
On Optimal Constraint Management in

Distributed Databases

Alexander Brodsky� Larry Kerschberg

Samuel Varas y

Department of Information and Software Engineering

George Mason University

Fairfax, VA 22030-4444

Abstract

The problem considered is that of decomposing a global integrity

constraint in a distributed database into local constraints for every lo-

cal site, such that the local constraints serve as a conservative approxi-

mation, i.e., satisfaction of the local constraints by a database instance

guarantees satisfaction of the global constraint. Verifying local rather

than global constraints during database updates reduces distributed

processing costs and allows most updates, even in the presence of site

and network failures. This paper focuses on the problem of deriving

the best possible decompositions, both at database design and update
processing time. A generic and powerful framework is formulated for

�nding optimal decompositions for a range of design and update-time

scenarios, and a comprehensive solution is provided for the case of

general linear constraints, which are widely used in distributed ap-

plications such as resource allocation, reservations, �nancial transac-

tions, and logistics. The comprehensive optimization-based solution

includes (1) reducing the problem to mathematical programming, (2)

developing algorithms for it, and (3) providing a distributed protocol

to manage local updates and concurrent distributed constraint decom-

positions in the presence of site and network failures, while guaran-

teeing the desirable properties of consistency, safety, decomposition
optimality and last-resort update refusal.

�Contact Author. E-mail:brodsky@isse.gmu.edu
yFaculty member of the Industrial Engineering Department at the University of Chile

1

Contents

1 Introduction 3
1.1 Local Veri�cation of Global Integrity Constraints 3
1.2 Crisis Management Scenario Example 3
1.3 Contributions . 5
1.4 Related Work . 10
1.5 Organization . 13

2 Decomposition Optimization Framework 13
2.1 Safe Decompositions . 13
2.2 Optimization Problem Formulation 16
2.3 Optimization Criteria . 18

3 Linear Arithmetic Constraints 19

4 Partitions with Single Variable per Site 21
4.1 Parametric Characterization 21
4.2 Parametric Optimization Problem 24

5 General Variable Partitions 25
5.1 Split Decompositions . 25
5.2 Resource Characterization . 30
5.3 Resource Distributions and Concurrent Splits 33

6 Maximizing Probability of Not Violating Local Constraints 37
6.1 Uniformity Assumptions . 37
6.2 Parametric Representation . 38

7 Distributed Protocol 42

8 Algorithms, Implementation and Experiments 51

9 Conclusions 55

2

1 Introduction

1.1 Local Veri�cation of Global Integrity Constraints

Increasingly, enterprise-wide information systems are being built in distribu-
ted, heterogeneous environments. The prevalence of the Internet and the
World Wide Web [4] allows designers to incorporate data and information
from multiple sources. In those systems centralized control may be di�cult,
if not impossible, due to the autonomy of the local constituents, which in-
dicates that highly autonomous federated distributed architectures [18] are
more appropriate. Often, coordination of components in distributed systems
involves constraint-based agreements, which can be viewed as global integrity
constraints [15]. These global database integrity constraints are di�cult to
monitor, update and enforce in distributed environments, so that new, dis-
tributed techniques and protocols are desirable.

To reduce the costs of distributed management of global constraints, the
idea of local veri�cation of global constraints was introduced and studied
(e.g., [2, 1, 9, 12, 23, 25, 29, 11]). The idea is to decompose a global con-
straint into a set of local ones that will serve as a conservative approximation,
such that satisfaction of local constraints by a database instance guarantees
satisfaction of the global constraint. When a local site i is being updated,
if the update satis�es its local constraint Ci, no global constraint checking
is necessary. Thus, most of the work can be delegated to local processing,
thereby saving communication and other distributed processing costs. The
ability to perform updates autonomously is also very important in the pres-
ence of site or network failures [30].

While the above-mentioned works have considered many aspects of local
veri�cation (see Related Work), the problem of �nding optimal constraint de-
compositions and distributed constraint-management protocols that achieve
decomposition optimality along with maximal resource utilization has re-
mained open. This is precisely the topic of this paper.

To illustrate the problem of distributed constraint management we now
consider an example of logistics support for crisis management.

1.2 Crisis Management Scenario Example

Emergency service providers (e.g., �re �ghters, medical personnel, military
etc.) must be prepared to respond e�ciently to crises such as oods, �res

3

and earthquakes. In order to perform Crisis Management, the enterprise
must �nd, coordinate, allocate, deploy and distribute various resources (such
as food, clothing, equipment, emergency personnel, transportation) to the
victims of a crisis. These resources are typically geographically distributed
among many warehouses, suppliers, military units, local �re departments,
bus terminals, etc. Each location may maintain a local database that stores
and monitors information about available resources and their quantities. Our
distributed database in this example is a loosely-connected collection of local
databases, which are related, however, because of a global constraint on
resources.

The global constraint in such a distributed database may originate, for
example, from a number of pre-de�ned crisis management scenarios that re-
quire that certain amounts of resources be delivered to any potential disaster
area within bounded time using available transportation. For example, a
Hurricane Relief Mission to Florida may require that the following resources
be delivered there in 24 hours: 1) su�cient canned food to feed 30,000 people
for 4 days, 2) a supply of tents to support a tent city of 20,000 people, 3)
medicines and vaccines to inoculate the tent city residents against cholera,
4) computers and communications equipment to support the coordination,
command and control functions of the mission, 5) 10 medical units with med-
ical personnel and portable facilities to care for victims, and 6) military and
civilian personnel to sta� the mission.

For this scenario, the global integrity constraint would reect that, for
each resource type above, the overall amount of this resource available in all
locations reachable in 24 hours (with the available transportation) is greater
than or equal to the amount required in the scenario. Note that some re-
sources are composed of other resources, which also needs to be reected by
the global constraint. For example, each of the required 10 medical units (re-
source 1) is composed of 2 physicians (resource 2), 5 paramedics (resources
3) and must have 2 tents (resource 4), 2000 vaccination packages (resource
5), 500 �rst aid packages (resource 6), etc. In turn, each vaccination package
may be composed of certain quantities of other items and so on.

When a local site of the distributed database is being updated, for exam-
ple when a certain amount of materiel is taken from a warehouse (not nec-
essarily for crisis support), the update can only be allowed if it satis�es the
global integrity constraint, which depends, in general, on the global database
instance, not just on the updated local instance. Therefore, veri�cation of the
global constraint would require a distributed transaction involving possibly

4

hundreds of loosely-connected distributed sites, which could be an extremely
expensive and time-consuming operation, especially when protocols such as
two-phase commit are used to guarantee the standard properties of trans-
action atomicity, consistency, isolation and durability (e.g., [15]). Moreover,
such a distributed transaction would often not be possible in the presence of
site and network failures, whereas the robustness feature, i.e., the ability to
operate in the presence of (partial) failures, is crucial for applications such as
Crisis Management. In short, local veri�cation of the global constraint can
signi�cantly reduce distributed processing costs and increase system robust-
ness in the presence of failures. This paper develops mathematical machinery
and protocols for managing local veri�cation of the global constraints, pre-
cisely for the described type of applications. We next describe the speci�c
contributions and how they help in applications such as Crisis Management.

1.3 Contributions

This paper focuses on the problem of deriving and managing the best possi-
ble global integrity constraint decompositions, during both database design
and update processing. It formulates a generic and powerful framework for
�nding optimal decompositions for a range of design and update-time sce-
narios, and provides a comprehensive solution for the case of general lin-
ear constraints, which are widely used in distributed applications such as
resource allocation, reservations, �nancial transactions, and logistics, of the
kind described in the Crisis Management Scenario example. The comprehen-
sive optimization-based solution includes (1) reducing the problem to math-
ematical programming, (2) developing algorithms for it, and (3) providing
a distributed protocol to manage local updates and concurrent distributed
constraint decompositions in the presence of communication and site failures,
while guaranteeing the desirable properties of consistency, safety, optimality
and last-resort update refusal.

More speci�cally, the contributions of this paper are as follows. First, we
introduce a generic optimization framework to achieve best decompositions
by de�ning (1) the solution space of feasible decompositions (explained below)
(C1; : : : ; CM) of the global constraint
 over M distributed sites, and (2) the
objective function that can describe a variety of optimization criteria, such as
1) the probability that an update satis�es its local constraint, 2) the expected
number of updates before the �rst update that violates a local constraint, or
3) the expected overall cost of operations during an update.

5

The solution space of all feasible decompositions is the set of decompo-
sitions having the �rst and possibly other properties from the following list
(depending on what is known at decomposition time):

1. Safety, i.e., satisfaction of local constraints by a database instance must
guarantee satisfaction of the global integrity constraint.

2. Local Consistency with respect to (w.r.t.) a given database instance,
i.e., each local instance must satisfy its local constraint (i.e., at the
same local site). Clearly, local consistency and safety imply global con-
sistency.

3. Partial Constraint Preservation w.r.t. a given subset � of sites and
for �xed local constraints for sites outside �, i.e., the decompositions
cannot change the given local constraints outside �.

4. Resource partition B� w.r.t. a subset � of sites. This property is based
on the notion of resources and their upper bounds (explained below) as-
sociated with each local constraint and the global constraint. Resource
partition means that the global constraint resource upper bound is
partitioned between the sites inside and outside �, and the cumula-
tive resources of sites inside and outside � must be bounded by their
corresponding upper bounds. The notion of resource partition is more
exible than constraint preservation, and allows concurrent constraint
(re-) decompositions.

One or more of the properties 1-4 are required for various decomposition
scenarios, depending on what is known at the time of a decomposition. For
example, to design a Crisis Management database schema and local con-
straints when no actual database instance is known, only the property of
safety is required, while local consistency is not applicable. Often, only a par-
tial design is required when local constraints for most sites have already been
�xed, in which case the property of partial constraint preservation is needed
in addition to safety. Assume now that the Crisis Management database
is operational, and the current local constraints entail the global constraint
(i.e., safety) and the current database instance satis�es the local constraints
(i.e., local consistency). Consider an update at site i, for example when a cer-
tain number of blankets is being taken from a warehouse, and the number of
remaining blankets, stored at local database site i, has to be updated. If the

6

update satis�es the current local constraint at site i, no processing except for
the update itself is necessary, because safety guarantees that the global con-
straint is satis�ed. However, if the update violates the local constraint (i.e.,
local consistency no longer holds), a protocol can try to �nd a new feasible
decomposition of the global constraint that will regain local consistency and
still be safe. A more sophisticated protocol may try to re-decompose con-
straints only in a (hopefully small) subset � of (well-connected) sites, which
would be done under the assumption that the cumulative resources inside and
outside � will stay within their corresponding resource upper bounds, i.e., a
new feasible decomposition will have the property of resource partition, in
addition to safety and local consistency.

Second, for the case of general linear arithmetic constraints, we reduce
the optimization-based framework to a standard, �nitely-speci�ed problem
of mathematical programming. This is done by proving the existence of
and actually developing a �nite parametric (i.e., in terms of coe�cients)
characterization of the properties 1-4 of feasible decompositions together with
optimization criteria 1, as follows:

� Compact Split Decompositions. Given a global constraint
, a paramet-
ric characterization of safe decompositions means formulating a con-
straint D(~w) whose variables ~w are the parameters (i.e., coe�cients) of
local constraints, such that D(~w) is true precisely for all safe decom-
positions. The problem, however, is that in general a constraint Ci at
site i may be characterized by an unlimited number of atomic linear
constraints; thus the size of a parametric description (using coe�cients
of those constraints) is unbounded. To overcome this problem, we in-
troduce the notion of compact split safe decompositions, for which we
prove that: (1) there does exist a parametric description of bounded
size and (2) the optimum of any monotonic function 2 among all safe
decompositions can always be found in the subspace of compact split
safe decompositions.

� Reducing Decompositions to Resource Distributions. We introduce a
resource-based characterization of split decompositions to reduce the

1Not every family of constraints has such a �nite characterization, but we prove that
the linear constraints do.

2We claim that any reasonable \decomposition quality" objective function must be
monotonic, i.e., intuitively, the more database instances a decomposition satis�es, the
better.

7

problem of decomposing constraints to the problem of distributing re-
sources, which signi�cantly simpli�es the distributed management of
constraints. Speci�cally, every local constraint Ci for site i in a split
decomposition D is uniquely associated with a resource vector3 ri, and
the global constraint is associated with the global resource vector, for
which we prove that: D is a compact split (safe decomposition) if and
only if the cumulative resource at all sites is bounded by the global
resource. Furthermore, given a database instance, every site i is also
uniquely associated with a lower resource bound, for which we prove
that: the local database instance at i satis�es its local constraint if and
only if its resource is bounded from below by its lower resource bound.
In addition, every site is associated with its resource upper bound. The
resource and its bounds for every site constitute a resource distribution,
which a protocol can maintain instead of the explicit local constraints
and database instance. The key advantage of a resource distribution is
its small size of O(nc) as compared with the size O(nc � nv) of a con-
straint decomposition, where nc and nv are the number of constraints
and variables, respectively, in the global constraint. In fact, nv may
be as large as the size of a database, for example when the global con-
straint reects that the summation of some quantity, one per relational
tuple, is bounded by a constant.

� Concurrent Split Decompositions. To manage concurrent constraint de-
compositions, a protocol must be able to (re-) decompose constraints
autonomously in a (small) subset � of sites, when the constraints and
database instances outside � are unknown, and, furthermore, may cha-
nge. 4 The only imposed limitation is the property of resource partition
(B�, B�) between sites inside and outside �, that is, the cumulative re-
sources of sites inside and outside � must be bounded by their current
resource upper bounds B� and B�, respectively. We show that the de-
compositions can be done autonomously in � by proving that, given a
database instance for sites in �, the following are equivalent: (1) there
exists a (partial) resource distribution (which we call permissible) for
sites in � such that for each site in � its resource is bounded between

3The dimension of this and other resource vectors equals the number of atomic linear
constraints (i.e., linear inequalities over reals) in the global constraint.

4Note that the constraint preservation property is not adequate for this purpose because
it assumes that the constraints outside � are �xed (and known).

8

its lower and upper bounds, and that the cumulative resource upper
bound in � is B�, and (2) there exists a (full) compact split (safe de-
composition) of the global constraint that satis�es resource partition
w.r.t. B� and local consistency. Furthermore, we show that optimal
(full) constraint decompositions adhering to resource partition can also
be achieved autonomously in �. Speci�cally, assume that we are given
any (1) resource partition B�, (2) local constraints outside � and, pos-
sibly, (3) a database instance satisfying the local constraints outside �.
We prove that an optimal (partial) safe decomposition in � adhering
to the resource partition B� and, possibly, to local consistency w.r.t.
the database instance yields a (full) safe decomposition that is optimal
among all safe decompositions that hold the same properties plus the
partial constraint preservation. Moreover, we show that combining op-
timal (partial) safe decompositions for sites inside and outside � that
satisfy resource partition B� and, possibly, local consistency yields an
optimal (full) safe decomposition with the same properties.

� Parametric Characterization of Objective Function and its Localization.
While the parametric characterization of compact split decompositions
is applicable to any monotonic objective function, we consider a spe-
ci�c optimization criterion in more detail: maximizing the probability
of not violating local constraints. Speci�cally, we provide an analytical
expression for this probability function in terms of parametric char-
acterizations of compact split decompositions (i.e., resources), which
we do by using the polyhedron volume function [7, 19, 5], under the
uniform distribution assumption of database instances, described pre-
cisely in Section 6. We also localize this function for a subset � of sites,
i.e., �nd a function that is expressed only in terms of, and used for
optimizing, partial resource distributions in �.

Third, we actually develop and partly implement an algorithmic frame-
work to solve the resulting mathematical programming problems, for the case
of maximizing the probability of not violating local constraints. For this case,
the constructed optimization problems in terms of parametric descriptions
have linear constraints and a non-linear objective function, which is based on
a parametric representation of the volume function. For safe decompositions,
when each local constraint is in a single variable, the constructed objective
function turns out to be concave; this property enables us to use a global
search algorithm. To solve it, we adopt the Frank-Wolfe algorithm [3, 17],

9

which has linear convergence rate and, at each iteration, solves a linear (pro-
gramming) problem. For other cases, the objective function is not concave
and we use local search techniques in the algorithmic framework, that incor-
porates the Frank-Wolfe algorithm for search in local neighborhoods. To run
experiments and prove the feasibility of the approach we have implemented
an optimization engine for safe decompositions with local constraints in sin-
gle variables. The experiments suggest that the approach is feasible and
scaleable, but more experimental study will be necessary to �ne-tune and
extend the algorithms for various speci�c cases.

Fourth, in order to exemplify the use of our constraint decomposition
techniques, we develop a distributed (tunable) protocol to manage resource
distributions (i.e., local updates and concurrent distributed constraint de-
compositions) in the presence of site and network failures. We formulate
desirable properties for such a protocol to insure, namely, local and global
Consistency, decomposition Safety and Optimality and Last-resort update re-
fusal (CSOL-properties), and provide Protocol Assumptions under which the
CSOL-properties hold for the suggested protocol. However, many other pro-
tocols are possible. In particular, our results can extend, with a signi�cantly
more powerful class of constraints and the guaranteed CSOL properties, a
variety of database protocols, including the Demarcation protocol of [2, 1] for
distributed databases and the Data-value Partitioning and Virtual Message
schemes of [30] for supporting local transactions in the presence of network
partitions. Also, our results on decomposing constraints can easily extend
[27, 28] dealing with quasi-views, where global conditions (constraints) for
re-materialization can be decomposed among subviews.

1.4 Related Work

The problem of reformulation of global integrity constraints for easier veri�ca-
tion, including local veri�cation of global constraints in distributed databases,
has drawn much attention (e.g., [29, 30, 26, 25, 2, 1, 9, 12, 23, 11, 13]). More
closely associated with our work are the works [2, 1, 30, 24] which deal with
local veri�cation of numeric constraints, and the works [20, 21, 14] which con-
sider applications of parametric linear constraint queries and their connection
to Fourier's elimination method [8]. While the setting in [20, 21, 14] is very
di�erent from ours, we use very similar techniques for parametric character-
ization of constraints (in our case satisfying safety). However, the work on
parametric queries assumes that the number of parameters (i.e., coe�cients)

10

is bounded, whereas our main technical di�culty is that safe decompositions
do not have a bound on a number of parameters. Furthermore, [20, 21, 14]
are not concerned with such notions as resource characterization, or other
issues speci�c to distributed protocols, including the properties of feasible
decompositions, concurrency, decompositions in the presence of partial data,
and an optimization framework for safe decompositions.

Perhaps most closely related to our work is the work of [2, 1], which was
the �rst to consider veri�cation of linear arithmetic constraints in the context
of distributed databases. It considers a single atomic linear constraint at the
global level. Intuitively, an atomic constraint must be such that it could
be decomposed between two sites storing individual variables using some
constant boundaries5. For example, the global constraint A + B � 100 can
be decomposed into two local constraints A � a and B � b, where a and
b are constants such that a + b � 100; or the global constraint A � B
can be decomposed into A � a and b � B, where a � b. The focus in
[2, 1] is on the \demarcation" distributed protocol which is concerned with
e�cient (in terms of communication and other costs) negotiation between
two sites on synchronizing the change in constant boundaries, in case a local
update violates its local constraint. However, the question of how to achieve
constraint decompositions was not addressed.

The work [30] uses an idea similar to the demarcation of [2, 1]6, in the
context of network partition failures, in order to overcome the problem by
trying to perform transactions locally. Similar to [2, 1], a global constraint
in the example considered in [30] is a single linear inequality of the form
x1+ : : :+xn � c, which is split among n sites (i.e., a single variable per site)
by giving each site a quota of c. However, [30] focuses on the distributed
transaction management issue but does not address the problem of how to
achieve constraint decompositions, or what constraint types, beyond the form
given above, can be handled by its techniques.

The recent work [24] extends the demarcation protocol of [2, 1] by consid-
ering a wider class of constraints: linear, quadratic and polynomial. A global
constraint is a single inequality that is decomposed into local constraints in-
volving one variable per site. Since for this case, the property of safety
corresponds geometrically to containment of a multidimensional rectangle in
the shape described by the global constraint (inequality), [24] suggests the

5There is no precise formulation of the allowed atomic constraints in [2, 1].
6In fact, [30] is earlier.

11

use of geometrical techniques for (dynamic) decompositions. However, geo-
metrical techniques (e.g., from computational geometry) are restricted to low
dimension (i.e., small overall number of variables) whereas typical distributed
databases involve a large number of variables used in the global constraint
(e.g., Crisis Management Scenario).

In contrast to [2, 1, 30, 24], our methods for linear arithmetic constraints
have none of the above-mentioned restrictions, i.e., we allow atomic linear
inequalities of any general form, a global constraint may have any number
of atomic constraints, constraints may be partitioned among any number of
sites, and each site may have not just one, but any number of variables. Fur-
thermore, ours is the only work that provides a comprehensive framework and
a full solution for achieving optimal decompositions for the case of general
linear constraints. Moreover, our decompositions can work for di�erent sce-
narios, i.e., with di�erent assumptions regarding what is known at the time of
a decomposition. In fact, among the works on local veri�cation, to the best
of our knowledge, only the work [25] considers a framework for achieving
optimal decompositions, but this is done for the �rst-order (non-numeric)
fragmentation constraints and in a di�erent setting (i.e., when additional
semantic information is known.)

The work [23] dealt with �rst-order (non-numeric) constraints, in the con-
text of distributed databases, and suggested certain heuristics to select better
decompositions. However, the questions of how, and under what conditions,
these heuristics relate to optimization criteria such as maximizing the prob-
ability of not violating local constraints and the optimality of decomposition
were not considered.

The work [26] considered a certain class of �rst-order (non-numeric) con-
straints and presented an approach of equivalent reformulation (which is
di�erent from our safety) in the presence of additional semantic information
(not for a distributed environment). They also suggested some heuristics,
based on costs of constraint veri�cation and reformulation, but no algorithm
or guarantee of optimality in any sense was provided. Finally, [25] applied the
techniques of [26] to database design in distributed environments and used
an inference engine as a (local constraints) space generator for all (�nitely
many) alternatives of distributing a global constraint. They also presented
heuristics for balancing the cost of constraint distribution and the e�ciency
of constraint veri�cation.

12

1.5 Organization

The paper is organized as follows. Following the introduction, Section 2
provides a formal framework for selecting optimal decompositions, which is
generic for all types of constraints. In Section 3 we then concentrate on linear
arithmetic constraints. Section 4 studies parametric characterizations for the
case when each distributed site has just one variable, while Section 5 consid-
ers unrestricted variable partitions. Section 6 discusses the local uniformity
assumptions on the update space, a speci�c optimization function and its
localization. In Section 7 we describe the distributed protocol to manage
global (integrity) constraints and its properties. Section 8 focuses on actual
algorithms, implementation and experiments with a number of decomposi-
tion examples. Finally, Section 9 concludes and identi�es some directions for
future work.

2 Decomposition Optimization Framework

In this section we de�ne the central notion of safe decompositions, and for-
mulate our problem as one of �nding the best feasible safe decomposition of
a global constraint. The problem formulation in this section, except for the
notion of resources, is applicable to all types of constraints.

2.1 Safe Decompositions

De�nition 1. A constraint C in variables ~x is a Boolean function from the
domain of ~x, to the Boolean set, i.e., C: Domain(~x)! fTrue; Falseg

By a slight abuse of notation ~x will denote either a vector or a set of
variables.

De�nition 2. A variable partition P of the set of variables ~x is de�ned as
P = (~y1; : : : ; ~yM), such that ~y1 [~y2 [: : : [~yM = ~x, and ~yi \ ~yj = ; for all i,
j (1 � i; j �M; i 6= j).

De�nition 3. Let
 be a constraint, and P = (~y1; : : : ; ~yM) be a partition
of variables. We say that C = (C1; : : : ; CM) is a decomposition of
, if in
every constraint Ci all free variables are from ~yi. Sometimes we will use
C to indicate the conjunction C1 ^ :: ^ CM . We say that a decomposition
C = (C1; : : : ; CM) is safe if C1 ^ :: ^ CM j=
, i.e., C1; : : : ; CM is subsumed
by
.

13

Figure 1: Safe decompositions of

De�nition 4. Let ~x0 = (~y01; : : : ; ~y
0
M) be a database instance. We say that ~x0

satis�es a decomposition C = (C1; : : : ; CM) if ~y
0
i satis�es Ci for all 1 � i �

M .

Example 1. Consider the following set
 of linear constraints: X +Y � 6,
�X+5Y � 15, 5X+4Y � 15, and both variables X and Y are non-negative.
A graphic representation of
 is given in Figure 1. For the partition P =
(fXg ; fY g) (i.e., two sites with a single variable each), consider three safe
decompositions C 1 ; C 2 ; and C 3 as follows:

C 1 = (C11; C12)

= (f0:5 � X � 2:5g ; f0:5 � Y � 2:5g)

C 2 = (C21; C22); and

= (f0:0 � X � 3:0g ; f0:0 � Y � 3:0g); and

C 3 = (C31; C32)

= (f0:0 � X � 4:0g ; f1:25 � Y � 2:0g):

C 1 is a safe decomposition of
 because every point (X,Y) that satis�es
C11 and C12 will also satisfy
. Geometrically, this means that the space (1)
de�ned by C 1 is contained in the space de�ned by
. Similarly, C 2 and C 3

are safe decompositions of
. Note that the database instance (a; b) satis�es
C 2 , but not C 1 and C 3 .

Note that rectangle (1) (for C 1) is strictly contained in rectangle (2) (for
C 2). Hence, the decomposition C 2 is better than C 1 in the sense that, in C 2

14

we will have to perform global updates less frequently than in C 1 , i.e., less
overhead. This notion is de�ned formally as follows:

De�nition 5. Given a constraint
 and its two decompositions
C 1 = (C11; : : : ; C1M) and C 2 = (C21; : : : ; C2M), we say that C 2 subsumes C 1

(or C 1 is subsumed by C 2) if:

M̂

i=1

C1i j=
M̂

i=1

C2i

We will denote this by C 1 j= C 2 . We say that C 2 strictly subsumes C 1 if
C 1 j= C 2 , but C 2 2 C 1 . Furthermore, we say that a safe decomposition
C is minimally-constrained, if there is no safe decomposition C 0 that strictly
subsumes C . Finally, we say that C 1 is equivalent to C 2 , denoted by C 1 � C 2 ,
if C 1 j= C 2 and C 2 j= C 1 .

Note that in Example 1, C 2 and C 3 are minimally-constrained safe de-
compositions, while C 1 is not.

Proposition 1. Let P = (~y1; : : : ; ~yM) be a variable partition and C be a
conjunction of constraints (C1; : : : ; CM), where Ci (1 � i � M) is over ~yi.
Then, C is satis�able i� for every i, 1 � i �M , Ci is satis�able.

Proof. The ONLY-IF part is immediate, while the IF part follows from the
fact that C1; : : : ; CM do not share variables.

Proposition 2. Let C 1 = (C11; : : : ; C1M) and C 2 = (C21; : : : ; C2M) be two
lists of constraints over ~y1; : : : ; ~yM respectively, for partition P = (~y1; : : : ; ~yM).
Then:

1. If C 1 is satis�able, then C 1 j= C 2 i� for all i, 1 � i � M , C1i j= C2i.

2. If both C 1 and C 2 are satis�able, then C 1 � C 2 i� for all i, 1 � i �M ,
C1i � C2i.

Proof. Part 2 immediately follows from Part 1. In Part 1, the IF direction
is obvious, while the ONLY-IF direction is due the fact that the variable
partition P = (~y1; : : : ; ~yM) is disjoint as follows: Assume that C 1 j= C 2 ,
but, by way of contradiction, for some i, 1 � i � M , C1i 2 C2i. Then,
there exists ~ai over ~yi that satis�es C1i, but not C2i. Since, C 1 is consis-
tent, each C11; : : : ; C1M must be consistent, and therefore there must exist

15

~b1; : : : ;~bM over ~y1; : : : ; ~yM , that satisfy C11; : : : ; C1M , respectively. Then,
~b1; : : : ;~bi�1;~ai;~bi+1; : : : ;~bM satis�es C 1 , but not C 2 , contradicting the fact
that C 1 j= C 2 .

In practical cases, we are only interested in the case when
 is satis�-
able, because otherwise the database must be empty and no update would
be allowed. Technically, however, every unsatis�able (i.e., inconsistent) de-
composition will be safe for an unsatis�able
. If
 is satis�able, then we
have the following:

Proposition 3. Let
 be a satis�able constraint. Then every minimally-
constrained safe decomposition C of
 is satis�able.

Proof. Since
 is satis�able, there exists ~a = (~a1; : : : ;~aM) over ~x that satis�es

. Then, the decomposition C 1 = (~y1 = ~a1; : : : ; ~yM = ~aM) is always a safe
decomposition of
. Consider now an arbitrary minimally-constrained safe
decomposition C . If, by way of contradiction, C is not satis�able, then
C j= C 1 and C 1 2 C , contradicting the minimality of C .

Clearly, safe or even minimally-constrained safe decompositions are not
unique. In our example, both C 2 and C 3 are minimally-constrained, because
there is no other safe decomposition that strictly subsumes C 2 or C 3 .

Since safe decompositions are not unique, an important question is how
to choose a safe decomposition that is optimal according to some meaningful
criterion. In our example, the rectangle with the maximal area may be a
good choice. In fact, if update points (X,Y) are uniformly distributed over
the given space (de�ned by
), then the larger area (volume in the general
case) corresponds to greater probability that an update will satisfy local
constraints, and thus no global processing will be necessary. We defer the
discussion on optimality criteria to Section 2.3.

2.2 Optimization Problem Formulation

We suggest the following general framework for selecting optimal feasible
decompositions:

maximize f(s)

s:t: s 2 S
(1)

16

where S is the set of all feasible decompositions, and f : S! R (real numbers)
is the objective function discussed in the next subsection.

De�nition 6. Let
 be a constraint, C = (C1; : : : ; CM) be a decomposi-
tion of
, � = fk + 1; : : : ;Mg be a subset of sites f1; : : : ;Mg, and ~x0 =
(~y01; : : : ; ~y

0
M) be a database instance. We consider the following properties of

C :

1. Safety. C has this property if it is a safe decomposition of
.

2. Local Consistency. C has this property w.r.t. ~x0 = (~y01; : : : ; ~y
0
M) if

every local instance ~y0i satis�es its local constraint Ci (1 � i � M).
Clearly, local consistency and safety imply global consistency.

3. Partial Constraint Preservation. C = (C1; : : : ; CM) has this property
w.r.t. local constraints C 0

1; : : : ; C
0
M outside � = fk+1; : : : ;Mg if Ci =

C 0
i for all 1 � i � M , i.e., local constraints outside � are �xed to

(C 0
1; : : : ; C

0
k), respectively.

4. Resource PartitionB�. The resource partition property is given only for
families of constraints in which the resource characterization, de�ned in
Section 5, is possible (e.g., linear constraints considered in this paper).
Namely, the global constraint
 is associated with the global resource
bound ~b, each local constraint Ci in the decomposition is associated with
a resource ~ri, and each subset of sites � is associated with the cumulative
resource ~r�. A partition of the global resource bound between � and ��
(i.e., all sites except �) is a pair (~B�; ~B��), such that ~B�+ ~B�� = ~b, which

is identi�ed by ~B�.

We say that a decomposition C has a resource bound partition property
w.r.t. a partition ~B�, if the cumulative resource ~r� is bounded by ~B�,
and ~r�� is bounded by ~B��.

7

Given a set Pr of properties that contains safety and possibly other properties
above, the set SPr of feasible (safe) decompositions w.r.t. Pr is the set of all
decompositions of
 that satisfy the properties in Pr.

Before we discuss how the decomposition problems can be solved e�ec-
tively, we consider possible candidates for function f .

7Note that the notion of resource bound partition is more exible than constraint
preservation, and allows one to perform concurrent constraint decompositions.

17

2.3 Optimization Criteria

There are many feasible (minimally-constrained) safe decompositions in S,
and we would like to formulate a criterion to select the best among them. This
criterion should represent the problem characteristics, and the decomposition
goals. Possible criteria include:

� Maximize the probability that an update will not violate the existing
local constraints (decomposition).

� Minimize overall expected cost of computations during an update.

� Maximize the expected number of updates before the �rst update that
violates local constraints.

� Maximize the expected length of time before an update violates local
constraints.

Many other optimization criteria are possible. However, any reasonable
criteria should be monotonic, as de�ned below.

De�nition 7. Let f be a function from the set of safe decompositions of

to R. We say that f is monotonic if for every two decompositions C 1 ; C 2 of

, C 1 j= C 2 implies f(C 1) � f(C 2).

Intuitively, being monotonic for an optimization criterion means that en-
larging the space de�ned by a decomposition can only make it better.

Note, that if f is monotonic, then f(C 1) = f(C 2) for any two equivalent
decompositions C 1 and C 2 .

As we will see in Section 5, it is often necessary to consider a subspace of
all safe decompositions (without loosing an optimal decomposition).

De�nition 8. Let S be a set of safe decompositions of
.8 A subset S0 of S
will be called a monotonic cover of S if for every decomposition C in S there
exists a decomposition C 0 in S0, such that C 0 subsumes C (i.e., C j= C 0).

The following proposition states that optimal decompositions are not
missed when the search space is restricted to a monotonic cover and the
optimization function is monotonic.

8Not necessarily the set of all safe decompositions of
.

18

Proposition 4. Let S be a (sub) set of all safe decompositions of
, S0 be
a monotonic cover of S, and f be a monotonic function from S to R. Then,
the following two optimization problems yield the same maximum.

1. Problem 1. max f(s), s.t. s 2 S.

2. Problem 2. max f(s), s.t. s 2 S0.

Proof. Suppose the maxima of f in Problems 1 and 2 are achieved by s = C
in S and s = C 0 in S0 respectively. Since S0 � S, f(C 0) � f(C). Now,
since S0 is a monotonic cover of S, there must exist C 0 0 2 S0, such that
C j= C 0 0. Therefore, because f is monotonic, f(C) � f(C 0 0). Finally, since
the maximum of Problem 2 is achieved at C 0 , f(C 0) � f(C 0 0) � f(C). Thus,
f(C 0) = f(C) which completes the proof.

The functions in the above criteria depend on the update distribution
and other assumptions. Speci�cally we consider two assumptions.

� For decompositions that do not have local constraint preservation prop-
erty: We do not know the current database state, but we are given a
probability distribution of database instances in the space de�ned by

.

� For decompositions that satisfy local constraint preservation property:
We are given a current database instance, and a conditional distribution
function of database instances on
.

Now, we present precise methods to characterize the set S, function f , and
algorithms to solve e�ectively the optimization problem (1), for the family
of linear constraints.

3 Linear Arithmetic Constraints

De�nition 9. An atomic linear constraint is an inequality of the form a1x1+
a2x2 + ::: + anxn � b, where a1; a2; :::; an, and b are real numbers, and
x1; x2; ::; xn are variables ranging over the reals.

De�nition 9 de�nes an atomic linear constraint as a symbolic expression.
However, for each instantiation of values into the variables (x1; x2; : : : ; xn),
the inequality a1x1 + a2x2 + : : : + anxn � b evaluates to TRUE or FALSE,
and thus de�nes a Boolean function C : Rn ! fTRUE; FALSEg.

19

De�nition 10. A linear system
 is a conjunction of atomic linear con-
straints.

A linear system
 containing n variables and (a conjunction of) m atomic
linear constraints, can be written as follows:

a11x1 +a12x2 + : : : +a1nxn � b1
a21x1 +a22x2 + : : : +a2nxn � b2
...

...
...

...
...

am1x1 +am2x2 + : : : +amnxn � bm

(2)

This system
 can also be written in matrix notation as the system
A ~x � ~b, where A is the matrix0

BBB@
a11 a12 : : : a1n
a21 a22 : : : a2n
...

...
...

...
am1 am2 : : : amn

1
CCCA (3)

and ~b is the column vector (b1 b2 : : : bm), and ~x is the vector (x1 x2 : : : xn).

Parametric Optimization Problem

To solve the optimization problem for linear arithmetic constraints we want
to rewrite the problem (1), i.e.,

max f(s)

s:t: s 2 S

where S is the set of feasible safe decompositions, into the form

max f(~w)

s:t: �(~w)

where ~w is the set of variables describing coe�cients (i.e., parameters) of
constraints on a decomposition D(~w), and �(~w) is a logical condition in
terms of ~w de�ning the search space

S0 = fD(~w) j �(~w)g

20

such that S0 is a monotonic cover of S.
By Proposition 4, the two problems are equivalent for any user-given

monotonic optimization function, but the latter allows the use of known
mathematical programming methods to solve it.

We reduce the problem (1) to mathematical programming for the case of
an individual as well as a general variable partition as described in Section 4
and 5, respectively, in which we study the problem of parametric character-
ization of decompositions.

4 Partitions with Single Variable per Site

A partition with a single variable per site is of the form P = (fx1g ; : : : ; fxng),
where fx1; x2; : : : ; xng is the set of all variables 9. Although the methods in
Section 5, which deal with general variable partition, encompass the main
results of this section, the single-variable case is conceptually simpler and
helps to introduce the idea of parametric characterization. More importantly,
the single-variable case allows to develop algorithms that are more e�cient
than those for the general case. For these reasons we present the single-
variable case �rst.

4.1 Parametric Characterization

In this case, safe decompositions can be parametrically described using in-
tervals as follows:

Proposition 5. Given a bounded set of constraints
, and an individual
partition P, every decomposition C = (C1; : : : ; Cn) of
 is equivalent to a
decomposition C 0 of
 of the form:

(fu11 � x1 � u21g ; : : : ; fu1n � xn � u2ng) (4)

Proof. Every atomic constraint Ci (1 � i � n) of C over ~x can be written
as xi � vij or zij � xi, where vij and zij are constants. Thus Ci will be
equivalent to u1i � xi � u2i, where u1i = max fzi1; zi2; : : : ; zini

g and u2i =
min fvi1; vi2; : : : ; vini

g.

9Note that this implies n =M.

21

In this section, we will denote the decomposition (fu11 � x1 � u21g,: : : ,
fu1n � xn � u2ng) by D(~u), where ~u = (~u2; ~u1), ~u1 = (u11; u12; : : : ; u1n)
and ~u2 = (u21; u22; : : : ; u2n). We use the notation ~u1 � ~u2 to denote that
u1i � u2i, for all i, 1 � i � n.

To create a parametric characterization of the set of all safe decomposi-
tions we introduce the notion of characterization matrix as follows.

De�nition 11. Given an n � m matrix A, the characterization matrix A0

of A is de�ned as (A+ A�), where both are n�m matrices with elements a+ij
and a�ij respectively, de�ned as follows:

a+ij =

(
aij if aij > 0;

0 otherwise

a�ij =

(
aij if aij < 0;

0 otherwise

In fact, we have developed the notion of characterization matrix so that
the following holds:

Theorem 1. Let S be the system A~x � ~b. Let A0 be the characterization
matrix of A, and S 0 be the system A0~u � ~b and ~u1 � ~u2, where ~u = (~u2; ~u1).
Then, for every ~u01; ~u

0
2 the following are equivalent:

1. ~u0 is a solution of S 0, i.e., A0~u0 � ~b and ~u01 � ~u02

2. Every ~v, ~u01 � ~v � ~u02, is a solution of S, i.e., A~v � ~b

Proof. First, we prove (1)) (2). Assume that ~u0 = (~u01; ~u
0
2) is a solution

of S 0. Let ~v be a vector such that u01i � vi � u02i for all i, i � i � n. By
multiplying vi � u02i by a non-negative number �+

i , we get �
+
i vi � �+

i u
0
2i for

all i, 1 � i � n. Now, choosing �+
i 's as the elements of j

th column of A+,
and making a summation for all possible elements in that row, we get:

nX
i=1

a+jivi �
nX
i=1

a+jiu
0
2i (5)

and extending for all possible rows in A+, we get:

A+~v � A+~u02 (6)

22

Repeating the same operations for u01i � vi, i.e., multiplying by a non-positive
number ��

i , we get: �
�
i u

0
1i � ��

i vi for all i, 1 � i � n. Now, choosing ��
i 's as

the elements of jth column of A�, and making a summation for all possible
elements in that row, we get:

nX
i=1

a�jiu
0
1i �

nX
i=1

a�jivi (7)

and extending for all possible rows in A�, we get:

A�~u01 � A�~v (8)

Now, adding (6) and (8) we get:

A+~v + A�~v � A+~u02 + A�~u01 (9)

We know that ~u0 = (~u02; ~u
0
1) is a solution of A0~u � ~b, then:

A+~v + A�~v � ~b or

(A+ + A�)~v � ~b
(10)

Therefore, by de�nition of A+ and A�, A~v � ~b, i.e., ~v is a solution of S,
which completes the proof (1)) (2).

We prove now that (2)) (1),by proving : (1)) : (2). Assume that ~u0

is not a solution of S 0, i.e., vector ~u0 does not satisfy A0~u � ~b. Then, there
exists a column j such that:

nX
i=1

a+iju
0
2i +

nX
i=1

a�iju
0
1i > bj (11)

Consider a vector ~v de�ned as follows:

vi =

8><
>:
u02i if a+ij > 0;

u01i if a�ij < 0;

u02i if a+ij = a�ij = 0

Clearly, ~u01 � ~v � ~u02. Then, we can rewrite (11) as

nX
i=1

aijvi > bj (12)

Therefore, ~v is not a solution to A~x � ~b. This completes the proof.

23

4.2 Parametric Optimization Problem

We are now ready to characterize parametrically the optimization problem
of safe decompositions of
.

Proposition 6 (Parametric Feasible Properties). Let
 = A~x � ~b be
a global satis�able constraint, P = (x1; : : : ; xn) be an individual variable
partition of ~x, A0 the characterization matrix of A, ~x0 = (x01; : : : ; x

0
n) be an

instance of ~x, � be a subset fk + 1; : : : ;Mg of sites f1; : : : ;Mg and �� be its
complement, and D(u011; u

0
21; : : : ; u

0
1k; u

0
2k) be a (partial) ��-safe decomposition

that satis�es (x01; : : : ; x
0
k). Then, for any decomposition D(u11; : : : ; u1n; u21;

: : : ; u2n)

1. D(u11; : : : ; u1n; u21; : : : ; u2n) is safe i� A0~u � ~b and ~u1 � ~u2. We
denote this condition by �safe(~u).

2. D(u11; : : : ; u1n; u21; : : : ; u2n) satis�es local consistency w.r.t. ~x0 i� for
all i, 1 � i � n, u1i � x0i � u2i. We denote this condition by �lc(~u).

3. D(u11; : : : ; u1n; u21; : : : ; u2n) satis�es partial constraint preservation w.
r.t. ��-safe decomposition D(u011; u

0
21; : : : ; u

0
1k; u

0
2k) i� u11 = u011; u21 =

u021; : : : ; u1k = u01k; u2k = u02k. We denote this condition by �pcp(~u).

Proof. 1) follows directly from Theorem 1 and Proposition 5. IF-part: if

A0~u � ~b and ~u1 � ~u2, by Theorem 1 (i.e., (1)) (2)), D(~u) is safe. ONLY-
IF-part: if D(u11; : : : ; u1n; u21; : : : ; u2n) is safe, i.e., ~u1 � ~u2. Since D(~u) is
a safe decomposition, the condition (2) of Theorem 1 holds, and thus the

condition (1), namely A0~u � ~b and ~u1 � ~u2, which completes this part of the
proof.

Now, 2) follows from the de�nition of local consistency, and 3) This follows
directly from partial constraint preservation de�nition.

We denote by Ssafe, Slc, Spcp the set of safe decompositions, the set
of decompositions satisfying local consistency w.r.t. ~x0, and decomposi-
tions satisfying partial constraint preservation w.r.t. a �-safe decomposition
D(u011; u

0
21; : : : ; u

0
1k; u

0
2k) respectively. We will use Pr to denote a subset of

the set of properties fsafety; lc; pcpg. Finally, set SPr will denote the set
of all decompostions that satisfy the properties Pr, i.e., SPr = \p2PrSp,
and �Pr(~u) will be the conjunction of the corresponding conditions, i.e.,

24

�Pr(~u) = ^p2Pr�p(~u). We can now represent the problem of �nding an opti-
mal decomposition parametrically, making it possible to apply mathematical
programming techniques.

Theorem 2 (Parametric Optimization Problem). Let
 = A~x � ~b be
a satis�able global constraint, f be a monotonic function from the set of all
safe decompositions to R, P = (~x1; : : : ; ~xn) an individual variable partition of
~x, ~x0 = (~x01; : : : ; ~x

0
n) be an instance of ~x, D(u011; u

0
21; : : : ; u

0
1k; u

0
2k), 1 � k �

M , a partial safe decomposition that satis�es (x01; : : : ; x
0
k), and Pr be the

subset of properties fsafety; lc; pcpg that must contain safety. Then, solving
the optimization problem

max f(s)

s:t: s 2 SPr

is equivalent to solving the parametric problem

max f(D(~u))

s:t: �Pr(~u)

Proof. First, by Proposition 5, every decomposition C in SPr has an equiva-
lent decomposition C 0 of the form D(~u0), where ~u01 � ~u02. Then, by Proposi-
tion 6, SPr and �Pr(~u) represent equivalent search spaces. Therefore, both
problems yield the same maximum. This completes the proof.

5 General Variable Partitions

This section addresses the general partition case. Let P = (~y1; ~y2; : : : ; ~yM)
be a partition of ~x, where ~yi is the subset of variables at site i, (j ~yi j= ni),
and ~x is the vector of all variables in our problem.

5.1 Split Decompositions

The �rst problem in the general case is that, for a safe decomposition, a
constraint Ci at site i may be characterized by an unbounded set of atomic
linear constraints; thus the size of a parametric description (using coe�cients
of those constraints) is unbounded. To overcome this problem, we reduce the
search space to the set of what we call compact split decompositions, for which

25

we prove that: (1) there does exist a parametric description of bounded size
and (2) the optimum of the objective function among all safe decompositions
can always be found in the subspace of split decompositions.

De�nition 12. Let
 = A~x � ~b be a constraint on ~x, and P = (~y1; : : : ; ~yM)
be a variable partition of ~x. A split of
, denoted by D(~r1; : : : ; ~rM), is a
tuple (A1~y1 � ~r1; : : : ; AM~yM � ~rM) of constraints, where Ai, 1 � i � M ,
is the matrix composed of the columns of A that are associated with ~yi. We
say that a split D(~r1; : : : ; ~rM) is safe (respectively, minimally-constrained)
if it is a safe (respectively, minimally-constrained) decomposition of
. For
a subset � of sites, say fk + 1; : : : ;Mg, a (partial) �-split of
, denoted
by D(~rk+1; : : : ; ~rM), is a tuple (Ak+1~yk+1 � ~rk+1; : : : ; AM~yM � ~rM) of con-
straints.

Note that the vectors ~ri above have the same dimension as the vector ~b,
which equals to the number of constaints in
. Recall that, by Proposition 3,
D(~r1; : : : ; ~rM) is satis�able if and only if for all i, 1 � i � M , Ai~yi � ~ri is
satis�able.

For our classi�cation we introduce the notion of tight form for a system
A~x � ~b,10 which states, intuitively, that the values of ~b are tight. This is
formalized as follows.

De�nition 13. We say that a constraint A~x � ~b is tight, if there does not
exist ~b0, such that ~b0 � ~b, ~b0 6= ~b, and A~x � ~b is equivalent to A~x � ~b0. We
say that a split D(~r1; : : : ; ~rM) is tight if every satis�able constraint Ai~yi � ~ri
in it (1 � i �M) is tight.

Claim 1. For any satis�able system A~x � ~b (respectively split) there exists
an equivalent system (respectively split) that is tight. Furthermore, every

tight constraint A~x � ~b is satis�able.

De�nition 14. We say that a split D(~r1; : : : ; ~rM) of
 is compact if

MX
i=1

~ri � ~b

Lemma 1 (Split Properties). Let
 = A~x � ~b. Then:

10A~x � ~b in this de�nition denotes any system of linear constraints, not just the global
constraint.

26

1. Every compact split is safe.

2. If D(~r1; : : : ; ~rM) is a tight split, it is compact i� it is safe.

3. For every safe decomposition C of
, there exists a minimally-constrained
safe split D(~r1; : : : ; ~rM) of
 that subsumes C , i.e., C j= D(~r1; : : : ; ~rM).

4. Every minimally-constrained safe decomposition of
 is equivalent to
(1) a minimally-constrained safe split of
 and to (2) a compact split
of
.

Proof. 1. Let ~x0 = (~y01; : : : ; ~y
0
M) be an arbitrary point that satis�esD(~r1; : : : ;

~rM), i.e., Ai~y
0
i � ri, for all i, 1 � i �M . Then,

MX
i=1

Ai~y
0
i �

MX
i=1

~ri � ~b

Finally, since
PM

i=1Ai~y
0
i = A~x0, we get that A~x0 � ~b, i.e., ~x0 satisfy
.

2. The ONLY-IF direction follows from (1). For the IF-direction, suppose

D(~r1; : : : ; ~rM) is not compact, i.e.,
PM

i=1 ~ri �
~b is not true. Then, there exists

a row j, such that
PM

i=1 rij > bj. Now, we select ~x0 = f~y01; ~y
0
2; : : : ; ~y

0
Mg, as

follows. For each i; 1 � i � M , we take ~y0i to be the point that achieves

Max ~Aij~yi, subject to Ai~yi � ~ri, with ~Aij is the jth row of the matrix

Ai. Because the system Ai~yi � ~ri is tight, ~Aij~y
0
i = rij. Thus, ~x0 satis-

�es D(~r1; : : : ; ~rM) but not
 = A~x � ~b, because for the j-th raw ~Aj of the
matrix A

~Aj~x
0 =

MX
i=1

~Aij~y
0
i =

MX
i=1

rij > bj

This complete the ONLY-IF direction of Part 2.

3. We �rst prove

Claim 2. For every safe decomposition C of
, there exists a safe split D(~r1;
: : : ; ~rM) that subsumes C .

27

Let C = (C1; : : : ; CM) be a safe decomposition of
. We want to construct
D(~r1; : : : ; ~rM). Consider �rst the case when C is satis�able. For every i; 1 �
i � m, where m is the number of rows in the matrix A, we construct ~ri =
(ri1; : : : ; rim) as follows: for every j; 1 � j � m, we take rij to be the minimal
value such that

Ci j= ~Aij~yi � rij

Then, Ci j= Ai~yi � ~ri, and therefore C j= D(~r1; : : : ; ~rM). Therefore, by (1)
of this Theorem, to prove that D(~r1; : : : ; ~rM) is a safe decomposition, it is

su�cient to prove that D(~r1; : : : ; ~rM) is a safe split, i.e.,
PM

i=1 ~ri �
~b. We

prove that for every row j; 1 � j � m, i.e.,
PM

i=1 rij � bj.

We select ~x(j) = (~y
(j)
1 ; : : : ; ~y

(j)
M) as follows: ~y

(j)
i is the value of ~yi that

maximizes the function ~Aij~yi, subject to Ai~yi � ~ri. Because D(~r1; : : : ; ~rM)

is constructed to be tight, ~Aij~y
(j)
i = rij. Then, for every j; 1 � j � m

MX
i=1

dij =
MX
i=1

~Aij~y
(j)
i = ~Aj~x

(j) � bj

This completes the proof of Claim 2 for the case when C is satis�able.
If C is not satis�able, consider C 0 = (~x = ~x0), where ~x0 is an arbitrary

point that satis�es
. Clearly,C 0 is satis�able. By what has been proved, we
can construct a safe decomposition D(~r1; : : : ; ~rM) of
 such that:

C 0 j= D(~r1; : : : ; ~rM)

and, since C j= C 0 , it follows that C j= D(~r1; : : : ; ~rM). This complete the
proof of Claim 2.

Claim 3. Every minimally-constrained safe decomposition C 0 is equivalent
to a minimally-constrained safe split D(~r1; : : : ; ~rM).

Indeed, by Claim 2, there exists a safe split D(~r1; : : : ; ~rM) such that C 0 j=
D(~r1; : : : ; ~rM). Then, because C 0 is minimally-constrained, D(~r1; : : : ; ~rM)
must be equivalent to C 0 . Therefore, D(~r1; : : : ; ~rM) is a minimally-constrained
safe split.

Now, to prove (3) given a safe decomposition C , we construct a minimally-
constrained safe decomposition C 0 , such that C j= C 0 . Then, by Claim 3,

28

there exists a minimally-constrained safe split D(~r1; : : : ; ~rM) that is equiv-
alent to C 0 . Therefore, D(~r1; : : : ; ~rM) is a minimally-constrained safe split
that subsumes C . This completes the proof of (3).

4. Part 4(1) is essentially Claim 3 proven in Part 3. Part 4(2) then fol-
lows by making D(r1; : : : ; rm) tight and then, by Part 2, since D(r1; : : : ; rm)
is safe, it must be compact.

The next theorem shows that the maximum of a monotonic function in
the space of safe decompositions can always be found in the subspace of
compact splits.

Theorem 3. Let
 = A~x � ~b be a satis�able global constraint, f be a
monotonic function from the set of all safe decompositions of
 to R, P =
(~y1; : : : ; ~yM) be a variable partition of ~x, and ~x0 = (~y01; : : : ; ~y

0
M) be an in-

stance of ~x. Let S and SS be the sets of all safe decompositions and all
compact splits of
, respectively, and let S~x0 and SS~x0 be the sets S and SS
restricted to decompositions that satisfy ~x0. Then,

1. max f(s) s.t. s 2 S = max f(s) s.t. s 2 SS

2. max f(s) s.t. s 2 S~x0 = max f(s) s.t. s 2 SS~x0

Proof. 1. Using Lemma 1, we can easily derive that SS is a monotonic cover
of S. Then, by Proposition 4, both problems yield the same maximum.

2. Similar to Part 1, by Lemma 1, SS~x0 is a monotonic cover of S~x0, and
then, by Proposition 4, both problems yield the same maximum. This com-
pletes the proof.

Following Theorem 3, from now on we only consider compact splits. Vec-
tors (~r1; : : : ; ~rM) can be viewed as resources assigned to sites, because they

represent how much of vector ~b is distributed to each site. The following
subsection presents a parametric resource characterization of splits and a
parametric formulation of the optimization problem in terms of resources.

29

5.2 Resource Characterization

This subsection characterizes (compact) splits in terms of resources, which
allows (in the next subsection) to reduce compact split (safe decompositions)
to resource distributions. In turn, resource distributions can signi�cantly
simplify the management of a distributed protocol, because of their small
size as compared with the size of a (safe) decomposition. Also, as explained
in the next subsection, resource distributions support concurrent constraint
(re-)decompositions.

More speci�cally, we formulate the properties of compactness, local consis-
tency (lc), partial constraint preservation (pcp), and resource bound partition
(rp) for splits in terms of resources. Then, the optimization problem is for-
mulated in terms of such a characterization. First, we introduce the concept
of resources of (compact) splits.

De�nition 15 (Resource Parameters). Let
 = A~x � ~b be a satis�-
able global constraint, D(~r1; : : : ; ~rM) be a tight compact split of
, ~x0 =
(~y01; : : : ; ~y

0
M) be an instance of ~x, and � be a subset fk + 1; : : : ;Mg of sites

f1; : : : ;Mg. Then, we say that:

1. ~b is the global upper bound of resources in
.

2. ~ri is the resource assigned to site i, 1 � i � M .

3. ~r =
PM

i=1 ~ri is the global resource.

4. ~� = ~b� ~r is the global passive slack of
 w.r.t. D(~r1; : : : ; ~rM).

5. (~�1; : : : ; ~�M) such that ~�i � 0, 1 � i � M and
PM

i=1
~�i = ~�, is a

partition of ~�. Each ~�i, 1 � i �M , is called the passive slack at site i.

6. ~uri = ~ri + ~�i is the upper resource bound at site i, (1 � i �M).

7. Given an instance ~y0i at site i, ~lri = Ai~y
0
i , 1 � i � M , is the lower

resource bound at site i w.r.t. ~y0i .

8. Given an instance ~y0i at site i, ~�i = ~ri � ~lri, 1 � i � M , is the active
slack at site i w.r.t. ~y0i .

30

 �∆ i

�

δi

lri

� �

ri uri
�

active slack passive slack

lower bound

resource

upper bound

Figure 2: Resource Representation at site i

Finally, we de�ne the cumulative parameters for �, namely cumulative re-
sources, resource upper and lower bounds, and passive and active slacks by
~r� =

P
i2� ~ri, ~ur� =

P
i2� ~uri,

~lr� =
P

i2�
~lri, ~�� =

P
i2�

~�i, and ~�� =P
i2�

~�i, respectively.

The above resource parameters are shown in Figure 2. In this �gure, each
resource ~ri is bounded between its lower and upper bound (~lri and ~uri), the
di�erence between upper bound (~uri) and the resource is the passive slack
~�i, and the di�erence between the resource (~ri) and its lower bound (~lri) is

the active slack (~�i).
The following proposition characterizes the split properties of compact-

ness, local consistency (lc), partial constraint preservation (pcp), and resource
bound partition (rp) in terms of the resource parameters.

Proposition 7 (Parametric Feasible Properties). Let
 = A~x � ~b be
a global satis�able constraint, P = (~y1; : : : ; ~yM) be a variable partition of
~x, ~x0 = (~y01; : : : ; ~y

0
M) be an instance of ~x, � be a subset of sites, say � =

fk + 1; : : : ;Mg, �� be the set f1; : : : ; kg, and D(~r01; : : : ; ~r
0
k) be a (partial)

��-split that satis�es (~y01; : : : ; ~y
0
k). Then, for any split D(~r1; : : : ; ~rM)

1. D(~r1; : : : ; ~rM) is compact i� the global resource ~r is bounded by the

global upper bound~b, i.e., ~r � ~b. We denote this condition by �compact(~r1;
: : : ; ~rM).

2. D(~r1; : : : ; ~rM) satis�es local consistency w.r.t. ~x0 i� the resource ~ri
assigned to site i is bounded from below by its lower bound ~lri, i.e., for

31

every site i, 1 � i � M , ~lri � ~ri. We denote this condition by �lc(~r1;
: : : ; ~rM).

3. D(~r1; : : : ; ~rM) satis�es partial constraint preservation w.r.t. ��-split
D(~r01; : : : ; ~r

0
k) i� the resources at each site outside � are �xed, i.e.,

r1 = r01; : : : ; rk = r0k. We denote this condition by �pcp(~r1; : : : ; ~rM).

We will also denote by �rp; ~B�
(~r1; : : : ; ~rM) the condition stating that D(~r1; : : : ;

~rM) satis�es resource partition w.r.t. a resource bound partition ~B�.

Proof. 1) follows directly from Lemma 1 part 1, 2) follows from the de�nition
of local consistency, i.e., for a given instance ~y0i , it satis�es its local constraint
i� Ai~y

0
i � ~ri, and 3) follows directly from partial constraint preservation

de�nition.

In the following, we denote by SScompact, SSlc, SSpcp and SSrp the set
of splits satisfying compactness, local consistency w.r.t. ~x0, partial con-
straint preservation w.r.t. a �-split D(~r1; : : : ; ~rk), and resource bound par-
tition B� w.r.t. �, respectively. We will use Pr to denote a subset of
the set of properties fcompact; lc; pcp; rpg. Finally, set SPr will denote the
set of all splits that satisfy the properties Pr, i.e., SSPr = \p2PrSSp, and
�Pr(~r1; : : : ~rM) will be the conjunction of the corresponding conditions, i.e.,
�Pr(~r1; : : : ~rM) = ^p2Pr�p(~r1; : : : ~rM). We can present the optimization prob-
lem in terms of resource characterization.

Theorem 4 (Resource Optimization). Let
 = A~x � ~b be a satis�able
global constraint, f be a monotonic function from the set of all safe decompo-
sitions to R, P = (~y1; : : : ; ~yM) a variable partition of ~x, ~x0 = (~y01; : : : ; ~y

0
M) be

an instance of ~x, and Pr be the subset of properties fcompactness; lc; pcp; rpg
that must contain compactness or resource bound partition. Then, solving the
optimization problem

max f(s)

s:t: s 2 SSPr

is equivalent to solving the parametric problem 11

max f(D(~r1; : : : ; ~rM))

s:t: �Pr(~r1; : : : ; ~rM)

11we will sometimes write f(D(~r1; : : : ; ~rM)) as f(~r1; : : : ; ~rM).

32

Proof. The proof follows from Lemma 1, Proposition 7, and the fact that
resource bound partition is a stronger property than compactness as follows:

(1) The compactness part. By Proposition 7, the set SScompactness is char-
acterized by condition �compactness(~r1; : : : ; ~rM). Then, both problems yield
the same maximum.

The other Pr cases follow directly from Proposition 7. This completes
the proof.

5.3 Resource Distributions and Concurrent Splits

The resource characterization of the previous subsection assumes that in-
formation from all sites is used. However, in order to support distributed
and autonomous protocols we would like to make constraint decomposi-
tions and re-decompositions involving only a (small) subset of sites, say
� = f(k + 1); : : : ;Mg of sites f1; : : : ;Mg. To do that a formulation of the
decomposition problem can only involve or a�ect information that is stored
in sites �. We capture this idea using the notion of (full or partial) resource
distribution as follows.

De�nition 16. Let
 = A~x � ~b be a global constraint, D(~r1; : : : ; ~rM) be a

compact split of
, (~�1; : : : ; ~�M) be a partition of the global passive slack ~�,
~x0 = (~y01; : : : ; ~y

0
M) be a database instance, � is a subset, say fk + 1; : : : ;Mg,

of sites. A resource distribution is a tuple (of triples) ((~lr1; ~r1; ~ur1); : : : ;

(~lrM ; ~rM ; ~urM)) 12; a �-resource distribution is ((~lrk+1; ~rk+1; ~urk+1); : : : ; (~lrM ;
~rM ; ~urM)). We say that the resource distribution is permissible if

MX
i=1

~uri = ~b and ~lri � ~ri � ~uri; for every 1 � i �M

Given a resource bound partition ~B�, we say that the �-resource distribution
((~lrk+1; ~rk+1; ~urk+1); : : : ; (~lrM ; ~rM ; ~urM)) is permissible w.r.t. ~B� ifX

i2�

~uri = ~B� and ~lri � ~ri � ~uri; for every i 2 �

Note that if � is the set of all sites, the resource distribution permissibility
is equivalent to � resource distribution permissibility.

12Note (~lri; ~ri; ~uri)'s are de�ned in De�nition 15.

33

The key advantage of a resource distribution is its small size of O(nc) as
compared with the size O(nc � nv) of a constraint decomposition, where nc
and nv are the number of constraints and variables, respectively, in the global
constraint. In fact, nv may be as large as the size of a database, for example
when the global constraint reects that the summation of some quantity, one
per relational tuple, is bounded by a constant.

The following proposition motivates the notion of permissible distribution
and provides a local criterion for a subset � of sites to decide whether a feasi-
ble resource distribution exists, after database instances have been updated
(i.e., lower bounds).

Proposition 8 (�-Resource Distribution Feasibility). Let � be a sub-

set, say fk + 1; : : : ;Mg, of sites f1; : : : ;Mg, and �� be its complement, ~B�

be a resource bound partition. Then,

1. Given a database instance (~y0k+1; : : : ; ~y
0
M) at sites � (and thus lower

bounds (~lrk+1; : : : ; ~lrM)), the following are equivalent:

(a) There exists a compact split of
 satisfying resource partition ~B�

and local consistency w.r.t. to an instance (~y0k+1; : : : ; ~y
0
M) at �.

(b) There exists a �-permissible resource distribution w.r.t. ~B� (with
the above lower bounds).

(c) ~lr� =
P

i2�
~lri � ~B�

2. The combination of �-permissible resource distribution w.r.t. ~B� and
��-permissible resource distribution w.r.t. ~B�� constitutes a permissible
resource distribution.

Proof. (1) To prove this part, we �rst prove that (c) implies (a), (a) implies
(b), and (b) implies (c).

(c) implies (a). Using the de�nition of ~lr�,

~lr� � ~B� ,
X
i2�

~lri � ~B�

,
X
i2�

Ai~y
0
i � ~B�

Then, selecting ~ri = Ai~y
0
i , for all i, k + 1 � i � M � 1, and ~rM = ~B� �PM�1

i=k+1 ~ri, we build a �-compact split of
 satisfying resource partition ~B�

34

and local consistency w.r.t. (~y0k+1; : : : ; ~y
0
M). Now, selecting ~r

0
i = (~b� ~B�)=k,

for 1 � i � k, D(~r01; : : : ; ~r
0
k; ~rk+1; : : : ; ~rM) is a compact split of
. This

completes this part of the proof.
(a) implies (b). Let D(~r01; : : : ; ~r

0
M) be a compact split of
 satisfying

resource partition ~B� and local consistency w.r.t. (~y0k+1; : : : ; ~y
0
M). Then,

~lri � ~r0i for all i, k + 1 � i � M , and
P

i2� ~r
0
i � ~B�. Then, selecting

~uri = ~r0i, for all i, k+1 � i �M � 1, and ~urM = ~B� �
PM�1

i=k+1 ~r
0
i. Therefore,

~lri � ~r0i � ~uri, k + 1 � i � M , i.e., ((~lrk+1; ~r
0
k+1; ~urk+1); : : : ; (~lrM ; ~r0M ; ~urM))

is a permissible �-resource distribution. This completes this part of the proof.
(b) implies (c). If there exists a �-permissible resource distribution w.r.t.

~B� (with lower bounds ~lri = A~y0i , for all i, k + 1 � i � M). Then,

~lri � ~ri � ~uri; k + 1 � i �M)
X
i2�

~lri �
X
i2�

~ri �
X
i2�

~uri

,
X
i2�

~lr� � ~B�

This completes this part of the proof.
(2) Let ((~lr1; ~r1; ~ur1); : : : ; (~lrk; ~rk; ~urk)) and ((~lrk+1; ~rk+1; ~urk+1); : : : ; (~lrM ;

~rM ; ~urM)) be a ��- and �- permissible resource distribution w.r.t. ~B�� and ~B�

respectively. Because ~B�� + ~B� = ~b, ��-permissible and �-permissible resource
distributions jointly constitute a permissible resource distribution.

The optimization functions f are de�ned in terms of the information of
all sites (i.e., D(~r1; : : : ; ~rM)), whereas we need to work with the information
only on a subset � of sites. To do that, we de�ne the notion of �-localizer as
follows.

De�nition 17. Let
 be a constraint over ~x, and S be the set of all splits
of
, f : S! R be a function. Let � = fk + 1; : : : ;Mg be a subset of sites
f1; : : : ;Mg, �� its complement, S� be the set of all �-splits. Then, function
f� : S�! R is called �-localizer of f if for any ~r01; : : : ; ~r

0
k, and for every two

splits D(~r01; : : : ; ~r
0
k; ~rk+1; : : : ; ~rM) and D(~r01; : : : ; ~r

0
k; ~r

0
k+1; : : : ; ~r

0
M) in S,

f(~r01; : : : ; ~r
0
k; ~rk+1; : : : ; ~rM) � f(~r01; : : : ; ~r

0
k; ~r

0
k+1; : : : ; ~r

0
M),

f�(~rk+1; : : : ; ~rM) � f�(~r
0
k+1; : : : ; ~r

0
M)

(i.e., f� preserves monotonicity for any resource instantiation outside of �).

35

We are now ready to formulate a theorem to be used for concurrent (re-
)decompositions of the global constraints.

Theorem 5. Let
 = A~x � ~b be a global constraints, � be a subset, say
fk + 1; : : : ;Mg, of sites f1; : : : ;Mg and �� be its complement, S be the set
of all compact splits of
, f : S! R be a monotonic function and f� be its
�-localizer, ~B� be a resource bound partition, and D(~r01; : : : ; ~r

0
k) be a (partial)

��-split for sites outside �. Let Pr be a subset of properties that contains rp
and ���Pr be the condition (1) ~r� � ~B� for the case that Pr contains just rp,

and the conditions (2) ~r� � ~B�; ~lri � ~ri for every i 2 �, for the case of Pr
that contains both rp and lc. Then,

1. For Pr being the set of properties frp; pcpg or frp; pcp; lcg, let (~r0k+1; : : : ;
~r0M) be a solution to the problem

maxf�(~rk+1; : : : ; ~rM)

s:t:���Pr

Then, (~r01; : : : ; ~r
0
k; ~r

0
k+1; : : : ; ~r

0
M) is a solution to the problem

maxf(~r1; : : : ; ~rM)

s:t:�Pr

2. For Pr being the set of properties frpg or frp; lcg, let (~r0k+1; : : : ; ~r
0
M)

be a solution to the problem

maxf�(~rk+1; : : : ; ~rM)

s:t:���Pr

and (~r01; : : : ; ~r
0
k) be a solution to the problem

maxf��(~rk+1; : : : ; ~rM)

s:t:����Pr

Then, (~r01; : : : ; ~r
0
k; ~r

0
k+1; : : : ; ~r

0
M) is a solution to the problem

maxf(~r1; : : : ; ~rM)

s:t:�Pr

Proof. The proof follows from the fact that f has a �-localizer, and from
Propositions 7 and 8.

The next subsection presents the analytical expression for the objective
function, under uniformity assumptions on updates.

36

6 Maximizing Probability of Not Violating

Local Constraints

While the optimization problems from previous section are applicable to an
arbitrary monotonic objective function, we now consider a speci�c optimiza-
tion criterion in this section in more detail: maximizing the probability of not
violating local constraints.

We provide an analytical expression of this probability function in terms
of a parametric characterization of compact split decompositions, and poly-
hedron volume function (V) [7, 19, 5] We also prove that this function is
�-localizable so that it can be used in conjunction with the results in Sec-
tion 5. This is done under the assumption of the uniform distribution of
database updates as discussed next.

6.1 Uniformity Assumptions

The uniform distribution assumptions described in this section are related
to how the database instances are distributed over the space de�ned by
.
Speci�cally, our assumptions are as follows:

�
 is fully dimensional, and therefore V olume(
) 6= 0. Furthermore,

is bounded, i.e., the polyhedron de�ned by
 is contained in a sphere
of dimension n, where n is the number of variales in
.13 Therefore,
Volume
 <1.

� Not using local consistency (lc) property (fno�lc): updates ~x of the
database are uniformly distributed on the space de�ned by constraint

. Thus, if V olume(
) 6= 0, then

prob[~x satis�es C =~x satis�es
] =
V olume(C)
V olume(
)

� Using local consistency (lc) property (flc): we de�ne the following two
predicates �: ~x satisfy
 and site i is being updated, and �: ~x satis�es

 and one of the sites k + 1; : : : ;M is updated.

13In which case this polyhedron is called polytope.

37

1. The probability pi that a site i is being updated is given, for every
1 � i �M . Therefore, for full decomposition:

prob[~x satis�es C =~x satis�es
] =
MX
i=1

pi � prob[~x satis�es C =�]

and for �-decomposition:

prob[~x satis�es C =�] =
MX

i=k+1

piPM
j=k+1 pj

� prob[~x satis�es C =�]

2. The distribution of updates at site i (on variables ~yi) is uniformly
distributed on
, when values for all variables, except ~yi, are �xed.
We denote by ~zi all variables on ~x except those on ~yi. Then for
full decompositions:

prob[~x satis�es C =�] =
V olume(C [~zin~z0i])
V olume(
[~zin~z0i])

=
V olume(Ci)

V olume(
[~zin~z0i])

where ~z0i are the values for ~z before the update, C [~zin~z0i] and

[~zin~z

0
i] denote the formulas after ~zi is replaced with ~z0i values.

For �-compact split decompositions, we also assume that updates
on the space de�ned by D(~r1; : : : ; ~rk) are uniformly distributed,
and, therefore,

prob[~x satis�es C =�] =
Z
D(~r1;::: ;~rk)

V olume(Ci)

V olume(
[~zin~z0i])
d~y01 : : : d~y

0
k

6.2 Parametric Representation

The following is a parametric description of the optimization criteria for the
probability of not violating local constraints.

38

Proposition 9. Let
 = A~x � ~b be a constraint, ~x0 = (~y01; : : : ; ~y
0
M) be a

database instance, pi be the probability that an update arrives at site i, � be a
subset of sites (say fk + 1; : : : ;Mg) and �� be its complement, D(~r1; : : : ; ~rk)
be a (partial) ��-split of
, and fno�lc and flc are the probability of not violating
local constraints as de�ned in Subsection 6.1. Then, under the uniformity
assumptions of Subsection 6.1, the following holds:

1. Not using local consistency (lc) property: the function fno�lc is mono-
tonic and has a �-localizer as follows:

f �no�lc(~rk+1; : : : ; ~rM) =
MY

i=k+1

V (ni; Ai; ~ri)

2. Using local consistency (lc) property: the function flc is monotonic and
has a �-localizer as follows:

f �lc(~rk+1; : : : ; ~rM) =
MX

i=k+1

pi
P
V (ni; Ai; ~ri)� I

where ~bi = (~b�
PM

(j=1;j 6=i)
~Aj~y

0
j), P =

PM
j=k+1 pj, and

I =

Z
D(~r1;::: ;~rk)

1

V (ni; Ai;~bi)
d~y0k : : : d~y

0
1

Proof. First, f is monotonic since it is a probability function. Now, we prove
that f has �-localizers.

Proof of 1 (not using local consistency). We know that the probability to
satisfy C given that
 is satis�ed, is given by:

V olume(C)
V olume(
)

but, V olume(C) =
QM

i=1 V olume(Ci), since di�erent Ci's are de�ned in dis-
joint set of variables. We denote V olume(Ci) as V (ni; Ai; ~ri). Then,

fno�lc(~r1; : : : ; ~rM) =

QM
i=1 V (ni; Ai; ~ri)

V (n;A;~b)

39

Let V =
Qk

i=1 V (ni; Ai; ~ri). Then, it is easy to see that for any two splits of

, D(~r1; : : : ; ~rk; ~r

0
k+1; : : : ; ~r

0
M) and D(~r1; : : : ; ~rk; ~r

00
k+1; : : : ; ~r

00
M)

V �
QM

i=k+1 V (ni; Ai; ~r
0
i)

V (n;A;~b)
�
V �

QM
i=k+1 V (ni; Ai; ~r

00
i)

V (n;A;~b)
,

QM
i=k+1 V (ni; Ai; ~r

0
i)

V (n;A;~b)
�

QM
i=k+1 V (ni; Ai; ~r

00
i)

V (n;A;~b)

because V is a non-negative constant. Therefore, fno�lc is monotonic and its
�-localizer is equivalent to

f �no�lc =
MY

i=k+1

V (ni; Ai; ~ri)

This completes this part of the proof.

Proof of 2 (using local consistency). We know that the probability to
satisfy C given that
 is satis�ed by ~x0, is given by:

MX
i=1

pi �
V olume(Ci)

V olume(
[~zin~z0i])

but,
[~zin~z
0
i] is equivalent to Ai~yi � (~b�

PM
(j=1;j 6=i)Aj~y

0
j), and denoting the

right hand side by ~bi. Then, V olume(
[~zin~z0i]) is the volume Ai~yi � ~bi, i.e.,

V (ni; Ai;~bi). Let V =
Pk

i=1 piV (ni; Ai; ~ri)=V (ni; Ai;~bi). Then, for any two
splits of
, D(~r1; : : : ; ~rk; ~r

0
k+1; : : : ; ~r

0
M) and D(~r1; : : : ; ~rk; ~r

00
k+1; : : : ; ~r

00
M),

V +
MX

i=k+1

pi �
V (ni; Ai; ~r

0
i)

V (ni; Ai;~bi)
� V +

MX
i=k+1

pi �
V (ni; Ai; ~r

00
i)

V (ni; Ai;~bi)
,

MX
i=k+1

pi �
V (ni; Ai; ~r

0
i)

V (ni; Ai;~bi)
�

MX
i=k+1

pi �
V (ni; Ai; ~r

00
i)

V (ni; Ai;~bi)

(13)

because V is a non-negative constant for D(~r1; : : : ; ~rk; ~r
0
k+1; : : : ; ~r

0
M) and

D(~r1; : : : ; ~rk; ~r
00
k+1; : : : ; ~r

00
M). Now, we show which is the �-localizer of flc.

Since, ~bi = ~b �
PM

(j=1;j 6=i)Aj~y
0
j , for all i, 1 � i � M , function V (ni; Ai;~bi)

depends of values (~y01; : : : ; ~y
0
k) and (~y0k+1; : : : ; ~y

0
i�1; ~y

0
i+1; : : : ; ~y

0
M), for all i,

40

k + 1 � i � M . However, (~y01; : : : ; ~y
0
k) are values outside of �, that satisfy

C p . Then, for every (~y01; : : : ; ~y
0
k) with those properties,

MX
i=k+1

pi � V (ni; Ai; ~r
0
i)

Z
D(~r1;::: ;~rk)

1

V (ni; Ai;~bi)
d~y01 : : : d~y

0
k

Finally, dividing by the constant
PM

j=k+1 pj,

MX
i=k+1

piPM
j=k+1 pj

� V (ni; Ai; ~r
0
i)

Z
D(~r1;::: ;~rk)

1

V (ni; Ai;~bi)
d~y01 : : : d~y

0
k

This is the �-localizer of flc. This completes the proof.

Proposition 9 characterizes the �-localizer for the probability of not violat-
ing local constraints, based on uniformity update assumptions (Section 6.1),
and convex polyhedron volume (V (ni; Ai; ~ri)). This volume calculation has
been addressed in [7, 19, 5]. Those papers prove that under certain conditions
the volume exists, and provide algorithms to compute it.

For the individual partition case, the volume calculation is easy, since local
constraints are on individual variables. Those constraints de�ne a (multi-
dimensional)rectangle. More speci�cally,

V (Ck+1; : : : ; Cn) =
nY

k+1

li (14)

where li is the length of the ith side of the rectangle. This simple formula
gives Proposition 10 below, which is the simpli�cation of Proposition 9 for
the individual partition case.

Proposition 10. Let
 = A~x � ~b be a constraint, ~x0 = (~x01; : : : ; ~x
0
n) be a

database instance, pi be the probability that an update arrives at site i, � be a
subset of sites (say fk + 1; : : : ; ng), C p(u11; u21; : : : ; u1k; u2k) be a partial split
of
, and fno�lc and flc are the probability of not violating local constraints
as de�ned in Subsection 6.1. Then, under the uniformity assumptions of
Subsection 6.1 hold,

41

1. Not using local consistency (lc) property: the function fno�lc is mono-
tonic and its �-localizer is as follows:

f �no�lc(u1k+1; u2k+1; : : : ; u1n; u2n) =
nY

i=k+1

(u2i � u1i)

2. Using local consistency (lc) property: the function flc is monotonic and
its �-localizer is as follows:

f �lc(u1k+1; u2k+1; : : : ; u1n; u2n) =
nX

i=k+1

pi � (u2i � u1i)Pn
j=k+1 pj

� I

where

I =

Z u21

x1=u11

: : :

Z u2k

x1=u1k

1

(v2i � v1i)
dx1 : : : dxk

v1i =Max(b0
l
=ali<0)

�
b0l
ali

�
;

v2i = Min(b0
l
=ali>0)

�
b0l
ali

�
;

~b0 = (~b�
nX

(j=1;j 6=i)

Ajx
0
j); and

Aj is the j
th column of A:

Therefore, optimization problems de�ned in Theorems 4 and 5 can use
f �no�lc, f

�
lc or equivalent objective functions. Note that the optimization prob-

lem has linear constraints, and a non-linear objective function. An algorithm
to solve this problem is presented in Section 8. Now, we present our dis-
tributed protocol.

7 Distributed Protocol

In this section we propose a protocol to manage linear arithmetic constraints
over a distributed system and which possesses the desirable protocol proper-
ties. In fact, the protocol manages resource distributions as a mechanism to

42

manage updates and constraint decompositions (as is described in Subsec-
tion 5.3).

First, we explain a distributed transaction primitive called RESOURCE TRAN-

SFER that we use in the protocol. RESOURCE TRANSFER(i,j,~rc) works on a pair
of sites, and transfers the resource-contribution ~rc from the giving site i to the
receiving site j. The e�ect of the transfer is that the resource upper bound
~uri at site i will be decreased by ~rc, after which ~urj at site j will be increased
by ~rc. Also, we assume that with every change in a resource upper bound ~uri
the corresponding resource ~ri is updated correspondingly simply by making
~uri tight. It is assumed that standard distributed transaction techniques are
used to ensure that (1) under no circumstances (possibly involving failures)
resource-contribution is added to ~urj of the receiving site before it has been
reduced from ~uri of the giving site, and (2) the standard ACID properties
(i.e., atomicity, consistency, isolation, and durability) of distributed transac-
tions. It is important to note that distributed transaction protocols to ensure
these properties (e.g., two-phase commit) are less expensive for transactions
involving two sites only, as is done in our RESOURCE TRANSFER. We can now
provide the basic assumptions for our protocol as follows:

Distributed Protocol Assumptions

1. For the purpose of constraint management, we assume that the global
database is abstracted by real values for the vector of variables ~x =
(~y1; : : : ; ~yM), where (~y1; : : : ; ~yM) is a partition of ~x. However, any
actual database model, e.g., relational or object-oriented, can be used,
in which values for ~x are either explicitly stored or expressed as views
(e.g., aggregations).

2. The global constraint is of the form
 = A~x � ~b, i.e.,
 is a system of
linear constraints. Local constraints are assumed to be compact splits
of
.

3. The global database is composed of M distributed sites, where at each
site i, 1 � i � M , values for variables ~yi are stored. Since (~y1; : : : ; ~yM)
is a partition of ~x, i.e., there is no variable replication 14 i.e., ~yi\~yj = ;,

14If there is replication, e.g., a variable x appears at two sites, then, technically, it can
be reduced to a partition by replacing x with x1 and x2 and adding the constraint x1 = x2
to
. However, as we further comment in the Conclusions section, this is not a good

43

for every i 6= j. Furthermore, each site i, 1 � i �M , has a local trans-
action manager that guarantees the standard ACID properties (i.e.,
atomicity, consistency, isolation, and durability), as well as mechanisms
for back-up and recovery from failure. We thus assume that every re-
sponse to an EVENT in a protocol is run as a local transaction. We
also assume that all sites are attached a unique ID from a domain with
total ordering, say, ID's are integers 1 through M .

4. Local update ~y0k at site k means that the current values for ~yk are to
be replaced with the new values ~y0k, i.e., updates are formulated in
absolute terms. Thus, if a new update ~yk

0 arrives while the previous
update ~yk

0 is pending, it is interpreted as replacing the previous update
request (i.e., canceling it) with the new one. Note that update requests
formulated in relative terms (e.g., add/subtract certain values to/from
the current values of ~yk), can always be translated to absolute terms,
and so this assumption is not a limitation. We use it to simplify the
formulation of the protocol.

5. Failure and communication model: both sites and communication links
may fail, but persistent storage does not fail, i.e., after a site recovers
from a failure, the database instance is as before the failure. We as-
sume that the site failures stop site execution without performing any
incorrect actions. We also assume that the underlying communica-
tion system at each site indicates which other sites are connected and
operational, through the ag CONNECTED(i; j), which is implemented
at the communication layer.15 It is further assumed that the uncer-
tainty time (i.e., between the time the site j becomes disconnected or
not operational, and the time when CONNECTED(i; j) turns FALSE) is
bounded by a constant. Also, when a message is sent, say from i to j,
then within bounded time either this message is acknowledged at i, or
the CONNECTED(i; j) turns FALSE. In the following, when we say that
\site j is operational and connected to site i" we will mean that the
CONNECTED(i; j) ag at site i is TRUE and remains so until the rele-

solution, and other approaches to extend our results with replication techniques would be
a better choice.

15Whether this is done by trying to send packets and not receiving an acknowledgment
within a TIMOUT period or by whatever additional mechanism is orthogonal to our
protocols of this section

44

vant task (e.g., sending a message and receiving an acknowledgment)
is completed.

We can now formulate the protocol.

Distributed Protocol

1. Every site k maintains, in addition to its local instance ~y0i and the global

constraint
, the triple (~lrk; ~rk; ~urk), where ((~lr1; ~r1; ~ur1); : : : ; (~lrM ; ~rM ;
~urM)) is a permissible resource distribution (thus the local constraint
Ak~yk � ~rk is also implicitly given). Safe (re-)decompositions are per-
formed by updating the permissible resource distribution.

2. In addition, every site k has a mechanism to dynamically collect infor-
mation about the resource distribution for all sites. While the triple
(~lrk; ~rk; ~urk) for i is always accurate, the triples for the other sites
may not be. The collection mechanism can be implemented by peri-
odically passing around the resource distribution information, with a
time-stamp of an update attached to each triple. Also, the resource
distribution information will be passed with every message being sent
among distributed sites. We assume that the collection mechanism is
implemented so that it ensures that the information on the resource
distribution triples for all connected sites is at most T seconds old,
where T is a constant time bound, for those sites that are connected
to k for at least that period of time (i.e., T seconds).

3. For each maximal connected subset �� of sites, a site named RESOURCE DIS-

TRIBUTOR will be selected, which will be responsible for periodical op-
timal resource re-distribution, as described below. RESOURCE DISTRI-

BUTOR will be the site in �� with the minimal ID16, i.e., each site in ��

decides that it is the RESOURCE DISTRIBUTOR in �� if it has the minimal
ID (which are assumed to be known at site k).

4. Every site remembers the PENDING UPDATE (i.e., an update that was re-
quested but still neither performed nor refused) as well the as PENDING-
RESOURCE, that reects requests for resource contributions as explained
below.

16Recall that ID's are assumed to be integers, i.e. they have total order.

45

5. The distributed protocol at each site k reacts in response to the events
below as follows:

EVENT 1: update-request ~y0k
Site k assigns ~y0k to PENDING UPDATE.

EVENT 2: status change
This event is triggered when PENDING UPDATE, RESOURCE DISTRI-

BUTION, PENDING RESOURCE, or CONNECTED condition (that reects
operational sites connected k) are changed at site k. If a resource
contribution is received from site i (via the RESOURCE TRANSFER

transaction) in response to k requests for update resource con-
tribution, then PENDIND RESOURCE is reduced by the quantity re-
quested from i. Also, if PENDING UPDATE is not empty, site k
reevaluates it as follows:

(a) If ~y0k satis�es the local constraint (i.e., by Proposition 8, Akyk �
~urk), site k performs the update and empties PENDING UPDATE.

(b) Otherwise, site k checks if for the maximal set �� of sites that

are operational and connected to k, ~lr
0

�� � ~ur��. By Proposi-
tion 8, this means that there does not exist a compact split
of
 satisfying resource partition ~ur� and local consistency
w.r.t. database instances in ��. In this case, PENDING UPDATE

is refused and the structure for PENDING UPDATE is emptied
(to indicate that there is no pending update).

(c) Otherwise, �nd a minimal subset � of �� such that ~lr
0

� � ~ur�,

where ~lr
0

� is the cumulutive lower bound in � that reects
PENDING UPDATE. By Proposition 8, this condition means that
there exists a compact split of
 satisfying resource partition
~ur� and local consistency w.r.t. database instances in �, in-
cluding PENDING UPDATE. The cumulative resource contribu-
tion vector ~rc to be requested from sites in � will be computed
as follows: for every component ~rcj of ~rc

~rcj = maxf0; (Aky
0
k � ~urk � ~prk)jg

where ~prk is the current PENDING RESOURCE at k. Intuitively,
~rc above is the minimal (non-negative) resource contribution
vector that is necessary, in addition to already PENDING RE-

SOURCE, for site k to make PENDING UPDATE.

46

(d) Site k partitions ~rc among sites in � so that taking the cor-
responding parts from each part will preserve a permissible
resource distribution in �. Then site k sends a request to each
site in � asking for the corresponding contribution. Finally,
~rc is added to PENDING RESOURCE.

EVENT 3: request for update resource contribution ~rc
This event is triggered when such a request is received from an-
other site, say i that needs additional resource to make an up-
date. First, the maximum contribution vector max ~rc is com-
puted as the (component-wise) maximum contribution that can
be taken out of ~urk so that (1) the current instance will still sat-
isfy the local constraint and (2) PENDING UPDATE, if not empty,
will satisfy the local constraint after PENDING RESOURCE is re-
ceived. Then, the actual resource contribution ~rc0 is computed as
the (component-wise) minimum of the requested ~rc and max ~rc.
Finally, RESOURCE TRANSFRER(~rc0,k,i) is initiated.

EVENT 4: request for redistribution resource contribution
This request can only be sent from a a site that has decided it is
the RESOURCE DISTRIBUTOR. If the ID of the requesting site is not
smaller than k, then nothing is done (since then the requesting site
should not be a RESOURCE DISTRIBUTOR.) Otherwise, k initiates
RESOURCE TRANSFER(max ~rc, k, i), where max ~rc is as de�ned in
EVENT 3. Intuitively, site k gives away as much resource as pos-
sible, leaving only what is necessary to keep local consistency for
the current local database instance as well as for PENDING UPDATE

when PENDING RESOURCE will arrive.

EVENT 5: initiation of resource redistribution
This is a composite event, which only occurs at the RESOURCE-
DISTRIBUTOR site. This event is triggered periodically when
certain criteria are met. For example, a resource re-distribution
can be initiated every time that (1) the optimal probability to
satisfy local constraint is higher by at least �% than the current
probability (based on the current resource distribution) and (2)
the previous re-decomposition was performed at least time t ago.
The action here is a request for redistribution resource contribution
sent to all operational sites that are connected to k.

EVENT 6: optimal re-decomposition

47

This is a composite event, which only occurs at a RESOURCE-
DISTRIBUTOR site. This event is triggered at time t after the
initiation of the resource re-distribution, where t is computed so
that for connected sites it will su�ce to transfer their resources to
RESOURCE-DISTRIBUTOR. The action here is as follows:

(a) For the maximal set �� of operational sites connected to k, site
k �nds the optimal �� compact split, w.r.t. resource partition
~ur�� and satisfying local consistency w.r.t. both the current
database instance and PENDING UPDATEs in ��. (This can be
done using the formulation of Theorem 5, when the lower
bound for each site i in �� in the theorem is taken as the
current resource ~ri in the resource distribution.) The optimal
compact split gives the (tight) resource ~ri for each site i in ��.

(b) Site k initiates RESOURCE TRANSFER(~rc, k, i) for each site i in
��, where ~rc is the resource contribution that will update ~uri
to the optimal resource ~ri computed above. 17

End of Distributed Protocol

The Distributed Protocol is designed to satisfy the desirable properties
of global and local Consistency, decomposition Safety and snap-shot Opti-
mality, and Last-resort update refusal (the CSOL-properties) as stated in the
following proposition:

Proposition 11. The suggested Distributed Protocol, that operates under
the Distributed Protocol Assumptions satis�es the following CSOL proper-
ties:

Consistency: At all times, the database instance ~x = (~y1; : : : ; ~yM) satis�es
the global constraint
; every local instance ~yi at every site i must
satisfy the local constraint Ci.

Safety: At all times, the constraint decomposition is safe.

Optimality: RESOURCE DISTRIBUTOR, when triggered to do so, re-distributes
resources in the maximal set �� of operational and connected sites, in

17Note that since the optimal resources are tight (see Section 5) RESOURCE-DISTRIBUTOR
e�ectively leaves the entire passive slack in �� to itself.

48

the optimal way, i.e., so that the resulting resource distribution will
correspond to the optimal �� compact split, w.r.t. resource partition
~ur�� and satisfying local consistency w.r.t. both the current database
instance and PENDING UPDATEs in ��. This is under the assumption that
RESOURCE DISTRIBUTOR has the correct information about the resource
distribution in �� at the time of the re-decomposition.

Last-Resort Update Refusal: Let ~y0i be a new update for site i, and let
�� be a maximal set of operational and connected sites that contains the
site i (i.e., no resources outside �� are available). Last-Resort Update
Refusal means that a site k refuses an update ~y0i only if, based on
the information on the resource distribution available at site k, there
does not exist a safe (compact split) decomposition of
 that satis�es
resource partition ~ur�� (i.e., the cumulative resource upper bound in
��) and preserves local consistency w.r.t. the database instance in ��

that would be created by the update.

Global and local consistency are the standard properties that we would like
to preserve. Safety allows one to check only local consistency to guarantee
global consistency. Optimality is restricted to the information known to a
RESOURCE DISTRIBUTOR at the time of resource redistribution. Clearly, this
information may not be updated, and, furthermore, may also change after
the re-distribution decision has been made. We expect that there will be
a trade-o� in each speci�c protocol between how often a coordinator will
update its knowledge regarding the current resource distribution and the
cost of maintaining such knowledge. Finally, Last-resort update refusal says,
intuitively, that the protocol refuses updates (and re-decompositions), only
when there is no choice under the circumstances, i.e., no site outside of �� can
be reached (that is, �� is a maximal set) and, based just on the information at
sites in ��, we cannot guarantee satisfaction of global and local consistency.

The Distributed Protocol uses a number of tunable parameters and crite-
ria, whose selection will e�ect various system trade-o�s. One such parameters
is how often it is worth to optimally redistribute constraints (i.e., EVENT 5,
initiation of resource redistribution), so that the \right" trade-o� is achieved
between the optimality of a decomposition and the cost of redecompositions.

Another important trade-o� to be found is how accurate should the esti-
mate on the current resource distribution be versus how much overhead the
protocol can tolerate for achieving this accuracy. This trade-o� will inuence

49

how often the information about the resource distribution is passed around.
One extreme case is that any change a�ecting a resource distribution would
be run as a global distributed transaction (with ACID properties), and then
the knowledge regarding the resource distribution can be made completely
accurate at all times. However, the cost of doing so may eliminate most
of the bene�ts of autonomous processing, and thus seems to be excessive.
The other extreme is that re-distribution is never done, but rather resources
will be passed based on the need of updates (deciding which our machinery
of resource distribution classi�cation will be used). It is possible that this
extreme may be the best solution for some cases. In our Distributed Pro-
tocol we suggested an intermediate solution, in which it was assumed that
the accuracy is maintained up to a certain time T and subject to a certain
minimal deviation from the optimal decompositions. However, what speci�c
parameters and criteria should be used here for various application scenarios
remain to be carefully studied.

Another important issue still left open is that of replication, since we
assumed that variables are partitioned among distributed sites. As we com-
mented earlier, the replication case can technically be reduced to a partition,
by replacing every variable x that appears in more than one site with sep-
arate variables x1; x2; : : : for each site, and adding the equality constraint
among these variables to the global constraint. However, this solution is not
good, because safe decompositions in this case would force to have a spe-
ci�c value for each copy of x, and then, e�ectively, updates at individual
sites (without simultaneously involving other sites) would not be possible. A
better solution seems to be integrating data replication techniques with our
decomposition technique. For example, one can use a replication technique
in which one copy of x is considered to be the prime copy which must be
updated �rst (and will appear in the global constraint), and then the update
will be propagated to other sites having copies of x, possibly with some com-
munication delay. (Alternatively, updating a few copies of x can be treated
as a distributed transaction.) Clearly, the question of how such integration of
constraint decomposition and data replication techniques can be done would
require more study and is outside the scope of this paper.

An interesting related problem arises when the global constraint
 is not
fully dimensional, i.e., it implies an equation. For example, to simplify the
idea,
 may imply x1 = x2. This case has exactly the same problem as the
one introduced by replication; it seems that a good solution for this situation
would be to treat it as replication, for example, to use one variable, say x1

50

as the prime copy that would appear in
, while the other variable x2 will
be treated as a replicated copy using data replication techniques.

8 Algorithms, Implementation and Experi-

ments

This section presents a general algorithm to solve the optimization problems
presented in Sections 4 and 5. Experimental results are presented for a
single partition case. We use a set of experimental linear systems to show
the algorithm behavior for varying numbers of constraints and variables. We
use the problem size (product of the number of variables and the number
of constraints) and the algorithm's running time as main measures. The
algorithm was implemented using visual C++ 4.0, and was run it on a 120
Mhz PC compatible.

The optimization problem has linear constraints, and a non-linear objec-
tive function, based on the volume representation. In general, the volume
representation is based on vertex enumeration (implicit or explicit), or re-
cursive representations [19, 5], where some of its properties are: positive
homogeneous function of its right-hand-side vector, local convexity, and lo-
cal concavity. However, these properties are not enough to guarantee optimal
solutions using a global search algorithm.

We use a local search algorithm [22, 10, 16] to solve our optimization
problem. The structure is as follows: a number of local searches are per-
formed, where for each one, the algorithm checks if the local optimum is
better than the current objective function value. This procedure is repeated
until there is no acceptable neighborhood possible, i.e., a neighborhood where
the objective function is locally concave.

Compact Split Safe Decomposition Algorithm

Let Pr be a subset of properties fcompactness; lc; pcp; rpg, where properties
compactness or rp must be included, and � = fk + 1; : : : ;Mg be a subset of
sites f1; : : : ;Mg.

� Step 0. Assign an initial solution to ~rk+1; : : : ; ~rM , the objective function
f �Pr = ft(D(~rk+1; : : : ; ~rM)), and select an initial acceptable neighbor-
hood s.

51

� Step 1. Perform a local search in s, obtain the solution ~h�k+1; : : : ;
~h�M

of

maximizefPr(D(~hk+1; : : : ;~hM))

s:t: �Pr(~hk+1; : : : ;~hM) ^

(~hk+1; : : : ;~hM) 2 s

� Step 2. If fPr(D(~h�k+1; : : : ;
~h�M)) > f �Pr, then f

�
Pr = fPr(D(~h�k+1; : : : ;

~h�M)),

and ~ri = ~h�i ; (k + 1) � i �M .

� Step 3. Select a new acceptable neighborhood s, and go to step 2. If
there is no acceptable neighborhood, go to step 4.

� Step 4. Report the solution as: objective function f �Pr, and the solution
~rk+1; : : : ; ~rM .

The local search (Step 1) is a non-linear optimization problem, with con-
cave objective function. We use the Frank-Wolfe algorithm [3, 17], and vol-
ume algorithms [19, 5] to calculate at each iteration the gradient of fPr. This
algorithm is as follows:

� Step 1.1 Let q 0 be an iteration index, and � a stop condition. Obtain
an initial solution and assign it to ~w0,

� Step 1.2 Obtain the solution of the following linear optimization prob-
lem:

MaxrfPr(D(~wq)) (~hk+1; : : : ;~hM)

s:t: �Pr(~hk+1; : : : ;~hM)

where rfPr(D(~wq)) is the gradient of fPr evaluated at the point ~wq.

(a) if this problem is infeasible, then the original system is infeasible,
then stop, (b) otherwise, i.e., there exists a solution, assign it to ~v.

� Step 1.3 Get the optimal step �� as the solution of the problem:

Max fPr(D(�~v + (1� �)~wq))

s:t: 0 � � � 1

52

� Step 1.4 Assign to wq+1 ��~v + (1� ��)~wq, if k wq+1 � wq k� � then
go to step 1.5, or q q + 1, and go to step 1.2.

� Step 1.5 Report ~wq+1 as the solution.

Note that steps 1.2 and 1.3 require additional algorithms. We use the simplex
algorithm [3, 6] to solve the linear problem (step 1.2), and we use the bisecting
search method [3] to solve the one-variable optimization problem (step 1.3).

The algorithm's complexity is the complexity of �nding an acceptable
neighborhood; plus, for each neighborhood visited, the complexity of n linear
problems (the Frank-Wolfe algorithm), where n is the number of iterations
in the Frank-Wolfe algorithm, whose convergence rate is known to be linear.
In turn, for each linear program, we add the complexity of M volume calcu-
lations. However, volume calculation complexity is mitigated for the smaller
matrix range associated with each partition element.

Table 1: Empirical Results
P N M Time P N M Time

[sec] [sec]
1 4 3 0.66 12 50 50 9.01
2 7 7 0.30 13 80 80 40.86
3 12 7 0.66 14 100 100 92.16
4 100 10 1.05 15 6 5 0.44
5 8 6 12.00 16 12 7 1.10
6 18 6 1.21 17 21 10 1.76
7 8 5 1.87 18 33 14 3.79
8 6 6 0.39 19 55 16 10.21
9 10 10 0.88 20 80 18 20.38
10 20 20 0.94 21 100 20 35.05
11 30 30 2.58 - - - -

Note that for the individual partition case, we have only one acceptable
neighborhood, and therefore we need to solve just Step 1. The results for
this special case are depicted in Table 1.

Table 1 summarizes the results for 21 experiments, where P is the problem
number assigned, N is the number of variables, M the number of constraints,
and Time is the running time measured in seconds. The general structure

53

Figure 3: Experimental run time

Figure 4: Run time for Transportation case

of the experiments is as follows: experiments from 1 to 7 are random linear
systems (with at least one solution), experiments from 8 to 14 correspond to
scheduling problems, and experiments from 15 to 21 have a transportation
problem structure.

Figure 3 shows that the running time does not look exponential in the
size of the problem (notice that the x axis is the natural logarithm of the
problem size). Also, Figure 3 shows that there is a high variance in this
relation.

The relation between a problem size and run time for the transportation
type problems is shown in Figure 3 and for the scheduling type problems in
Figure 4. One can observe a smoother relation between these two variables
than for the general case. a smoother relation between these variables.

54

Figure 5: Run time for Scheduling case

The main conclusion of this experiment, is that the decomposition al-
gorithm is feasible and scalable, at least for the individual partition case.
However, more experimental study would be necessary to cover the general
partition case, in particular to study how many neighborhood jumps in local
search algorithms would result in a good (suboptimal) solution. Note that
in local search algorithms that we suggest for the general case the running
time can always be balanced with how sub-optimality the found solution
will be. Still, the lower and upper complexity bounds for the decomposition
optimization problem, for various objective functions, remain to be studied.

9 Conclusions

This paper has formulated a generic and powerful framework for �nding
optimal constraint decompositions for a range of design and update-time
scenarios, and provided a comprehensive solution for the case of general linear
constraints, which are widely used in distributed applications such as resource
allocation, reservations, �nancial transactions, and logistics.

Although the main motivation has been distributed integrity constraint
maintenance, the technical results seem considerably more general, and ap-
plicable to other problems that can be expressed as constraint decomposi-
tions. However, more study is necessary to identify other domains where our
approach can work.

Extending our decomposition techniques to non-linear numeric constraints,
as well as to non-numeric constraint is another area for future study. Tech-

55

nically, many non-numeric constraints can be captured by linear constraints.
For example, [2, 1] showed that referential integrity constraints can be ex-
pressed using linear constraints. However, it remains to be carefully studied
how e�cient our decomposition methods would be if combined with the re-
duction, as compared to possible direct decomposition techniques working
directly on non-numeric constraints.

Finally, as discussed in Section 7, it will be important to conduct case-
studies for �nding the \right" trade-o�s in the suggested tunable Distributed
Protocol for various speci�c application domains and scenarios, as well as to
integrate data replication methods into our techniques and protocols.

Acknowledgements

We would like to thank Daniel Barbar�a for his very valuable and insightful
comments and suggestions for improving this paper. This research was spon-
sored in part by the Defense Advanced Research Project Agency (DARPA)
within the Advanced Logistic Program under contract number N00600-96-
D-3202, and by the National Science Foundation (NSF) grants IIS-9734242
and IRI-9409770.

56

References

[1] D. Barbar�a and H. Garcia-Molina. The Demarcation Protocol: A
technique for maintaining constraints in distributed database systems.
VLDB Journal, 2(3).

[2] D. Barbar�a and H. Garcia-Molina. The demarcation protocol: A tech-
nique for maintaining arithmetic constraints in distributed database sys-
tems. In Proc. 3rd International Conference on Extending Data Base
Technology, EDBT92, pages 373{388. Springer-Verlag, 1992.

[3] M. Bazara and C. Shethy. Nonlinear Programming, Theory and Algo-
rithms. John Wiley and Sons, 1979.

[4] T. Berners-Lee, R. Cailliau, and et al. The world-wide web. Communi-
cations of the ACM, 37(8):76{82, 1994.

[5] B. Bueler and et al. Exact volume computation for polytopes: A prac-
tical study. Technical report, IFOR, Switzerland, 1996.

[6] E. Chong and S. Zak. An Introduction to Optimization. John Wiley and
Sons, 1996.

[7] J. Cohen and T. Hickey. Two algorithms for determining volumes of
convex polyhedra. Journal of the ACM, 26(3):401{414, 1979.

[8] J.B.J. Fourier. Reported in: Analyse de travaux de l'Academie Royale
des Sciences, pendant l'annee 1824, Partie Mathematique, Historyde
l'Academie Royale de Sciences de l'Institue de France 7 (1827) xlvii-lv.
(Partial English translation in: D.A. Kohler, Translation of a Report by
Fourier on his work on Linear Inequalities. Opsearch 10 (1973) 38-42.).
1824.

[9] H. Garcia-Molina. Global consistency constraints considered harmful. In
Proc. First International Workshop on Interoperability in Multidatabase
Systems (IMS 91), pages 248{250, 1991.

[10] F. Glover. Tabu search, part I. ORSA Journal of Computing, 1(3):190{
206, 1989.

[11] S. Grufman, F. Samson, S. Embury, P. Gray, and T. Risch. Distributing
semantic constraints between heterogeneous databases. In 13th Interna-
tional Conference on Data Engineering (ICDE'97), (IEEE), Birming-
ham, England, 1997.

[12] A. Gupta and J. Widom. Local veri�cation of global integrity constraints
in distributed databases. In Proc. ACM-SIGMOD International Con-
ference on Management of Data, pages 49{58, Washington, D.C., 1993.
ACM.

[13] N. Huyn. Maintaining global integrity constraints in distributed
databases. CONSTRAINTS, An Internation Journal, 2(3{4):377{399,
1997.

[14] T. Huynh, L. Joskowicz, C. Lassez, and J.L. Lassez. Practical tools for
reasoning about linear constraints. Fundamenta Informaticae, Special
issue on Logic and Arti�cial Intelligence, 15(4):357{379, 1991.

[15] S. Jajodia and L. Kerschberg. Advanced Transaction Models and Ar-
chitectures. Norwall, MA, Kluwer Academic Publishers, �rst edition,
1997.

[16] D. Johnson and et al. Optimization by simulating annealing: An exper-
imental evaluation; PART II, graph coloring and number partitioning.
Operation Research, 39(3):378{406, 1991.

[17] N. Kambo.Mathematical Programming Techniques. A�liated East-West
Press PVT Ltd., 1984.

[18] L. Kerschberg, H. Gomaa, and et al. Data and information architectures
for large-scale distributed data intensive information systems. In Proc.
of the Eighth IEEE International Conference on Scienti�c and Statisti-
cal Database Management, Stockholm, Sweden. IEEE Computer Society
Press., 1996.

[19] J.B. Lasserre. An analytical expression and algorithm for the volume
of a convex polyhedron in Rn. Journal of Optimization Theory and
Applications, 39(3):363{377, 1983.

[20] J-L. Lassez. Querying constraints. In Proc. 9th ACM SIGACT-
SIGMOD-SIGART Symp. on Principles of Database Systems, 1990.

58

[21] Jean-Louis Lassez and Michael Maher. On Fourier's algorithm for lin-
ear arithmetic constraints. Journal of Automated Reasoning, 9:373{379,
1992.

[22] M. Laurent and P. Van Hentenryck. Localizer: A modeling language for
local search. 1996.

[23] S. Mazumdar. Optimizing distributed integrity constraints. In Proc.
Third International Symposium on Database Systems for Advanced Ap-
plications (DASFAA-93), pages 327{334, Taejon, Korea, 1993.

[24] S. Mazumdar and Z. Yuan. Localizing global constraints: A geometric
approach. In In Proceedings of the 9th International Conference on
Computing and Information. ICCI'98, 1998.

[25] X. Qian. Distributed desing of integrity constraints. In L. Ker-
schberg, editor, Proc. Second International Conference on Expert Sys-
tem Database Systems, pages 417{425, Redwood City, California, 1988.
Benjamin Cummings.

[26] X. Qian and D. Smith. Constraint reformulation for e�cient validation.
In Proc. Thirteenth International Conference on Very Larqe Databases,
pages 622{632, 1987.

[27] L. Seligman and L. Kerschberg. Federated knowledge and database
systems: A new architecture for integrating of AI and database systems.
Advances in Databases and Arti�cial Intelligence, 1, 1995.

[28] L. Seligman and L. Kerschberg. A mediator for approximate consistency:
Supporting 'good enough' materialized views. Journal of Intelligent
Information Systems, 8(3):203{225, 1997.

[29] E. Simon and P. Valduriez. Design and implementation of an extendible
integrity subsystem. In Proc. Nineteenth Hawaii International Confer-
ence on System Sciences, pages 622{632, 1986.

[30] N. Soparkar and A. Silberschatz. Data-value partitioning and virtual
messages. In ACM, editor, Proc. 9th ACM SIGACT-SIGMOD-SIGART
Simposium on Principles of Database Systems, Nashville, Tennessee,
1990.

59

