Chapter 2

OPTIMAL CONSTRAINT MANAGEMENT IN

DISTRIBUTED DATABASES

2.1 Introduction

2.1.1 Local Verification of Global Integrity Constraints

Increasingly, enterprise-wide information systems are being built in distributed, het-
erogeneous environments. The prevalence of the Internet and the World Wide Web
[BLCea94] allow designers to incorporate data and information from multiple sources.
In those systems centralized control may be difficult, if not impossible, due to the
autonomy of the local constituents, which indicates that highly autonomous federated
distributed architectures [KGea96] are more appropriate. Often, workflow coordina-
tion for distributed systems involves constraint-based agreements, which can be viewed
as global integrity constraints [JK97]. These global database integrity constraints are

difficult to monitor, update and enforce in distributed environments, so that new,

distributed techniques and protocols are desirable.

To reduce the costs of distributed management of global constraints, the idea of lo-
cal verification of global constraints was introduced and studied (e.g., [BGM92, GM91,
GW93, Maz93, Qia89, SV86, GSET97]). The idea is to decompose a global constraint
into a set of local ones that will serve as a conservative approximation, that is, satis-
faction of local constraints by a database instance guarantees satisfaction of the global
constraint. Then, when a local site ¢ is being updated, if the update satisfies its local
constraint C;, no global constraint checking is necessary. Thus, most of the work can
be delegated to local processing, thereby saving communication and other distributed
processing costs. The ability to perform updates autonomously is also very important
in presence of site or network failures.

While the above-mentioned works have considered many aspects of local verifi-
cation (see Related Work section), they have not addressed the problem of finding
optimal constraint decompositions and distributed constraint-management protocols
that achieve decomposition optimality along with maximal resource utilization. This
is precisely the subject of this chapter.

To illustrate the problem of distributed constraint management we now consider
an example of a distributed database for an application of logistics support for crisis

management.

10

2.1.2 Crisis Management Scenario Example

Emergency service providers (e.g., fire fighters, medical personnel, military etc.) must
be prepared to respond efficiently to crises such as floods, fires and earthquakes. In
order to perform Crisis Management, the enterprise must find, coordinate, allocate,
deploy and distribute various resources (such as food, clothing, equipment, emergency
personnel, transportation) to the victims of a crisis. These resources are typically
geographically distributed among many warehouses, suppliers, military units, local fire
departments, bus terminals, etc. Each location may maintain a local database that
stores and monitor information about available resources and their quantities. Our
distributed database in this example is a loosely-connected collection of local databases,
which are related, however, because of a global constraint on resources.

The global constraint in such a distributed database may originate, for example,
from a number of pre-defined crisis management scenarios that require that certain
amounts of resources be delivered to any potential disaster area within bounded time
using available transportation. For example, a Hurricane Relief Mission to Florida may
require that the following resources be delivered there in 24 hours: 1) sufficient canned
food to feed 30,000 people for 4 days, 2) a supply of tents to support a tent city of 20,000
people, 3) medicines and vaccines to inoculate the tent city residents against cholera,
4) computers and communications equipment to support the coordination, command
and control functions of the mission, 5) 10 medical units with medical personal and

portable facilities to care for victims, and 6) DoD personnel to staff the mission.

11

For this scenario, the global integrity constraint would reflect that, for each resource
type above, the overall amount of this resource available in all locations reachable in
24 hours (with the available transportation) is greater than or equal to the amount
required in the scenario. Note that some resources are composed of other resources,
which also needs to be reflected by the global constraint. For example, each of the
required 10 medical units (resource 1) is composed of 2 MD’s (resource 2), 5 paramedics
(resources 3) and must have 2 tents (resource 4), 2000 vaccination packages (resource
5), 500 first aid packages (resource 6), etc. In turn, each vaccination package may be
composed of certain quantities of other items and so on.

When a local site of the distributed database is being updated, for example when
a certain amount of materiel is taken from a warehouse (not necessarily for crisis sup-
port), the update can only be allowed if it satisfies the global integrity constraint,
which depends, in general, on the global database instance, not just on the updated
local instance. Therefore, verification of the global constraint would require a dis-
tributed transaction involving possibly hundreds of loosely connected distributed sites,
which might be an extremely expensive and time-consuming operation, especially when
protocols such as two phase-commit are used to guarantee the standard properties of
transaction atomicity, consistency, isolation and durability (e.g., [JK97]). Moreover,
such distributed transaction would often not be possible in the presence of site and
network failures, whereas the robustness feature, i.e., the ability to operate in the pres-

ence of (partial) failures, is crucial for applications such as Crisis Management. In

12

short, protocols managing local verification of the global constraint can significantly
reduce distributed processing costs and increase the system robustness in the presence

of failures.

2.1.3 Contributions

This chapter focuses on the problem of deriving the best possible decompositions, dur-
ing both database design and update processing. It formulates a generic and powerful
framework for finding optimal decompositions for a range of design and update-time
scenarios, and provides a comprehensive solution for the case of general linear con-
straints, which are widely used in distributed applications such as resource allocation,
reservations, financial transactions, and logistics. The comprehensive optimization-
based solution includes (1) reducing the problem to mathematical programming, (2)
developing algorithms for it, and (3) providing a distributed protocol to manage local
updates and concurrent distributed constraint decompositions in the presence of com-
munication and site failures, while guaranteeing the desirable properties of consistency,
safety, optimality and last-resort update refusal.

More specifically, the contributions of this chapter are as follows. First, we introduce
a generic optimization framework to achieve best decompositions by defining (1) the
solution space of all feasible decompositions (explained below) (Cy,...,Cy) of the
global constraint over M distributed sites, and (2) the objective function that can

describe a variety of optimization criteria, such as the probability that an update

13

satisfies its local constraint, the expected number of updates before the first update
that violates a local constraint, or the expected overall cost of operations during an
update.

The solution space of all feasible decompositions is the set of decompositions having
the first and possibly other properties from the following list (depending on what is

known at the time of a decomposition):

1. Safety, i.e., satisfaction of local constraints by a database instance must guarantee

satisfaction of the global integrity constraint.

2. Local Consistency w.r.t. to a given database instance, i.e., each local instance
must satisfy its local constraint (i.e., at the same local site). Clearly, local con-

sistency and safety imply global consistency.

3. Partial-constraint preservation w.r.t. a given subset 6 of sites and local con-
straints for sites outside 6, i.e., the decompositions cannot change the given local

constraints outside 0.

4. Resource partition By w.r.t. to a subset 6 of sites. This property is based on
the notion of resources and their upper bounds (explained below) associated with
each local and the global constraint. Resource partition means that the global
constraint resource upper bound is partitioned between the sites in and outside 8,
and the cumulative resources of sites in and outside # must be bounded by their

corresponding upper bounds. The notion of resource partition is more flexible

14

than constraint preservation, and allows concurrent constraint (re-) decomposi-

tions.

One or more properties 1-4 are required for various decomposition scenarios, de-
pending on what is known at the time of a decomposition. For example, to design a
Crisis Management Database schema and local constraints when no actual database
instance is known, the property of safety is required, while local consistency is not ap-
plicable. Often, only a partial design is required when local constraints for most sites
have already been fixed, in which case the property of partial constraint preservation
is needed in addition to safety. Assume now that the Crisis Management Database is
operational, and the current local constraints entail the global constraint (i.e., safety)
and the current database instance satisfies the local constraints (i.e., local consistency).
Consider an update at site i, for example when a certain number of blankets is being
taken from a warehouse, and the number of remaining blankets, stored at local data-
base site 7, has to be updated. If the update satisfies the current local constraint at site
1, no processing except for the update itself is necessary, because safety guarantees that
the global constraint is satisfied. However, if the update violates the local constraint
(i.e., local consistency) no longer holds, a protocol can try to find a new feasible decom-
position of the global constraint that will regain local consistency and still be safe. A
more sophisticated protocol may try to re-decompose constraints only in a (hopefully
small) subset 6 of (well-connected) sites, which will be done under the assumption that

the cumulative resources in and outside § will stay within their corresponding resource

15

upper bounds, i.e., a new feasible decomposition will have the property of resource
partition, in addition to safety and local consistency.

Second, for the case of general linear arithmetic constraints, we reduce the optimi-
zation-based framework to a standard, finitely-specified problem of mathematical pro-
gramming. This is done by proving existence and actually developing a finite para-
metric (i.e., in terms of coefficients) characterizations of the properties 1-4 of feasible

decompositions together with optimization criteria !, as follows:

o Compact Split Decompositions. Given a global constraint), a parametric char-
acterization of safe decompositions mean formulating a constraint D(w) whose
variables « are the parameters (i.e., coefficients) of local constraints, such that
D(w) is true precisely for all safe decompositions. The problem, however, is that
in general a constraint C; at site 1 may be characterized by an unlimited num-
ber of atomic linear constraints; thus the size of a parametric description (using
coefficients of those constraints) is unbounded. To overcome this problem, we
introduce the notion of compact split safe decompositions, for which we prove
that: (1) there does exist a parametric description of bounded size and (2) the

2

optimum of any monotonic function * among all safe decompositions can always

be found in the subspace of compact split safe decompositions.

INot every family of constraints have such finite characterization, but we prove that the linear
constraints do.

?We claim that any reasonable ”decomposition quality” objective function must be monotonic, i.e.,
intuitively, the more databases instances a decomposition satisfies, the better.

16

o Reducing Decompositions to Resource Distributions. We introduce a resource-
based characterization of split decompositions to reduce the problem of decom-
posing constraints to the problem of distributing resources, which significantly
simplifies the distributed management of constraints. Specifically, every local
constraint C; for site ¢ in a split decomposition D is uniquely associated with a
resource vector® r;, and the global constraint is associated with the global resource
vector, for which we prove that: D is a compact split (safe decomposition) if and
only if the cumulative resource in all sites is bounded by the global resource.
Furthermore, given a database instance, every site ¢ is also associated with a
lower resource bound, for which we prove that: the local database instance at ¢
satisfies its local constraint if and only if its resource is bounded from below by
its lower resource bound. In addition, every site is associated with its resource
upper bound. The resource and its bounds for every site constitute a resource
distribution, which a protocol can maintain instead of explicit local constraints
and database instance. The key advantage of a resource distribution is its small
size of O(nc) as compared with the size O(ncxnv) of a constraint decomposition,
where nc and nv are the number of constraints and variables, respectively, in the
global constraint. In fact, nv may be as large as the size of a database, for ex-
ample when the global constraint reflects that the summation of some quantity,

one per relational tuple, is bounded by a constant.

3the dimension of this and other resource vectors equals to the number of atomic linear constraints
(i.e., linear inequalities over reals) in the global constraint.

17

o Concurrent Split Decompositions. To manage concurrent constraint decomposi-
tions, a protocol needs to be able to (re-)decompose constraints autonomously in
a (small) subset 6 of sites, when the constraints and database instances outside
0 are unknown, and, furthermore, may change. * The only imposed limitation is
the property of resource partition By w.r.t. 6, that is, the cumulative resources
of sites in and outside # must be bounded by their current resource upper bounds
By and its complement, respectively. We show that the decompositions can be
done autonomously in § by proving that, given a database instance for sites in
6, the following are equivalent: (1) there exists a (partial) permissible resource

distribution for sites in # w.r.t. By, i.e., such that for each site in 8 its re-

“
source is bounded between its lower and upper bounds, and that the cumulative
resource upper bound in 0 is exactly By, and (2) there exists a (full) compact
split (safe decomposition) of the global constraint that satisfies resource partition
w.r.t. By and local consistency. Furthermore, we show that optimal constraint
decomposition adhering to resource partition can also be achieved autonomously
in 0. Specifically, we prove that, given any (1) resource partition By, (2) local
constraints outside # (and possibly (3) a database instance satisfying the local
constraint outside #), an optimal (partial) safe decomposition in 6 adhering to

the resource partition By and, possibly, to local consistency w.r.t. the database

instance yields a (full) safe decomposition that is optimal among all safe decom-

Note that constraint preservation property is not adequate for this purpose because it assumes
that the constraints outside f are fixed (and known).

18

positions that hold the same properties plus the partial constraint preservation
w.r.t. the local constraints outside §. Moreover, we show that combining optimal
(partial) safe decompositions for sites in and outside 6 that satisfy resource parti-
tion By and, possibly, local consistency yields an optimal (full) safe decomposition

with the same properties.

o Parametric Characterization of Objective Function and its localization. While
the parametric characterization of compact split decompositions is applicable to
any monotonic objective function, we consider a specific optimization function in
more detail: mazimizing the probability of not violating local constraints. Specif-
ically, we provide an analytical expression of this probability function in terms
of parametric characterizations of compact split decompositions (i.e., resources),
which we do by using the polyhedron volume function [CHT79, Las83, Bea96],
under the uniform distribution assumption of database instances, described pre-
cisely in Section 2.6. We also express this function in terms of partial resource
distribution, so that the optimization could be done within a (small) subset of

sites.

Third, we actually develop and partly implement an algorithmic framework to solve
the resulting mathematical programming problems, for the case of maximizing the
probability of not violating local constraints. For this case, the constructed optimiza-

tion problems in terms of parametric descriptions have linear constraints and a non-

19

linear objective function, which is based on a parametric representation of the volume
function. For safe decompositions, when each local constraint is in a single variable,
the constructed objective function turns out to be concave; this property enables us to
use a global search algorithm. We adopt the Frank-Wolfe algorithm [BS79, Kam84] to
solve it. For other cases, the objective function is not concave and we use local search
techniques in the algorithmic framework, that incorporate the Frank-Wolfe algorithm
for search in local neighborhoods. To run experiments and prove the feasibility of the
approach we have implemented an optimization engine for safe decompositions with
local constraints in single variables. The experiments suggest that the approach is
feasible and scalable, but more experimental study will be necessary to fine-tune and
extend the algorithms for various specific cases.

Fourth, in order to exemplify the use of constraint decomposition techniques, we
develop a distributed (tunable) protocol to manage resource distributions (i.e., local
updates and concurrent distributed constraint decompositions) in the presence of site
and network failures. We formulate desirable properties to hold for such a proto-
col, namely, local and global Consistency, decomposition Safety and Optimality and
Last-resort update refusal (CSOL-properties), and come up with Distributed Protocol
Assumptions under which, we prove, the CSOL-properties must hold. The suggested
protocol satisfies the assumptions and thus possesses the CSOL-properties, but many
other protocols are possible. In particular, our results are readily available to extend,

with a significantly more powerful class of constraints and the guaranteed CSOL prop-

20

erties, a variety of database protocols, including [BGM92] for distributed databases and
[SS90] for supporting local transactions in the presence of network partitions. Also, our
results on decomposing constraints can easily extend [SK95, SK97] dealing with quasi-
views, where global conditions (constraints) for re-materialization can be decomposed

among subviews.

2.1.4 Related Work

The body of work on constraints in databases is too large to attempt to survey. The
problem of integrity constraint verification has drawn much attention (e.g., [BGM92,
GM9I1, GW9I3, Maz93, Qia89, QS87, SV86]). This includes local verification of global
constraints in distributed databases (e.g., [BGM92, GM91, GW93, Maz93, Qia89,
SV86, GSE*97, Huy97]). However, none of the works on local verification, to the
best of our knowledge, has solved the problem of optimal selection of local constraints.

More closely associated with our work are the works [BGM92, SS90, MY 98] which
deal with numerical constraints, and the works [Las, LM92, HJLL] which consider para-
metric linear constraint queries and their connection to Fourie’s elimination method;
the work on parametric queries, however, assumes that the number of parameters (i.e.,
coefficients) is bounded, which is not the case for our safe decompositions.

Perhaps most closely related is the work of [BGM92], which was the first to consider
verification of linear arithmetic constraints in the context of distributed databases. It

considers a single atomic linear constraint at the global level. Intuitively, an atomic

21

constraint must be such that it could be decomposed between two sites storing indi-
vidual variables using some constant boundaries °. For example, the global constraint
A+ B > 100 can be decomposed into two local constraints A > « and B > b, where
a and b are constants such that ¢ + b > 100; or the global constraint A < B can
be decomposed into A < @ and b < B, where a < b. The focus in [BGM92] is on
the “demarcation” distributed protocol which is concerned with efficient (in terms of
communication and other costs) negotiation between two sites on synchronizing the
change in constant boundaries, in case a local update violated its local constraint.

The work [SS90] uses an idea similar to the demarcation of [BGM92] €, in the
context of network partition failures, in order to overcome the problem by trying to
perform transactions locally. Similar to [BGM92], a global constraint in the example
considered in [SS90] is a single linear inequality of the form x; + ... + 2, < ¢, which
is split among n sites (i.e., a single variable per site) by giving each site a quota of
c. However, [SS90] focuses on the distributed transaction management and leaves the
problem of how to achieve constraint decompositions, as well as the question on what
constraint families its techniques are applicable open.

The recent work [MY98] extends the demarcation protocol of [BGM92] by consid-
ering a wider class constraints: linear, quadratic and polynomial constraints. A global
constraint is a single inequality that is decomposed into local constraints involving one

variable per site. Since for this case, the property of safety corresponds geometrically to

SThere is no precise formulation of the allowed atomic constraints in [BGM92).
bIn fact, [SS90] is earlier.

22

containment of a multidimensional rectangle in the shape described by the global con-
straint (inequality), [MY98] suggests the use of geometrical techniques for (dynamic)
decompositions. However, geometrical techniques (e.g., from computational geome-
try) are restricted to low dimension (i.e., small overall number of variables) whereas
typically distributed databases involve a large number of variables used in the global
constraint (e.g., Crisis Management Scenario).

In contrast to [BGM92, SS90, MY98], our methods on linear arithmetic constraints
have none of the above-mentioned restrictions, i.e., we allow atomic linear inequalities
of any general form, a global constraint may have any number of atomic constraints,
constraints may be partitioned among any number of sites, and each site may have
not just one, but any number of variables. Furthermore, ours is the only work sug-
gesting achieving optimal decompositions, and providing a comprehensive solution for
it. Moreover, our decompositions can work for different scenarios, i.e., with different
assumptions regarding what is known at the time of a decomposition.

The work [Maz93] dealt with first-order (not numerical) constraints, in the context
of distributed databases, and suggested certain heuristics to select better decompo-
sitions. However, the questions of how, and under what conditions, these heuristics
relate to optimization criteria such as maximizing the probability of not violating local
constraints and the optimality of decomposition was not considered.

The work [QS87] has also considered a certain class of first-order (not numerical)

constraints in the context of equivalent reformulation of a constraint (which is dif-

23

ferent from our safety) in the presence of additional semantic information (not for a
distributed environment). They also suggested some heuristics, based on costs of con-
straint verification and reformulation, but no algorithm or guarantee of optimality in
any sense was provided. Finally, [Qia89] applied the techniques of [QS87] for equivalent

constraint reformulation in the context of distributed databases.

2.1.5 Organization

The chapter is organized as follows. Following the introduction, Section 2.2 provides a
formal framework for selecting optimal decompositions, which is generic for all types
of constraints. In Section 2.3 we then concentrate on linear arithmetic constraints.
Section 2.4 concentrates on parametric characterizations for the case when each dis-
tributed site has just one variable, while Section 2.5 considers the case of unrestricted
variable partitions. Section 2.6 discusses the local uniformity assumptions on the up-
date space, a specific optimization function and its localization. In Section 2.7 we
describe the distributed protocol manage global (integrity) constraints and its proper-
ties. Section 2.8 focuses on actual algorithms, implementation and experiments with a

number of decomposition examples.

