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2.2 Decomposition Optimization Framework

In this section we define the central notion of safe decompositions, and formulate our
problem as one of finding the best feasible safe decomposition of a global constraint.

The problem formulation in this section is applicable to all types of constraints.

2.2.1 Safe Decompositions

Definition 1. A constraint C is a Boolean function from the set of variables &, to the

Boolean set, i.e., C: Domain(¥) — {True, False}
We denote the dimension (number of elements ) in & by | ¥ | = n.

Definition 2. A wvariable partition P of the set of variables ¥ is defined as P =

(Y1y- e s Unm), such that 1 U U ... UGy = &, and g; N y; = O for all i, j (1 <
1,] < M,i# ).

Definition 3. Let Q be a constraint, and P = (41, ... ,ym) be a partition of variables.
We say that C = (C1, ... ,Chr) is a decomposition of Q, if in every constraint C; all free

variables are from i;. Sometimes we will use C to indicate the conjunction CyN..ANCyy.
We say that a decomposition C = (Cq,... ,Cy) is safe if Cy A .. A Cy |E Q, where |=

denotes logical entailment.

We also say that G = (G,...,Gy) is a cover decomposition of Q if (Gy,...,Ga)

is a decomposition of @ and Q@ | G V ... V Gy 7. The following proposition

“we will use G to indicate the disjunction G1 V ...V Gas.
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provides the relationship between safe and cover decompositions.

Proposition 1. Let Q be constraint, and P = (i1,... ,ym) be a variable partition.
Then, (Cy,...,Cwn) is a safe (cover) decomposition of Q if and only if (=Cy,... ,~Cy)

is a cover (safe) decomposition of —€1.

Proof. Since (Cq,...,Cy) is a safe (cover) decomposition of €2,

<:>_‘Q |:_‘Cl\/\/_‘CM

This completes the proof. O

In the following we will only concentrate on safe decompositions, but the results

can also be applied to cover decompositions using Proposition 1.

Definition 4. Let 7° = (4),... ,4%;) be a database instance. We say that 1° satisfies

a safe decomposition C if ) satisfies Cy, 43 satisfies Cy, ..., and ¥, satisfies Cyr.

Example 1. Consider the following set of linear constraints: X +Y <6, — X 4+5Y <
15, 5X +4Y < 15, and both variables X and Y are non-negative. The partition P s

{ X} . {Y}), and a graphic representation of Q is given in Figure 2.1.
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Figure 2.1: Safe Decompositions of )

Constider three safe decompositions Cy, Cy, and Cs, where:

C, = (Cy,Cha)

= ({05 < X <25}.,{0.5<Y <25}
Cy = (Cy1, Cya), and

= ({0.0 < X <3.0},{0.0 <Y < 3.0}),and
Cs = (Cyy, Ca)

= ({0.0 < X <4.0},{1.25 <Y < 2.0}).

Cy is a safe decomposition of Q because every point (X,Y) that satisfies C1y and
Chia will also satisfy Q. Geometrically, this means that the space (1) defined by Cy is
contained in the space defined by Q. Similarly, C; and Cs are safe decompositions of

Q. Note that the database instance (a,b) satisfies Cy, but not C; and Cs.

Note that rectangle (1) (for C; ) is strictly contained in rectangle (2) (for C;). Hence,

the decomposition C, is better than C; in the sense that, in C, we will have to perform
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global updates less frequently than in Cy, i.e., less overhead. This notion is defined

formally as follows:

Definition 5. Given an arbitrary constraint Q and two decompositions C; = (Chy,
ooy, Cim) and Cy = (Coq, ..., Conr), we say that Cy subsumes Cy (or Cy is subsumed
by Cy) if:

M M
A Cui = N Ca

We will denote this by C; = Cy. We say that Cy strictly subsumes C; if C; |
Cy, but Cy F Cy. Furthermore, we say that a safe decomposition C is minimally-

constrained, if there is no safe decomposition C' that strictly subsumes C. Finally, we

say that C; is equivalent to Cy, denoted by C; = Cy, if C; E Cy and C; = C;.

Note that, in example 1, C; and C; are minimally-constrained safe decompositions,

while C; is not.

Proposition 2. Let P = (yy1,...,ym) be a partition of variables, and C be a con-
Junction of constraints (Cy,...,Cy), where C; (1 <@ < M) is over ;. Then, C is

satisfiable iff for every v, 1 <1 < M, C; is satisfiable.

Proof. TF-part, if every (; is satisfiable, its conjunction is satisfiable, i.e., C is satisfi-
able. ONLY-IF-part, if C is satisfiable, and since (1) (%1,... ,¥m) is a partition of 7,
and (2) each C;, 1 < i < M, has its free variables exclusively in y;, then, all C;’s are

satisfiable. O
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Proposition 3. Let C; = (Cyy,...,Cim) and Cy = (Cay, ..., Copr) be two lists of

constraints over 4y, ... ,Ynm respectively, for partition P = (41,... ,ym). Then:

1. If Cy is satisfiable, then C; = Cy iff for alli, 1 <1t < M, Cy; E Csy.

2. If both Cy and Cy are satisfiable C; = Cy iff for all 1, 1 <1 < M, Cy; = Cy.

Proof. Part 2 immediately follows from Part 1. In Part 1, the ”<” direction is obvious,
while the ”=-" is due the fact that the variable partition P = (¢,...,¢n) is disjoint
as follows:

Assume that C; | C,, but, by way of contradiction, for some 7, 1 <1 < M, Cy; F

(’y;. Then, there exists d@; over y; that satisfies C'j;, but not Cy;. Since, C; is consistent,

each C4q,...,Cp must be consistent, and therefore there must exist gl, .. ,I;M over
U1, .-, Yn, that satisfy Cqq,... ,Cia, respectively. Then, gl, e ,gi_l, d;, I;H_l, e ,I;M
satisfies C;, but not C,, contradicting the fact that C; | Cs. O

In practical cases, we are only interested in the case when () is satisfiable, because
otherwise the database must be empty and no update would be allowed. Technically,

however, every unsatisfiable (i.e., inconsistent) decomposition will be safe for unsatis-

fiable Q. If € is satisfiable we have the following:

Proposition 4. Let Q) be a satisfiable constraint. Then every minimally-constrained

safe decomposition C of ) is satisfiable.

Proof. Since (1 is satisfiable, there exists @ = (dy,... ,dpn) over ¥ that satisfies €.
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—

Then, the decomposition C; = (¢ = d1,... ,ynm = dn) is always a safe decomposition
of Q).
Consider now an arbitrary minimally-constrained safe decomposition C. If, by way

of contradiction, C is not satisfiable, then C | C; and C; F C, contradicting the

minimality of C. O

Clearly, safe or even minimally-constrained safe decompositions are not unique. In
our example, both C, and C; are minimally-constrained, because there is no other safe
decomposition that strictly subsumes C; or Cs.

Since safe decompositions are not unique, an important question is how to choose
a safe decomposition that is optimal according to some meaningful criterion.

In our example, the rectangle with the maximum area may be a good choice. In fact,
if update points (X,Y) are uniformly distributed over the given space (defined by ),
then the larger area (volume in the general case) corresponds to greater probability
that an update will satisfy local constraints, and thus no global processing will be

necessary. We defer the discussion on optimality criteria to Section 2.6.

2.2.2 Optimization Problem Formulation

We suggest the following general framework for selecting optimal feasible decomposi-

tions:
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mazximize f(s)

(2.1)
5t.5€S

where S is the set of all feasible decompositions, and f : S — R (real numbers) is the

objective function discussed in the next subsection.

Definition 6. Let Q be a global constraint, C = (Cy, ... ,Chr) be a decomposition of (2,
O ={k+1,..., M} be a subset of sites{1,... ,M}, and @ = (y1,... ,Ym) be a database
instance. Then, feasible decompositions are defined as the set of decompositions having

one or more of the following properties:

1. Safety. Decomposition C has the safety property if C is a safe decomposition of

Q.

2. Local Consistency. Decomposition C has the local consistency property if each
local instance y; satisfies its local constraint C; (1 < ¢ < M). Clearly, local

consistency and safety imply global consistency.

3. f-Partial Constraint Preservation. Decomposition C has the partial constraint
preservation w.r.t. 0, if local constraints for sites outside of 8 are fived. This
property can be used for scenarios where a (safe) constraint re-decomposition

would involve only a (hopefully small) subset of sites 6, leaving the rest unchanged.
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4. 0-Resource Bound Partition ®. Decomposition C has the resource bound partition

property w.r.t. 8 and a bound ég, if the overall resource of sites in 0 is bounded

by é@.

Resource bound partition property is for families of constraints in which resource
specification is possible (such as linear constraints). Namely, the global constraint €
is associated with the global resource bound g, each local constraint C; in the decom-
position is associated with a resource r;, and each subset of sites # is associated with
the cumulative resource 7.

A partition of the global resource bound between # and 8 (i.e., all sites except 0) is
a pair (ég, 59), such that By + ég = g, is a partition identified by By. We say that a
decomposition C has a resource bound partition property w.r.t. a partition é@, if the
cumulative resource 7y is bounded by é@, and 7 is bounded by ég.

Before we discuss how the decomposition problems can be solved effectively, we

consider possible candidates for function f.

2.2.3 Optimization Criteria

There are many feasible (minimally-constrained) safe decompositions in S, and we
would like to formulate a criterion to select the best among them. This criterion

should represent the problem characteristics, and the decomposition goals. Possible

8Note that the notion of resource bound partition is more flexible than constraint preservation,
and allows one to perform concurrent constraint decompositions.
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criteria include:

o Maximize the probability that an update will not violate the existing local con-

straints (decomposition).

e Minimize overall expected cost of computations during an update.

e Maximize the expected number of updates before the first update that violates

local constraints.

Maximize the expected length of time before an update violates local constraints.

Many other optimization criteria are possible. However, any reasonable criteria

should be monotonic, as defined below.

Definition 7. Let f be a function from the set of safe decompositions of Q) to R. We
say that [ is monotonic if for every two decompositions C;,Cy of Q, C; = Cy implies

F(Cy) < f(Cy).

Intuitively, being monotonic for an optimization criterion means that enlarging the
space defined by a decomposition can only make it better.

Note, that if f is monotonic, then f(Cy) = f(Cy) for any two equivalent decompo-
sitions C; and C;.

As we will see in Section 2.5, it is often necessary to consider a subspace of all safe

decompositions (without loosing an optimal decomposition).



33

Definition 8. Let'S be a set of safe decompositions of 2. A subset S’ of S will be called
a monotonic cover of S if for every decomposition C in S there exists a decomposition

C in' S, such that C' subsumes C (i.e., C|=C').

The following proposition states that optimal decompositions are not missed when
the search space is restricted to a monotonic cover and the optimization criteria are

monotonic.

Proposition 5. Let'S be a (sub) set of all safe decompositions of 1, S' be a monotonic
cover of S, and f be a monotonic function from S to R. Then, the following two

optimization problems yield the same mazximum.

Problem 1. maz f(s), s.t. s €S.

Problem 2. max f(s), s.t. s €§'.

Proof. Suppose the maxima of f in Problem 1 and 2 are achieved by s = C in S and
s = C in §' respectively. Since S’ C S, f(C') < f(C). Now, since S’ is a monotonic
cover of S, there must exist C” € §', such that C | C"”. Therefore, because f is
monotonic, f(C) < f(C").

Finally, since the maximum of Problem 2 is achieved at C', f(C') > f(C") > f(C).

Thus, f(C') = f(C) which completes the proof. O

The functions in the above criteria depend on the update distribution and other

assumptions. Specifically we consider two assumptions.
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o For design-time decompositions: We do not know the current database state, but

we are given a probability distribution of database instances in the space defined

by €.

e For update-time decompositions: We are given a current database instance, and

a conditional distribution function of database instances on f).

Now, we present precise methods to characterize the set S, function f, and al-
gorithms to solve effectively the optimization problem (2.1), for the family of linear

constraints.

2.3 Linear Arithmetic Constraints

Definition 9. An atomic linear constraint is an inequality of the form aix; + azxy +
vt anz, <b, where ay, as, ..., a,, and b are real numbers, and x1, x4, .., T, are variables

ranging over the reals.

Definition 9 defines a constraint as a symbolic expression. However, an atomic
linear constraint a1+ aszs+ ...+ a,z, < b also defines a Boolean function C' : R* —
{True, False}, where for each instantiation of values to variables (2, x2,...,2,), the

expression ajxy + axy + ...+ a,x, < bis evaluated as true or false.

Definition 10. A linear system ) is a conjunction of atomic linear constraints.



35

A linear system §) containing n variables and (a conjunction of) m atomic linear

constraints, can be written as follows:

anizy  tapry +... Fapr, <bh
anry  Fanry +... Fazx, < b

(2.2)
Am1T1 +am2$2 —I' e —I'amnxn S bm

This system £ can also be written in matrix notation as the system A ¥ < g, where

A is the matrix

a1 a1 . A1p

a1 a99 . dop ( )
2.3

dm1 Am2 ... Amn

and b is the column vector (b1 by ... by ), and @ is the vector (1 22 ... x,).
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2.3.1 Parametric Optimization Problem

To solve the optimization problem for linear arithmetic constraints we want to rewrite

the problem (2.1), i.e.,

mazx f(s)

51.5€S

where S is the set of feasible safe decompositions in the form

mazx f(w0)

s.t. O(w)

where w0 is the set of variables describing coefficients (i.e., parameters) of constraints
on a decomposition D(w), and ®(w) is a logical condition in terms of @ defining the

search space

§"={D() | &()}

such that S’ is a monotonic cover of S.

By Proposition 5, the two problems are equivalent for any user-given monotonic op-
timization function, but the latter allows the use of known mathematical programming
methods to solve it.

We do it for the case of an individual as well as a general variable partition as



37

described in Section 2.4 and 2.5, respectively, in which we study the problem of para-

metric characterization of decompositions.

2.4 Individual Variable Partitions

Individual partition case variables are partitioned in an individual way, i.e., we have a

partition P = ({1 },...,{x,}), where {z,2q,... ,2,} is the set of all variables ?.

2.4.1 Parametric Characterization

In this case, safe decompositions can be parametrically described using intervals as

follows:

Proposition 6. Given a bounded set of constraints ), and an individual partition P,
every decomposition C = (Cy,...,C,) of Q is equivalent to a decomposition C' of Q of

the form:

({Un <y < U21} g 7{u1n <z, < Uzn}) (2-4)

Proof. Every atomic constraint C; (1 < i < n) of C over & can be written as x; < v;; or
zij < a;. Thus C; will be equivalent to uy; < a; < ug;, where uy; = max {zi1, ziz, - .+, Zin, }

and ug; = min {vy, Vg, ..., Vin, }- O

9Note that this implies n =M.
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In this section, we will denote the decomposition ({u1; < 1 < wart,..., {u, <

Ty, < ugn}) by D(u), where @ = (U, uy), Uy = (u1r, U12,... ,U1,) and s = (U1, Usa,
., Uz2p,). We use the notation @; < iy to denote that uy; < wuy;, for all 7, 1 <i < n.

To create a parametric characterization of the set of all safe decompositions we

introduce the notion of characterization matrix as follows.

Definition 11. Given an n x m matriz A, the characterization matriz A’ of A is

defined as (AT A7), where both are n xm matrices with elements a;»"j and a;; respectively,

defined as follows:

a;; if a;; > 0,

0 otherwise

aij Zf a;; < 0,

0 otherwise

In fact, we have developed the notion of characterization matrix so that the follow-

ing holds:

Theorem 1. Let S be the system Ax < b. Let A’ be the characterization matriz of A,
-

and S’ be the system A'u < b and @, < iy, where U = (U, uy). Then, for every 5,5

the following are equivalent:
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.
1. @ is a solution of S', i.e., AW° < b and uf <

2. Bvery 0, u§ <0 <@, is a solution of S, i.e., AT < b

Proof. First, we prove (1) = (2). Assume that @ = (a9, @9) is a solution of S’. Let ¢

be a vector such that u?;, < v; < u). for all 7, ¢ < i < n. By multiplying v; < u9; by

_|_

a non-negative number af , we get afv; < aful; for all i, 1 < i < n. Now, choosing

_|_

af’s as the elements of ;% column of A*, and making a summation for all possible

elements in that row, we get:

3

n

a}"ivi < a;ugi (2.5)
=1 =1
and extending for all possible rows in AT, we get:
ATT < AT (2.6)

Repeating the same operations for uf, < v;, i.e., multiplying by a non-positive number

a7, we get: ajuf;, > ajv; for all i, 1 < i < n. Now, choosing a; s as the elements of

7 column of A, and making a summation for all possible elements in that row, we

get:

Z ajug; > Z azv; (2.7)
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and extending for all possible rows in A™, we get:

AT@ > AT (2.8)

Now, adding (2.6) and (2.8) we get:

AT+ AT < ATa) + AT (2.9)

We know that «° = (@), ") is a solution of A'd < g, then:

(2.10)

Therefore, by definition of A* and A~, Av < g, i.e., ¥is a solution of 5, which completes
the proof (1) = (2).

We prove now that (2) = (1),by proving = (1) = — (2). Assume that @° is not a
solution of S’, i.e., vector @ does not satisfy A'd < b. Then, there exists a column j

such that:

3
3

atuy; + Z ajuy; > b (2.11)
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Consider a vector ¢ defined as follows:

P
uy; if af; >0,

Vi= Yuy; ifay; <0,

ot
us; 1faij—aij—0

Clearly, @) < ¢ < . Then, we can rewrite (2.11) as

n

Zazjvi > b]‘ (212)

=1

Therefore, ¥ is not a solution to A7 < b. This completes the proof. O

2.4.2 Parametric Optimization Problem

We are now ready to characterize parametrically the optimization problem of safe

decompositions of €.

Proposition 7 (Parametric Feasible Properties). Let ) = AZ¥ < b be a global
satisfiable constraint, P = (x1,... ,x,) be an individual variable partition of &, A’ the
characterization matriz of A, @° = (29,...,2%) be an instance of T, 0 be a subset {k +
1,..., M} of sites {1,... , M} and 0 be its complement, and D(u%,,uS,, ... ,ub,,u3,.) be
a (partial) 0-safe decomposition that satisfies (29,... ,2%). Then, for any decomposition

D(uu,... s Ulp,s U21y « ooy UQn)
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1. D(uiy, ... Ui, Uz, ... ,U2p) is safe iff AU < b and U < uy. We denote this

condition by ®, . (U).

2. D(uity .. Ui, Uat, - .. 4 Uz,) salisfies local consistency w.r.t. Z° iff for all i, 1 <

i <n, uy <Y <uy. We denote this condition by @,.(u).

3. D(u1y... yUip, Ui, ... ,Usz,) satisfies partial constraint preservation w. r.t. 6-
”» 0 .0 0 L0 ; _ 0 _ 0 _
safe decomposition D(uly, udy, ... ulp,us,) iff i = uly,ua = udy, .. ug, =

uly, uzy = u3,. We denote this condition by ®,.,(1).

Proof. 1) follows directly from Theorem 1 and Proposition 6. IF-part: if A'v < b
and Wy < Uz, by Theorem 1 (i.e., (1) = (2)), D(u) is safe. ONLY-IF-part: if
D(u11y. v yUin, Ua1, ..., Uzg,) is safe, e, @ < Wy, Since D(u) is a safe decomposi-
tion, the condition (2) of Theorem 1 holds, and thus the condition (1), namely A’d < b
and @ < iy, which completes this part of the proof.

Now, 2) follows from the definition of local consistency, and 3) This follows directly

from partial constraint preservation definition. O

We denote by Sy, fe, Sic, Spep the set of safe decompositions, the set of decompositions
satisfying local consistency w.r.t. #°, and decompositions satisfying partial constraint
preservation w.r.t. a 6-safe decomposition D(uf,,u3,, ..., uf,,ul,) respectively. We
will use Pr to denote a subset of the set of properties {safety,lc,pep}. Finally, set
Sp, will denote the set of all decompositions that satisfy the properties Pr, i.e., Sp, =

NperrSy, and ®p.(u) will be the conjunction of the corresponding conditions, i.e.,
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Op, () = NpeprPp(t). We can present the optimization problem in terms of resource

characterization.

Theorem 2 (Parametric Optimization Problem). Let @ = AT < b be a salisfi-

able global constraint, f be a monotonic function from the set of all safe decompositions

to R, P = (Zy,...,7,) a individual variable partition of ¥, ° = (29,...,7%) be an in-
stance of @, D(ufy,udy, ... ul,,ul), 1 < k < M, a partial safe decomposition that
satisfies (29,...,2%), and Pr be the subset of properties {safety,lc,pcp} that must

contain safety. Then, solving the optimization problem

max f(s)

s.t.s € Sp,

is equivalent to solving the parametric problem

maz f(D(u))

s.t. (I)pr(ﬁ)

Proof. First, by Proposition 6, every decomposition C in Sp, has an equivalent de-
composition C' of the form D(u"), where @ < @9. Then, by Proposition 7, Sp, and

O p, (i) represent equivalent search spaces. Therefore, both problems yield the same

maximum. This completes the proof. O



