monotonic
function from the set of all safe decompositions of Q to R, P = (y1,...,9m) be a
variable partition of ¥, and 2° = (§?,... ,4%;) be an instance of ¥. Let S and SS be the
sets of all safe decompositions and all compact splits of 0, respectively, and let Sz and

SSzo be the sets S and SS restricted to decompositions that satisfy 7°. Then,
1. max f(s) s.t. s €S = max f(s) s.t. s €SS
2. max f(s) s.t. s € Sp = max f(s) s.t. s € SSp

Proof. (1) The proof follows from the fact that SS C S. Thus, by Lemma 1, SS is
a monotonic cover of S. Then, using Proposition 5, both problems yield the same
maximum.

(2) The proof follows directly from 1), because 2) is a particular case of 1). This

completes the proof. O

Following Theorem 3, from now on we only consider compact splits. Vectors
(1,..., "ar) can be considered as resources assigned to sites, because they represent
how much of vector b is distributed to each site. The following subsection presents
a parametric resource characterization of splits and a parametric formulation of the

optimization problem in terms of resources.
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2.5.2 Resource Characterization

This subsection characterizes (compact) splits in terms of resources. This resource-
based characterization supports a concurrent constraint (re-) decompositions.

In particular, we formulate the properties of compactness, local consistency (lc),
partial constraint preservation (pep), and resource bound partition (rp) for splits in
terms of resources. Then, the optimization problem is formulated in terms of such a

characterization. First, we introduce the concept of resources of (compact) splits.

Definition 15 ( Resource Parameters). Let Q = A7 < b be a satisfiable global
constraint, D(7y,... ,7ar) be a tight compact split of Q, Z° = (§0,...,9%) be an in-
stance of ¥, and 0 be a subset {k + 1,... , M} of sites {1,... ,M}. Then, we say

that:
1. b is the global upper bound of resources in €.
2. 1 is the resource assigned to site 1, 1 <1< M.

3. 7= Ef\il i is the global resource.

4. §=0b—Fis the global passive slack of Q w.r.t. D(ry, ... 7m).

—

5. (61,... ,XM) such that &; > 0,1 <i< M and Ef\iﬂi = (i is a partition of 5.

Fach 5;, 1 <e¢ < M, is called the passive slack at site 1.

6. 1ir; =7 + 0, is the upper resource bound at site 1, (1 <1< M).



51

7. Given an instance § at site 1, Ir; = AP, 1 < i < M, is the lower resource

bound at site i w.r.t. 7.

8. Given an instance y9 at site 1, A =7 — l;:i, 1 <1< M, is the active slack at

site 1 w.r.t. y_?

Finally, we define all the parameters for 0 by 75 = > o Ti, ulg = Y. cq Uy, Irg =
Eieé’ ZTZ', (S@ = Eieé’ (Si, and A@ = Eieé’ AZ

The above resource parameters are shown in Figure 2.2. In this figure, each resource
7; is bounded between its lower and upper bound (l_;“Z and uf;), the difference between
upper bound (ur;) and the resource is the passive slack 5;', and the difference between
the resource (7;) and its lower bound (l_;“z) is the active slack (52)

active slack passive slack
N~ Ny
A 5

NN s

i
IF; FI ur;
lower bound upper bound

resource

Figure 2.2: Resource Representation at Site ¢

The following proposition characterizes the split properties of compactness, local
consistency (le), partial constraint preservation (pep), and resource bound partition
(rp) in terms of the resource parameters.

Proposition 8 (Parametric Feasible Properties). Let ) = AZ¥ < b be a global

satisfiable constraint, P = (yi,... ,Yu) be a variable partition of ¥, 2° = (§},... ,y%)
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be an instance of ¥, 0 be a subset of sites, say § = {k +1,..., M}, 0 be the set
{1,...,k}, and D(7%,... 7)) be a (partial) O-split that satisfies (3°,...,5%). Then,
for any split D(vy, ..., 7"m)

1. D(#, ... Fa) is compact iff the global resource 7 is bounded by the global upper

bound [_): e, < b. We denote this condition by Peompact (F1,y -+ TA1).

2. D(Th, ... ,Ta) satisfies local consistency w.r.t. @° iff the resource 7; assigned to

site 1 is bounded from below by its lower bound l;:i, i.e., for every siter, 1 <1 < M,

l_;“i < 7i. We denote this condition by ®.(ry, ..., 7).

3. D(7,...,7u) satisfies partial constraint preservation w.r.t. O-split D(7%9, ... %)
iff the resources at each site outside 0 are fived, i.e., ry = r{ ... rp =r). We
denote this condition by ®,ep (71, ... 7).

We will also denote by @ _ 5 (F1,...,7m) the condition stating that D(7,..., Tum)

-
satisfies resource partition w.r.t. a resource bound partition By.

Proof. 1) follows directly from Lemma 1 part 1, 2) follows from the definition of local

iy

consistency, i.e., for a given instance ¢?, it satisfies its local constraint iff A;y? < 7,

and 3) follows directly from partial constraint preservation definition. O

In the following, we denote by SS.ompact, SSic, SSyep and SS,, the set of splits sat-
isfying compactness, local consistency w.r.t. Z°, partial constraint preservation w.r.t.
a O-split D(7,...,7%), and resource bound partition w.r.t. 6 and bound Bj respec-

tively. We will use Pr to denote a subset of the set of properties {compact, lc, pcp,rp}.
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Finally, set Sp, will denote the set of all splits that satisfy the properties Pr, i.e.,
SSp, = Nuyep,SS,, and ®p,(r,...7a) will be the conjunction of the corresponding

conditions, i.e., ®p, (71, ...7m) = Npepr P, (71, ... 7ar). We can present the optimiza-

tion problem in terms of resource characterization.

Theorem 4 (Resource Optimization). Let = A7 < b be a satisfiable global

constraint, f be a monotonic function from the set of all safe decompositions to R,

P = (¢1,...,Yu) a variable partition of ¥, 7° = (y7,... ,4%,) be an instance of T, and

Pr be the subset of properties {compactness,le, pep,rp} that must contain compactness

or resource bound partition. Then, solving the optimization problem

mazx f(s)

s.t.s € SSp,

is equivalent to solving the parametric problem *°

mazx f(D(F1,... ,7v))
s.t. (I)pr(Fl, Ce ,FM)
Proof. The proof follows from Lemma 1, Proposition 8, and the fact that resource

bound partition is a stronger property than compactness as follows:

(1) The compactness part. By Proposition 8, the set SS.ompactness 18 characterized

YOwe will sometimes write f(D(7,...,7x)) as f(7, ..., 7u)-
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—

by condition @ ompactness (71, - - ,7ar). Then, both problems yield the same maximum.

The other Pr cases follow directly from Proposition 8. This completes the proof. [

2.5.3 Concurrent Split Decompositions

The resource characterization of the previous subsection assumes that information from
all sites is used. However, in order to support distributed and autonomous protocols
we would like to make constraint decompositions and re-decompositions involving only
a (small) subset of sites, say § = {(k+1),..., M} of sites {1,... ,M}. To do that a
formulation of the decomposition problem can only involve or affect information that

is stored in sites .

Definition 16. Let Q = A7 < b be a global constraint, D(ry,... ,7y) be a compact
split of QQ, (51, . ,XM) be a partition of the global passive slack S: = (g0, ..., 9% be
a database instance, 0 is a subset, say {k+1,... , M}, of sites. A resource distribution
is a tuple (of triples) ((l;l,ﬂ,u_’rl),... \ (Z;M,FM,U_;“M)) Y- a O-resource distribution

08 (I g1y Thg1, Urkg1)y - oo (Uragy Pagytiiag ). We say that the resource distribution is

permissible if

M
Zu_h — b and l_;“i <7 < g, for every 1 <o < M
=1

Given a resource bound partition ég, we say that the O-resource distribution ((l;k+17

HNote (l;i, 7, ul;)’s are defined in Definition 15.
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Pl 1y Ul kg1 )y« v s (Z;M,FM,U_;“M)) is permissible w.r.t. 59 if

Z ur; = é@ and l;:i <7 < kg, for every 1 € 0
€6
Note that if 4 is the set of all sites, the resource distribution permissibility is equiv-
alent to é resource distribution permissibility.
The following proposition motivates the notion of permissible distribution and pro-
vides a local criterion for a subset 6 of sites to decide whether a feasible resource

distribution exists, after database instances have been updated (i.e., lower bounds).

Proposition 9 (-Resource Distribution Feasibility). Let 0 be a subset, say {k+
1,..., M}, of sites {1,... ., M}, and 0 be its complement, By be a resource bound

partition. Then,

1. Given a database instance (ify,,, ... ,y;) at sites 0 (and thus lower bounds (l_;“;ﬂ_l,

,Z;M)), the following are equivalent:

(a) There exists a compact split of Q satisfying resource partition By and local

consistency w.r.t. (iff s )

(b) There exists a 0-permissible resource distribution w.r.t. By (with the above

lower bounds).
(c) l;é‘ = Eiee l;:i < éé’

2. The combination of 0-permissible resource distribution w.r.t. By and 0-permissible
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.
resource distribution w.r.t. By constitutes a permissible resource distribution.

Proof. (1) To prove this part, we first prove that (c¢) implies (a), (a) implies (b), and
(b) implies (c).
(c) implies (a). Using the definition of l_;“@,
lrg < By & Zﬁ“i < By
€6
& Z A < By

1€0

Then, selecting 7 = A;i?, for all i, k+1 <7< M —1, and 7y = By — Ef\i;_ll_l T, we

build a #-compact split of () satisfying resource partition By and local consistency w.r.t.
(Ups1s- - Uar)- Now, selecting 7 = (3—55)/k, for 1 <o <k, D, ... 7, Mgty - »TM)
is a compact split of 2. This completes this part of the proof.

(a) implies (b). Let D(,...,7,) be a compact split of Q satisfying resource
partition By and local consistency w.r.t. (§0,,...,9%). Then, Ir; < 7% for all ¢,
kF+1<1< M, and ) ,7 < é@. Then, selecting ur; = 7, for all 1, k +1 <1 <
M — 1, and iy = By — Ef\i;_ll_l 7. Therefore, Ir; < m<ur, k+1 <1< M, e,
((l;k+17 Phg 1> Ul kg1 )5 - -+ (Z;M, s Utar)) is a permissible f-resource distribution. This

completes this part of the proof.

(b) implies (c). If there exists a #-permissible resource distribution w.r.t. By (with
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lower bounds [r; = Ay? for all 4, k+1 < i< M). Then,

1€0 €6 €6
A= Z [7:9 < é@
1€0
This completes this part of the proof.
(2) Let ((Iry, 7oty )s - ooy (g s tit)) and (gt Pogts kgt - -+ 5 (Irag, Pars W)

be a - and 0- permissible resource distribution w.r.t. ég and By respectively. Since,
ég—l— By = g, (-,0-) permissible resource distributions constitute a permissible resource

distribution. O

The optimization functions f are defined in terms of the information of all sites
(i.e., D(71,... ,7m)), whereas we need to work with the information only on a subset

f of sites. To do that, we define the notion of #-localizer as follows.

Definition 17. Let  be a constraint over &, and S be the set of all splits of €1,
f:S = R be a function. Let 0 = {k+1,... , M} be a subset of sites {1,... , M}, 0

its complement, Sy be the set of all 8-splits. Then, function f; 1 Sy — R is called 8-

localizer of f if for any 1Y, ... 7%, and for every two splits D(77, ... 79 Frity- -, Ta)
and D(7), ... 70, iqs oo Ty) inS,
f(f{ljv 77:27Fk+17"' 7FM) Zf(f{ljv 77:277:24—17"' 7FIM) <

Jo(Frgrs oo Par) > fo(Fgrs oo s Far)
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(i.e., fo preserves monotonicity for any resource instantiation outside of 6).

We are now ready to formulate a theorem to be used for concurrent (re-) decom-

positions of the global constraints.

Theorem 5. LetQ = AZ < b bea global constraints, 8 be a subset, say {k+1,... M},
of sites {1,... , M} and 0 be its complement, S be the set of all compact splits of Q,
f S = R be a monotonic function and fy be its O-localizer, By be a resource bound
partition, and D(°,... | 72) be a (partial) O-split for sites outside 0. Let Pr be a subset
of properties that contains rp and ®g_p, be the condition (1) 7y < By for the case that
Pr contains just tp, and the conditions (2) 7y < ég,ﬁ“i < 7 for every 1 € 0, for the

case of Pr that contains both rp and lc. Then,

1. For Pr being the set of properties {rp, pcp} or {rp,pep,lc}, let (P, ..., Ty) be

a solution to the problem

max fo( Pty - ™M)
S.t.q)g_pr
Then, (7Y, ... 7, Tey1s--- »Tag) is a solution to the problem
max f(r, ..., 7ar)
S.t.q)pr

2. For Pr being the set of properties {rp} or {rp,lc}, let (¥, ,... ) be a solution
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to the problem

ma:z;fg(FkH, ceey FM)
S.t.q)g_pr
and (7, ... ,7,) be a solution to the problem
max f(Feg1y - ™M)
S.t.q)g_Pr
Then, (7, ... T Thyrs--- 2 Tar) 5 @ solution to the problem
max f(r, ..., 7ar)
S.t.q)pr

Proof. The proof follows from the fact that f has a #-localizer, and from Propositions 8

and 9. O

The next subsection presents the analytical expression for the objective function,

under uniformity assumptions on updates.



