
A Mediator for Approximate Consistency:
Supporting “Good Enough” Materialized Views

Len Seligman Larry Kerschberg
The MITRE Corporation George Mason University

seligman@mitre.org kersch@gmu.edu

Abstract

This paper addresses the needs of application designers who would like to
tell an automated assistant the following: “Here is a query that defines a view I
want to materialize within my application. I need this view to remain approximately
consistent with the state of the data sources from which the view is derived, in
accordance with declaratively specified staleness predicates. When the view
becomes stale, follow the refresh strategy I specify (e.g., eager, lazy, hybrid). You
must do this in heterogeneous environments containing both active and passive data
sources.”

This paper describes an architecture that realizes this vision. The approach
supports materialized, object-based views, called quasi-views, defined over shared
databases. Quasi-views are refreshed according to the consistency conditions and
refresh strategies specified declaratively by application designers. These conditions
allow for the deviation of quasi-views from their database counterparts according to
well-defined and monitored approximate consistency predicates. A layer of
software called a Mediator for Approximate Consistency automatically generates the
database objects necessary to enforce these consistency conditions, shielding the
application developer from the implementation details of consistency maintenance.
In addition, it does this for both active and passive (e.g., legacy) data sources.

This paper formalizes quasi-views, presents a declarative quasi-view
specification language, and describes an architecture and implementation of a
Mediator for Approximate Consistency.

1 . Introduction

Many data-intensive information systems have databases which are constantly being updated
by transactions, by sensor data from satellites, and by value-added processing of data to create
information products. In addition, many automated information systems need to:

• transform and cache information from dynamic, shared databases,
• reason about the current state of those data, and
• perform long-running tasks without locking the objects about which they are

reasoning, so as to allow concurrent access by other applications.
Many of these applications can tolerate some deviation between the state of their caches and that

of the shared databases, as long as this deviation is within specified tolerances. Applications with
these characteristics include: (1) coordination of workflow among interconnected aspects of global

2

enterprises (e.g., design, manufacturing, distribution, etc.), (2) network management and fault
diagnosis, (3) on-line monitoring of complex environments, such as factories and power plants,
(4) automated securities trading, and (4) tactical military planning.

In previous work (Seligman and Kerschberg, 1993a, 1993b, 1995), we described the
requirements of such applications and proposed an architecture for addressing those requirements.
Since these publications, we have generalized and refined our approach, realized it in prototype
software, used it to construct an application, and analyzed its performance. This paper presents
these new results.

The approach supports materialized, object-based views, called quasi-views, defined over
shared databases. Quasi-views are refreshed according to the consistency conditions and refresh
strategies specified declaratively by application designers. These conditions allow for the deviation
of quasi-views from their database counterparts according to well-defined and monitored
approximate consistency predicates.

The approach relies on an intelligent interface to both active and passive data sources that we
call a Mediator for Approximate Consistency (MAC). The MAC has several unique features:
(1) it permits applications to specify their consistency requirements using a declarative language;
(2) it automatically generates the database objects necessary to enforce those consistency
requirements, shielding the application developer from the implementation details of consistency
maintenance; (3) it does this in heterogeneous environments that include both active and passive
(e.g., legacy) data sources; and (4) it provides mechanisms for resolving data heterogeneity issues
between client applications and the databases that serve them.

This paper is organized as follows. Section 2 introduces quasi-view objects, which extend
quasi-caching to support the transformation of objects before they are cached. In addition, it
defines a declarative language for specifying quasi-views, based on a modest extension to SQL,
and provides illustrative examples. Section 3 presents an architecture and design for approximate
consistency mediators, including an approach to coping with heterogeneous environments.
Section 4 describes an implementation of the approach in prototype software, the development of a
proof-of-concept application, and a performance analysis. Section 5 compares the MAC with
related work. Section 6 presents our conclusions and some directions for future research.

2 . Quasi-views

This section describes quasi-views, which extend quasi-caching (Alonso, et al., 1990) by
adding support for: (1) resolving heterogeneity issues between data sources and receivers, and (2)
new types of consistency conditions. In addition, this section presents a language for specifying
quasi-views and provides illustrative examples.

3

2 . 1 . Quasi-views: Description and Formal Framework

Informally, a quasi-view is a materialized view whose instances are allowed to deviate in
controlled ways from the corresponding instances of a similarly defined traditional view. A quasi-
view is to a traditional view as a quasi-cache is to a traditional cache in which perfect coherency is
maintained. We now define quasi-views more formally, beginning with the concept of a quasi-
view server.

Definition. A quasi-view server QVS is a data source from which quasi-views (defined
below) can be derived. Quasi-view servers are typically databases, though they can also be flat
files, text-based information retrieval systems, geographic information systems, spreadsheets, or
other data sources, as long as they have available query language front-ends or gateways to a local
data access language. A quasi-view server QVS may be a centralized or distributed database, or a
federation of databases.

Assume that C is a class in a quasi-view server QVS. It has attributes {A1...Am}, each with

an associated domain, and may have a set of methods. Each server class C has an extent of
instances. An instance of C is referred to as an oi. Each object oi has a value vk for each attribute
Ak ∈ {A 1...Am} of C, and that value must be in the domain of Ak.

Definition. A quasi-view class Q is a class in a client application which is defined by a
seven-tuple:

Q = <N, S, A, B, V, ω, H>

where N is the class name, S is a (possibly empty) set of superclasses, A is a set of attributes, B is
a set of behaviors, V is a query language view expression, ω is a set of staleness conditions, and H
is a set of implementation hints to the quasi-view server. Some of these require additional
clarification:

• A, the attributes of Q, can include both locally defined attributes, as well as those

inherited from any superclasses of Q. A includes attributes whose derivations are
specified in the query language view expression V. In addition, there may be
attributes in A which are not derived from objects in the server and which are only
meaningful within the application.1

• B is a (possibly empty) set of behaviors that can include both locally defined
methods, as well as inherited ones.

1These are called “transient slots” in (Paepcke, 1989).

4

• V is a query language view expression against one or more classes in the quasi-view
server. This query describes the conditions under which a quasi-copy (defined
below) should be created in the client application. In addition, V describes
derivations for all derived attributes in A. Each of these derivations is a mapping
from a set of attributes of one or more server classes to an attribute ai ∈ A. These

derivations can use functions which traverse relationship links and can use any
methods defined for server classes being accessed. Importantly, the derivations can
include arbitrary functions, which can be nested as required. As a result, functions
can be used as in (Ahmed, et al., 1991) to reconcile both representation and semantic
heterogeneity between Q and the server classes from which it is derived.

• ω, the staleness conditions, describe the conditions under which instances of Q are to
be considered stale—i.e., they no longer meet the specified coherency conditions.2

• H is a set of implementation hints. The most important of these is the
refresh-strategy, which tells the quasi-view server what to do when a quasi-copy’s
staleness-conditions have been satisfied. Possible values for refresh-strategy include
“eager” (i.e., refresh the quasi-copy immediately), “lazy” (i.e., send only a flag
indicating that the quasi-copy is now stale, then refresh when the object is next
accessed), “opportunistic” (i.e., “use an eager refresh strategy when the network load
permits and a lazy strategy otherwise”), and “eager except <attribute-list>” (i.e.,
“refresh immediately, except for the listed attributes”). The last option permits an
eager strategy to be used for some attributes, while using a lazy strategy for images,
video, or other large objects which may be costly to transmit.

Other possible implementation hints include the priority of messages to the
client about this quasi-view class (vis a vis other quasi-views) as well as information
about static data that the server need not continually monitor. In certain cases, such
hints can have significant performance benefits. The set of allowable implementation
hints should be extensible, to allow implementors to provide hints that would be
useful in particular environments.

Definition . A quasi-view object is an object in a client application which is an instance of a
quasi-view class. Following Alonso, et al., we sometimes refer to a quasi-view object as a quasi-
copy.

Quasi-view objects, like the view-objects of Barsalou, et al. (1991), are objects which are
constructed from query expressions against a pivot class (or relation) and a set of additional classes

2Staleness conditions (i.e., the conditions under which the quasi-view becomes stale) are

the complement of coherency conditions (i.e., the conditions under which the quasi-view is still
acceptable). We use “staleness” rather than “coherency” conditions, because our users found it
more intuitive to specify the conditions under which something ought to happen (e.g., a refresh)
rather than those under which coherency remains acceptable.

5

(or relations) to which the pivot class is related.3 Each quasi-view object oi ′ of a quasi-view class

Q is a quasi-copy of some oi—i.e., an instance (or tuple) of the pivot class (or relation) from
which Q is derived. In our formulation, unlike that of (Alonso, 1990), a quasi-copy oi ′ can be
substantially transformed from the oi from which it is derived.

Example. A quasi-view server contains the following relation: Stock(name, code, category,
current-price, chairman-video). Suppose one wants to create a quasi-view class called Blue-Chip-
Stock which is derived from Stock. A possible quasi-view class definition follows:

N = Blue-Chip-Stock
S = {Investment}
A = {name, stock-code, current-price, last-ceo-press-conference, sell-at-price,

buy-at-price}
B = {Buy, Sell}
V = “Select name, stock-code = code, current-price = Dollars-to-yen(current-price),

last-ceo-press-conference = Convert-format(chairman-video)
From Stock
where category = ‘Blue Chip’”

ω = {“When current-price deviates by more than 5% from the currently cached price”}
H = {refresh-strategy = “Eager except {chairman-video}”,

static-fields = {name, stock-code}}

Blue-Chip-Stock has one immediate superclass called “Investment.” The attributes of Blue-
Chip-Stock are name, stock-code, current-price, last-ceo-press-conference, sell-at-price, and buy-
at-price, and its methods are Buy and Sell. The query V indicates that instances of Blue-Chip-
Stock should be created for all instances of Stock for which category = “Blue Chip”. In addition,
the query describes the derivations of name, stock-code, current-price, and last-ceo-press-
conference: they get the values of Stock.name, Stock.code, Dollars-to-yen(Stock.current-price),
and Convert-format(Stock.chairman-video) respectively, where both Dollars-to-yen and Convert-
format are functions defined within the quasi-view server. (Derivations are not provided for sell-
at-price and buy-at-price; those are non-persistent attributes of Blue-Chip-Stock which only have
meaning within the particular application.)

When the staleness conditions, ω, are satisfied as a result of an update to an instance of Stock,
then the corresponding quasi-copy is considered stale. The first specified implementation hint
concerns refresh-strategy. Because the refresh-strategy is “Eager except {chairman-video}”, stale
quasi-copies are refreshed immediately, with the exception of the value of the attribute
chairman-video, which is refreshed lazily. The second implementation hint indicates that the
values of name and stock-code are static and therefore do not need to be refreshed.

3A pivot relation is a relation on which a view-object is “anchored,” constituting its core

component. The concept is formally defined in (Barsalou, et al., 1991).

6

2 . 2 . Specifying Quasi-view Classes

This section presents an extension of SQL that can be used to specify quasi-view classes. The
proposed language provides a clean separation of the quasi-view definition from optional hints that
can be given to the quasi-view server so as to increase performance. An EBNF grammar for the
specification language is shown in Figure 1.4

<quasi-view-def> ::= create quasi-view quasi-view-name (<target-list>)
[under superclass {, superclass}*]
as <select-statement>
[with staleness conditions <staleness-conds>]
[with hints <hint> {, <hint>}*]

<target-list> ::= client-attribute-name {, client-attribute-name}*
<select-statement> ::= select [always] <value-exprs>

from class-name {, class-name}*
[where predicate]

<value-exprs> ::= <value-expr> {, <value-expr>}*
<value-expr> ::= [server-class-name.]server-attribute-name |

constant |
function(<value-expr> {, <value-expr>}*)

<staleness-conds> ::=any change | never | <staleness-cond> {, <staleness-cond>}*
<staleness-cond> ::=any change to server-atttribute-name |

{ value | percent} server-attribute-name positive-integer |
version positive-integer |
time positive-integer time-unit |
predicate(<value-exprs>) |
user-defined-delta

predicate (delta(<attribute-list>) [, <value-exprs>])
with delta-function function

<hint> ::= refresh-strategy <refresh-strategy> |
retract-instances { yes | no} |
static-attributes <attribute-list>

<refresh-strategy> ::= eager | opportunistic | lazy |
eager except <attribute-list> |
opportunistic except <attribute-list>

<attribute-list> ::= server-attribute-name {, server-attribute-name}*

Figure 1. SQL Extension for Specifying Quasi-view Classes

Figure 2 illustrates a specification for a quasi-view class called FriendlyTrack, which provides
position and other information on military ships and planes from selected allied countries.
FriendlyTrack has attributes ID, Velocity, Location, Home-port, Image, Flag, and Force-
magnitude, and it has one superclass, InterestingEntity. The “select always” statement means that
an instance of FriendlyTrack should be created whenever there is an instance of Track with Flag
equal to either “US”, “UK”, or “DE”. Had “always” been omitted, the quasi-view would contain
only those instance of Track satisfying the predicate at quasi-view initialization time; the server
would not continue to monitor for new Track instances meeting the predicate.

4Space does not permit a detailed language description; such a description can be found in

(Seligman, 1995).

7

Following the keyword “always” is a list of derivations of attributes of FriendlyTrack. These
derivations are illustrated in Figure 3. ID, Image, and Flag are derived trivially from Track.ID,
Track.Image, and Track.Flag respectively. Location is derived by applying the function list to the
arguments Track.Latitude and Track.Longitude. The derivation of Home-port illustrates the
resolution of structural heterogeneity; it is derived by applying the name function to the value of
Track.Home-facility, whose domain consists of instances of the class Facility. More complex
forms of heterogeneity could be resolved similarly using arbitrary functions (nested as required) in
derivations. No derivation is specified for the attribute force-magnitude, because it is a
nonpersistent attribute only meaningful within the application program.

The staleness conditions describe the conditions under which the quasi-view no longer meets
the user’s specified coherency requirements. This occurs when Track.Speed varies by more than
50 percent from the value of Velocity for a corresponding quasi-copy, whenever a cached instance
of Track is updated 5 or more times since the last refresh, or whenever Track.Image is updated.

create quasi-view FriendlyTrack
(ID, Velocity, Location, Home-port, Image, Flag, Force-magnitude)
under InterestingEntity as
select always ID, Speed, List(Latitude, Longitude), Name(Home-facility), Image,

Flag
from Track
where Flag in (“US”, “UK”, “DE”)

with staleness-conditions
percent Speed 50,
version 5,
any change to Image,
user-defined-delta

> (delta (Latitude, Longitude), 20))
with delta-function Distance-using-lat-long

with hints
refresh-strategy eager except Image

Figure 2. Example Quasi-view Specification

The last staleness condition in Figure 2 is a user-defined-delta, a type of condition which was
essential for our prototype applications and which is not discussed in previous work. User-
defined-deltas are used to describe data changes in the server that cause quasi-copies to become
stale when those conditions depend upon changes to multiple attributes or to non-atomic or non-
numeric attributes. The example illustrates how a user-defined-delta can track the magnitude of
changes in Location, which is represented as a pair of complex attributes. The interpretation of the
last staleness condition is this: a quasi-copy becomes stale when the change in <Latitude,
Longitude> exceeds 20, where the delta is measured by invoking the function Distance-using-lat-
long with the arguments Latitude, Longitude, Cached-value-for-Latitude, and Cached-value-for-
Longitude.

8

One implementation hint is specified in Figure 2: that the refresh strategy is “eager except
Image.” This indicates that quasi-copies should be refreshed as soon as they become stale, except
for the attribute Image, which is refreshed only when it is accessed.

Facility

Name
Latitude
Longitude

NeutralTrack

ID
Velocity
Location
Image
Flag
Home-port
Force-Magnitude

InterestingEntity

is-a

Track

ID
Speed
Latitude
Longitude
Home-facility
Image
Flag

list •

Classes in Quasi-view Client Classes in Quasi-view Server

has-
home-
facility

Derivations

Derivations

Figure 3. Attribute Derivations for Example

3 . Approximate Consistency Mediation

Central to our approach to consistency management across heterogeneous systems is a
Mediator for Approximate Consistency (MAC). An architecture for approximate consistency
mediation is presented in (Seligman and Kerschberg, 1993b). This section presents a refinement
of that architecture which better supports the needs of heterogeneous systems.

The term mediator was defined by Wiederhold (1992a) and refers to software that “simplifies,
abstracts, reduces, merges, or explains data” in order to “create information for a higher layer of
applications.” A mediator for approximate consistency abstracts away most changes to underlying
data sources and only reports those updates the application has defined as being “significant.” The
MAC provides a “consistent enough” view of the component data sources (in terms of the staleness
conditions described in a quasi-view specification) for the application to accomplish its tasks.

Figure 4 illustrates our architecture for approximate consistency mediation. The mediator itself
consists of three major submodules: the Translator, which processes requests from applications to
the component data sources, the Message Handler, which manages a queue for handling messages
from data sources to client applications, and language-specific application programming interfaces
(API) to the mediator. In addition, the approach relies on wrappers, which provide descriptions of
the sources, including the capabilities of the database management systems or other software that
manage them.

9

metadata queries
and returned
metadata on
source Y

quasi-view
maintenance
objects

Cache refresh
and staleness
messages

Wrapper
for Active Data

Source X

Wrapper
for Passive Data

Source Y

Active
Data Source X

Translator

Passive
Source Y

Polling
Procedure

Message
Handler

MAC

Language-specific
API (e.g., CLOS)

Language-specific
API (e.g., C++)

Application-1 Application-n

quasi-view class
definitions,

refresh requests

quasi-view class
definitions,

refresh requests

cache refresh and
staleness
messages

cache refresh and
staleness
messages

code to install
polling procedure on

server

Cache refresh and
staleness messages

quasi-view
maintenance objects
in language of source

metadata queries
and returned
metadata on
source X

Figure 4. Architecture for Approximate Consistency Mediation

An application declaratively specifies its consistency requirements by defining quasi-view
classes using either the SQL extension described above or using a language-specific API, such as
the one implemented for the Common Lisp Object System (CLOS) (Seligman, 1994). The API
converts quasi-view specifications into a canonical form expected by the Translator. Applications
also can use library functions provided by the API to modify existing quasi-view class definitions
(e.g., their staleness conditions) or to request an immediate refresh of some or all of the instances
of specified quasi-view classes.

3 . 1 The Translator

The Translator generates the rules, objects, and/or programs necessary to maintain the specified
quasi-view classes. In order to do this in a heterogeneous environment, the Translator queries the

10

wrappers of relevant data sources. Each wrapper returns metadata which describes the active
capabilities of the source’s data manager (i.e., DBMS, file system, etc.), the privileges granted to
the mediator (e.g., does it have permission to create rules on this source?), as well as
miscellaneous administrative information.

The Translator uses the metadata returned by the wrappers to determine what objects to
generate. There are two main categories of sources for which monitoring objects must be
generated: active and passive ones. Active sources are those which support Event-Condition-
Action (ECA) rules (Hanson and Widom, 1995), while passive sources are those which do not.
Note that active sources can include passive sources (e.g., legacy databases) which are “wrapped”
to support rule processing. For example, one could replicate a subset of a passive database in an
active one using “asynchronous replication” software such as that offered by Sybase, Oracle, or
IBM (Stacey, 1994). The consistency mediator could regard such a source as being active.

For passive data sources, the Translator generates a procedure which polls the source
periodically to determine if any quasi-views need to be refreshed. Note that active databases on
which the mediator lacks Create Rule privileges must be considered passive by the Translator,
unless the source is wrapped as described in the previous paragraph.

For active data sources, the Translator translates declarative quasi-view specifications into the
following: (1) queries to be executed immediately, (2) rules for monitoring the future state of the
database, and (3) data definition language commands that result in the creation of and updates to
staleness conditions as well as other quasi-view maintenance objects in the database. The queries
that are to be executed immediately are used to initialize the extension of the quasi-view class. The
rules are of three types: selection-rules, that are used to monitor the data source for conditions
warranting the creation of a new instance of the quasi-view class; retraction-rules, that monitor the
database for conditions under which a quasi-copy should be purged; and refresh-rules, that are
used to monitor the database for conditions which cause quasi-copies to be considered stale.

In addition to an initialization query and the rules described above, the Translator must create a
number of other objects to help the mediator ensure that the defined coherency conditions are
enforced. These objects represent information on the currently defined staleness conditions and the
quasi-views they support, what base table (or base class) instances are constrained by which quasi-
views, and state information on some of the quasi-copies, particularly those that are constrained by
delta conditions (e.g., refresh when attribute α varies by more than 20% from its cached value).

While it would be possible to represent all this information in rules, we recommend against this
in order to minimize the number of rules required and to avoid frequent run-time changes to the
rule-base. There are two reasons for wanting to do these things. First, there is an autonomy
issue. Database administrators are aware that rules have great power. DBAs with whom we have
spoken are uncomfortable with having mediators (or users) install and make frequent changes to
database rules. Second, unnecessary rule-base changes should be avoided for performance
reasons. In many active databases, particularly those that maintain a Rete network or otherwise
incrementally compute condition results, adding and deleting rules is computationally expensive.

11

Name: R_1
Event: update to track.speed
Condition: new.ID = “001” AND

(new.speed ≥ 500 OR
 new.speed ≤ 200)

Action:
set rule.condition to

concat(“new.ID = ‘001’ AND ”,
“(new.speed ≥ ”,

compute_new_high_threshhold(new.speed),
“ OR new.speed ≤ ”,

compute_new_low_threshhold(new.speed), “)”)
where rule.name = “R_1”

Figure 5. Example of a Self-modifying Rule

Based on the above, we offer some design guidelines for approximate consistency mediators,
which we have followed in our own implementation. First, we suggest the use of separate objects
to represent required information on the state of the quasi-copies, instead of embedding that
knowledge in rules. Figure 5 shows an example of a rule that violates this guideline. The problem
with this approach is that it requires self-modifying rules, with which few DBAs would be
comfortable. Self-modifying rules are required, because every time a quasi-copy is refreshed, the
conditions of relevant rules need to be changed to reflect the new thresholds beyond which the
quasi-copy again becomes stale. For these reasons, we have removed the quasi-copy state
information from monitoring rules and have put it in separate objects, as discussed below.

Another design suggestion is to define the rules that check staleness conditions at the class (not
the instance) level. Instance level rules require both more rules and rule base maintenance. E.g.,
for the example presented in Figure 2, there should be one rule monitoring the database for
staleness conditions for all Track instances, not one for each instance for which there exists a
quasi-copy.

These guidelines led us to our current design, in which the Translator generates instances of the
following classes:

• Quasi-view, which contains general information on the quasi-view class.
• Staleness-condition-definition, which has subclasses for the different kinds of

staleness conditions (e.g., delta, version, user-defined-delta). This class represents
all information on a staleness condition that applies across all instances for which
quasi-copies exist.

• Staleness-condition, which contains information needed to evaluate the conditions
described in Staleness-condition-definition objects as they pertain to particular
instances. This includes information on the state of the quasi-copies. Subclasses of
Staleness-condition include delta-condition, version-condition, and user-defined-
delta-condition.

12

• Staleness-condition-collection, which provides a way of grouping all the staleness-
condition objects that pertain to a particular database instance.

• Refresh-rule, which triggers checking of staleness-conditions. For reasons described
above, there is only one refresh-rule for each server class from which quasi-views are
derived.

Figure 6 illustrates the objects that are created and maintained by the Translator to support
maintenance of approximate consistency. The example chosen is the quasi-view class specification
from Figure 2, which has the following staleness conditions:

percent Speed 50,
version 5,
any change to Image,
user-defined-delta

> (delta (Latitude, Longitude), 20))
with delta-function Distance-using-lat-long

The Translator uses this specification of consistency requirements to create the objects shown
below the dashed line in Figure 6. Four instances of subclasses of Staleness-condition-definition
are created: delta-condition-definition-1, version-condition-definition-1, always-condition-
definition-1, and user-defined-delta-condition-definition-1. One rule, refresh-rule-1, is used to
determine when the conditions should be tested.

Figure 6 also illustrates what happens when two Track instances, track-1 and track-2 (shown
above the solid line), meet the selection conditions for the quasi-view and have quasi-copies
created for them. At that time, the objects shown between the dashed and solid lines are created.
When the quasi-copies are created, a Staleness-condition-collection is created for each cached
instance. Each Staleness-condition-collection contains pointers to instances of subclasses of
Staleness-condition. For example, staleness-condition-collection-1 has pointers to its constituent
Staleness-conditions: delta-condition-1, version-condition-1, and user-defined-delta-condition-1.
These in turn have pointers to the objects that maintain information on the definitions of the refresh
conditions—i.e., delta-condition-definition-1, version-condition-definition-1, and user-defined-
delta-condition-definition-1. No Staleness-condition object is required for the “any change to
Image” condition (i.e., an “always” staleness condition), because this condition type has no need
to record information on the state of any quasi-copies.

Now suppose that track-1 has its Speed changed to 26. In that case, refresh-rule-1 would have
its event triggered (because of the update to an instance of Track). Because the rule’s condition is
always True, the action would be executed. The rule’s action issues a query over instances of
Staleness-condition-collection searching for any with a constrained-instance slot that points to
track-1. Then, for each Staleness-condition-collection returned by the query (in this case, only
staleness-condition-collection-1), the condition-satisfied method would be evaluated, which would
in turn check delta-condition-1, version-condition-1, always-condition-definition-1, and user-

13

defined-delta-condition-1. Because none of these would return True, the quasi-copy would not be
refreshed. The only action that would result is that the updates-since-last-refresh slot of version-
condition-1 would be incremented.

The fact that the quasi-copy is not refreshed after this update to track-1 is consistent with the
goals of quasi-views. Recall that a quasi-view specification declaratively describes what kinds of
changes constitute significant changes to the application. The application should be insulated from
all changes which fail this significance test. In this case, the active database has successfully done
this filtering and has done so using objects that the MAC generated automatically from the quasi-
view specification.

Now suppose that track-1 has its Latitude changed to “39.8 N” and Longitude changed to
“125.1 E”. Again, refresh-rule-1 would have the same initial effect, causing evaluation of the
condition-satisfied method of staleness-condition-collection-1, which in turn would check the
staleness conditions to which it points. When user-defined-delta-condition-1 is checked, the
predicate of the corresponding user-defined-delta-condition-definition is evaluated. This time,
when the predicate is evaluated, suppose that distance-using-lat-long returns 42 (i.e., track-1 has
moved 42 miles from the location in the quasi-copy). Since that is greater than 20, the predicate
would return True, causing the condition-satisfied methods of staleness-condition-collection-1 to
return True. Referring to the definition of refresh-rule-1 (shown in Figure 6), one can see that
process-stale-quasi-copy would be called. This not only refreshes the quasi-copy but also updates
user-defined-delta-condition-1 and version-condition-1 with new values for cached-values and
updates-since-last-refresh respectively.

Again, this behavior is consistent with the goals of quasi-views. The user-defined-delta-
condition-definition that is part of this quasi-view is intended to ensure that only significant
changes in location are reported. Because distance-using-lat-long reported that the change
exceeded the significance threshold specified in the predicate, the quasi-copy is considered stale.
The quasi-copy is refreshed immediately with the exception of the attribute Image, in accordance
with the stated refresh-strategy. Again, this is accomplished by objects that the MAC has
generated automatically from the declarative quasi-view specification.

14

(Track)

(always-condition-
definition-1)

(delta-condition-definition-1)
(version-condition-

definition-1)

(quasi-view-1)

(Track)

(staleness-condition-collection-1)

(delta-condition-1)

(version-condition-1)

(user-defined-
delta-condition-1)

(staleness-condition-collection-2)

(version-condition-2)

(delta-condition-2)

Updates-since-
 last-refresh: 0

Updates-since-
 last-refresh: 0

Cached-value: 20
High-limit: 10
Low-limit: 30

Cached-value: 30
High-limit: 15
Low-limit: 45

Name: Track-2
Flag: "UK"
Speed: 30
Latitude: "37.6 N"
Longitude: "121.6 E"
Image:
 <Binary Object>

Combination-operator: OR

Combination-operator: OR

Name: Track-1
Flag: "US"
Speed: 20
Latitude: "39.1 N"
Longitude: "125.2 E"
Image:
 <Binary Object>

Constrained-class: Track
Triggering-rule:
 refresh-rule-1
Constrained-attributes:
 (Image)

Type: version
Constrained-class:
 Track
Triggering-rule:
 refresh-rule-1
Epsilon: 5

Type: percent
Constrained-class:
 Track
Triggering-rule:
 refresh-rule-1
Constrained-attribute:
 Speed
Epsilon: 50

Application-class: FriendlyTrack
Server-Class: Track
Initial-Query:
 (select Track
 (member Flag '(US UK DE)))
Refresh-strategy:
 (eager except (Image))
Refresh-rules: refresh-rule-1

Cached-values:
 "39.1 N"
 "125.2 E" (user-defined-

delta-condition-2)

(user-defined-delta-condition-definition-1)

Predicate:
 (> (Distance-using-lat-lon
 (Latitude *self*)
 (Longitude *self*)
 (first *cached-values*)
 (second *cached-values*))
 20)

Objects above the solid line
are database instances.

Type:
 User-defined-delta
Constrained-class: Track
Triggering-rule:
 refresh-rule-1
Constrained-attributes:
 (Latitude Longitude)
Delta-function:
 Distance-using-lat-long

(refresh-rule-1)
Event: Update to Track
Condition: True
Action:
 (loop for staleness-conds in
 (select staleness-condition-collection
 (equal constrained-instance *new*))
 do (if (condition-satisfied staleness-conds)
 (process-stale-quasi-copy
 (quasi-view staleness-conds)
 new)))))

Objects below the dashed line are
generated by the Translator when it

processes quasi-view specifications.

Objects between the lines
are created when

quasi-copies are created.

Cached-values:
 "37.6 N"
 "121.6 E"

Figure 6. Objects Generated by the Mediator

15

3 . 2 The Message Handler and Application Programming Interface

The previous section described the role of the Translator in generating the objects necessary to
monitor both active and passive data sources for changes which should result in creating, deleting,
or modifying instances of a quasi-view or in marking them as being stale. Once those objects are
generated, there must be a mechanism for notifying the application that these operations should
take place. That mechanism is provided by the Message Handler and the API.

The Message Handler receives notification of updates to the quasi-view extension from the data
sources and stores those messages in a priority queue until the application is ready to receive them.
The Message Handler accepts both synchronous messages, which are immediate responses to
queries forwarded to the database by the Translator, and asynchronous messages, which result
from rule firings within active data sources or from generated procedures that poll passive data
sources. The asynchronous messages can be either refresh messages, which result in creation,
deletion, or update of instances in the quasi-view, or staleness messages, which mark certain
quasi-view objects (or specific attribute values of those objects) as being stale.

The API provides functions to dequeue messages from the Message Handler queue and to map
them to operations (e.g., insert, update, and delete) in the client environment. In addition, the API
includes support for a lazy refresh strategy. This includes extending the built-in accessor functions
for the attributes of a quasi-view class so that they perform object faulting whenever an object (or a
specific attribute value) being accessed is marked as stale. For example, the accessor function
defined for Stock.chairman-video (from the example in Section 2.1) checks to see if the current
value for that attribute is stale. If it is, it issues a refresh request to the translator, which translates
the request into a query against the component data source.5

3 . 3 Resolving Data Heterogeneity

There are two main types of source/receiver heterogeneity with which applications must
contend: infrastructure heterogeneity (e.g., differences in data models, languages, DBMSs) and
data heterogeneity. This work addresses some aspects of infrastructure heterogeneity in Section
3.1, particularly differences in the “activeness” of data sources.6 We now discuss briefly our
approach to resolving data heterogeneity, including both representation and semantic heterogeneity.

As described in Section 2, arbitrary functions can be used in the derivations of attribute values
for the instances of a quasi-view class. These functions can be used to resolve both representation

5This functionality is most easily provided in languages like CLOS that provide good

metaclass support. In these languages, one can create a metaclass for quasi-view class which
automatically gives accessor functions for the slots of that class the required object faulting
functionality.

6Many other aspects of infrastructure heterogeneity (e.g., heterogeneity in data models and
languages) are receiving considerable attention in the commercial marketplace (Rosenthal and
Seligman, 1994).

16

and semantic heterogeneity between data sources and client applications. One way to do this is for
the application developer to specify these mappings explicitly.

A more flexible approach is to use a mediator to generate these mappings, as in the context
mediation work of Sciore, Siegel, and Rosenthal (1994). A context mediator can generate a view
specification from declarative descriptions of the data receiver (i.e., an application), the data
sources, their mappings to a common ontology, and a library of conversion functions. While the
MAC could be enhanced to provide this functionality, we prefer to use a more modular approach in
which context mediation is separated from consistency management. For example, a context
mediator could generate a view that resolves source/receiver heterogeneity. This generated view
would be used as the foundation of the quasi-view specification. The application developer would
need to add only the application’s consistency requirements (e.g., staleness conditions and refresh
strategy). This kind of flexible combination of mediators is exactly what is envisioned by
Wiederhold (1992b).

4 . Prototype Implementation

The MAC architecture described above has been realized in prototype software. This section
describes the prototype and our experiences developing a proof-of-concept application. It closes
with a brief discussion of the performance consequences of using the MAC.

4 . 1 Application-independent Portions of the Prototype

The prototype implementation is illustrated in Figure 7. The application-independent parts of
the prototype include the MAC, which includes the Translator, the Message Handler, and a
Common Lisp Object System (CLOS) application programming interface (API); the ARROW
active object database; and an end-user tool for modifying quasi-view definitions.

The MAC prototype implements the functionality described in the previous section—i.e.,
taking a declarative quasi-view specification and automatically generating the rules and other
objects required to properly maintain the quasi-view extension. A detailed description of the
techniques for generating these objects appears in (Seligman, 1994).

The current MAC implementation generates these objects for ARROW, an extensible, active
object database we implemented by extending Itasca, the commercial implementation of Orion
(Kim, 1990). The most notable feature of ARROW, other than support for Event-Condition-
Action rules, is its extensibility—its behavior (e.g., its conflict resolution strategy) can be modified
easily by making small changes to the methods of a small number of ARROW classes. More detail
on ARROW can be found in (Seligman, 1994).

The MAC has been implemented in Common Lisp running on a Sun Sparcstation under the
Unix operating system. To date, we have implemented only a CLOS API. However,
development of a new API would be a modest effort requiring only the following: (1) a

17

preprocessor to transform quasi-view specifications from an extension of the application language
(e.g., a C++ extension) to our canonical quasi-view specification language and (2) code to map
canonical refresh messages into statements processible by the application (e.g., new in C++).

To define a quasi-view class and its characteristics, one uses the quasi-view specification
language described in Section 2.2. Modifications to the specification are done using methods
described in (Seligman, 1994), which enable staleness conditions and other aspects of the quasi-

DDL, DML

ARROW
Active Object

DBMS

rules and other objects for
maintaining quasi-view

extensions

Graphical Tool
for Modifying

Quasi-view
Definitions

Planner's Assistant
(proof-of-concept

application)

User

 refresh
requests

changes to
quasi-view
definitions

Translator
Message
Handler

Common Lisp Object System
Application Programming Interface

Mediator for
Approximate
Consistency

Application-independent
portion of the

Prototype

insert, update, delete,
and "make stale"
messages

quasi-view
definitions

inserts, updates,
and deletes of
CLOS objects;
mark "stale"
objects

insert, update, delete,
and "make stale"
messages

 refresh
requests

Figure 7. Prototype System

18

view definition to be modified at run-time. While these interfaces are appropriate for
programmers, we wanted to demonstrate that tools could be created to assist end-users with
defining and modifying quasi-view specifications. In our prototype implementation, we have
developed a Staleness Condition Editor, a tool with a graphical user interface that provides
assistance with the latter task.

Figure 8 shows the basic layout of the Staleness Condition Editor. On the far left is a scrolling
list of quasi-view classes defined for a particular client. In the middle is a list of attributes (for the
currently selected class) on which staleness conditions can be added and deleted. On the right is a
list of the conditions currently defined for that <class, attribute> pair. Finally, there is an English
language explanation of the currently selected condition. The condition in Figure 8 means that
quasi-copies in this quasi-view should be refreshed whenever the value of wind-speed in the
corresponding class in the server changes by more than 15 from the cached value.7

Interprocess communication in the prototype is achieved by using Itasca’s Remote Lisp
application programming interface, which enables two (potentially distributed) processes to
communicate using Unix sockets.

4 . 2 Proof-of-concept Application

The proof-of-concept application is based on the characteristics of a generic military mission
planning system. The database used by the application contains information on the following:

• Tracks—these indicate the presence of some entity at a certain position. The entities
could be ships or airplanes and could be friendly, enemy, neutral, or civilian.

• Targets—candidate targets. These have location and description, and are rated
according to “value” as well as risk of collateral damage.

• Threats—surface-to-air missiles, artillery, and other threats to friendly assets.
• Climatology—Descriptions of typical weather conditions for an area at a particular

time of year.
• Weather reports—These include one, three, and five day forecasts as well as reports

of observed weather conditions.
Figure 7 illustrates the application, which supports a human planner who monitors tracks,

targets, threats, climatology, and weather reports and uses this information to construct and
monitor mission plans. The user describes his data consistency requirements using the quasi-view
specification functions provided by the application programming interface to the MAC.
Modifications to quasi-view specifications are done with the tool described in the previous section.

7The tool assumes the use of an eager refresh strategy.

19

Both quasi-view definitions and modifications are sent to the Translator, which generates an
initialization query, selection, retraction, and refresh rules, as well as other objects for enforcing
the specified conditions. These are all created in the data definition and data manipulation language
of ARROW (i.e., the query language of Orion plus extensions for supporting ECA rules). When
selection, retraction, and refresh rules fire in ARROW, information on domain instances is sent to
the Message Handler. The display program requests messages from the Message Handler via the
API, which maps the messages to inserts, updates, and deletes of CLOS objects in the application
cache. The display program then displays all relevant application knowledge base updates to the
user.

This application has several characteristics that make it well suited to the MAC. First, there is
an overwhelming amount of data that could be presented to the user. Users must have the ability to
specify what information is significant and have only that information presented to them. It is
essential that users be able to describe selection conditions (i.e., the conditions under which they

Figure 8. Staleness Condition Editor

20

will be made aware of the existence of an entity) and refresh conditions (i.e., the conditions under
which they will be notified of updates to a selected entity). Second, users must be able to specify
several different types of refresh conditions, as described below. Third, tolerances for the kind
and degree of data inconsistency depend on the type of data and on the current situation. Fourth,
users must have control over the enforced consistency constraints and must be able to change them
with no interruption in service. Finally, this application has another characteristic that makes the
MAC especially suitable: The networks have extremely low bandwidth. As a result, minimizing
the amount of network traffic is an important goal.8

4 . 3 Experiences with the Proof-of-concept Application

This section describes our experiences with the proof-of-concept application. It describes how
the MAC supports the definition of data consistency conditions for a realistic application,
automatically generates consistency enforcement objects for the defined consistency conditions,
and reduces the number of refresh messages from a server to a client application.

In an effort to assess the utility of the MAC, we asked two individuals with considerable
expertise in the domain of tactical military mission planning to devise a set of classes that could be
used to support a planner and some potentially useful consistency conditions for those classes of
data.9 The domain experts came up with a set of 11 quasi-view classes, each with an associated
selection condition, and with a total of 17 staleness conditions among them.

Using our initial version of the MAC, we were only able to support 7 out of the 17 staleness
conditions described by the domain experts. This was because the implementation was limited to
supporting the cache coherency conditions described in (Alonso, et al., 1990). However, after
expanding the MAC to support arbitrary predicates and user-defined delta conditions, we were able
to support all of the specified selection and staleness conditions.

An interesting finding was how useful the user-defined-delta conditions turned out to be in
developing the mission planning application. For example, they were essential for tracking the
magnitude of changes in the location of objects, as shown in the quasi-view specification in Figure
2.

In addition, user-defined-delta conditions proved to be important even for tracking changes to
some atomic attributes, as in the following example:

8Low bandwidth networks are typical of military environments, but will also become

increasingly important in civilian applications with the growth of wireless networks supporting
nomadic computing. This sentiment is echoed in a recent paper on nomadic computing which
states that “...network bandwidth will remain a major performance bottleneck for system design in
the near future” (Alonso and Korth, 1993).

9These classes and consistency conditions are not intended to resemble those of any real
operational system, however, they do capture the spirit of those systems in terms of the kinds of
consistency constraints that seem useful.

21

user-defined-delta
>(delta(wind-direction), 90)
with delta-function Direction-change-in-degrees

In this example, wind-direction is represented in degrees as an integer from 0 to 359, where 0 is
North and 180 is South. The reason a simple value staleness condition (e.g., whenever the value
of wind-direction changes by more than 90) cannot be used is because the change cannot be
measured by simple subtraction. For example, a change in wind-direction from 2 to 358 should
fail this staleness condition, because it is only a change of 4 degrees, far less than the specified
threshold of 90. For this reason, a user-defined delta function, Direction-change-in-degrees, must
be used.

Once quasi-views were defined for our application, we next ran the Translator to generate
ARROW rules and other objects that enforce the specified consistency conditions. We then sent a
stream of updates to the database in order to see that only updates that cause objects to meet the
staleness conditions actually result in refreshing a quasi-view. To highlight this, we created an
interface with two scrolling windows, shown in Figure 9. The window on the left shows activity
against the server database, which in this application is known as the Force Over-the-horizon Track
Coordinator (FOTC). The window on the right shows insert, update, and delete messages sent to
the Message Handler, in response to selection and staleness conditions being satisfied. Appearing
below the message windows are two counters, one showing the number of updates to the server
database, while the other one shows the number of updates to quasi-copies caused by staleness
conditions being satisfied.

As expected, use of the MAC has resulted in a reduction in the number of refresh messages,
compared to approaches that enforce complete consistency. As described above, this is critical to
the mission planning application because of the low bandwidth networks being employed. In a test
run constructed by a domain expert, use of the MAC resulted in 8 updates being propagated to the
client out of a total of 138 updates to the database. In other words, 94% of the updates to the
database were not considered significant to the application, based on the defined quasi-view
specifications. As a result, the updates were not propagated to the application, sparing the users
the burden of reviewing data not relevant to their current tasks. Of course, one cannot make
generalizations about the magnitude of the reduction in message traffic, because it is entirely
dependent upon the staleness conditions that are specified and the nature of updates to the
underlying database. Nevertheless, it is encouraging to have obtained this amount of filtering from
quasi-view definitions and an update stream that was considered plausible by a domain expert.

4 . 4 Performance

The MAC results in reduced message traffic as well as reduced processing by client
applications, because there are fewer updates for the application to process. As demonstrated in

22

the proof-of-concept application, these savings can be quite significant, depending upon the quasi-
views specified and the characteristics of the update stream to server databases. However, the
savings are at the expense of increased load on each quasi-view server.

In (Seligman, 1994), we present a detailed analysis of the overhead caused by the MAC. The
increased load on each server is caused by the need to check selection, retraction, and staleness
conditions. The analysis considers the overhead of checking these conditions when creating,
deleting, and updating instances in a quasi-view server.

Our conclusion is that the overhead is primarily a function of Q, the number of quasi-views
defined on the class on which updates are being performed. The value of Tq, the total number of

quasi-copies on any instance of any class in a given server, has only a small effect on the overhead
for updates. The assumptions behind the analysis are described in detail in (Seligman, 1994).

Importantly, all of the cost functions are linear, so even if some of our assumptions prove to be
unrealistic, only the constants need to be refigured. Also, the overhead per update operation is not
affected by the size of the database (e.g., the numbers of tuples). Given the linearity of the cost
functions and the irrelevance of database size, the MAC has the potential to scale up to large
databases that support multiple client applications.

5 . Related Work

Quasi-view classes are related to the view-objects of Barsalou, et al. (1991), which are object-
based views of relational databases. However, because view-objects are not materialized, they do
not support effectively the needs of applications which must cache data, perform long-running
analyses of those data, and which need to be informed of changes which the application defines as
being “significant.” Quasi-view classes support these applications by materializing a view and
providing “good enough” (i.e., approximate) consistency between the quasi-copies and the base
objects from they are derived.

This work builds upon quasi-caching (Alonso, et al., 1990). Quasi-caches contain quasi-
copies, which are client-cached copies of database objects which are allowed to deviate in
controlled ways from the primary copies. Their work, like ours, can be said to support
approximate consistency of a client cache. Our work extends that work in the following ways.
First, we automatically generate rules and other consistency enforcement objects from a declarative
specification of consistency requirements. In addition, we have defined an architecture that
supports this in heterogeneous environments that include both active and passive sources. Second,
we make no special assumptions about the capabilities of our data sources. By contrast, Alsono’s
work is presented in the context of information retrieval systems with built-in support for quasi-
caching. Third, in their approach, for every object o′ in the quasi-cache there is exactly one
corresponding object o in the central database, and the representations of o and o′ are identical.
Quasi-views generalize quasi-caches to support transformation of the data to be cached (e.g., to
support user views or bridge source/receiver heterogeneity). Finally, we have extended delta

23

conditions to support monitoring changes to complex attributes and groups of attributes (e.g.,
changes to location).

A number of papers address the issue of efficient support for updating materialized views
(e.g., Blakeley, et al., 1986; Ceri and Widom, 1991; Hanson, 1987), but these papers do not
address techniques for enforcing approximate client cache consistency. The main exceptions to
this are Lindsay et al. (1986) and Segev and Park (1989), which describe efficient algorithms for
incrementally maintaining database snapshots. These techniques could be used to enforce
approximate cache consistency along the temporal dimension, but offer no support for enforcing
other kinds of consistency conditions (e.g., delta, version, or user-defined-delta).

A few papers address the issue of interdatabase consistency. Rusinkiewicz et al (1991) have a

Figure 9. Updates to Server (on left) and Messages to Client (on right)

24

richer specification language for consistency constraints than we do, but provide no mechanism for
enforcing those constraints other than user-defined procedures. Our approach is to automatically
generate the required database rules and constraint objects from a declarative specification. Ceri
and Widom (1992) provide a declarative specification language for existence and value constraints
across components of a multidatabase system and automatically generate active database rules
which enforce those constraints. However, they do not provide any mechanism for specifying or
maintaining approximate consistency constraints.

6 . Conclusions

As described in (Seligman and Kerschberg, 1995), many applications need to reason about
data which are consistent with the states of dynamic, shared data sources, at least within specified
tolerances. These applications require mechanisms for: (1) describing declaratively how
consistent their data must be, and (2) for generating consistency enforcement objects from the
declarative description of requirements. No previous approach supports this.

This paper has presented an approach to approximate consistency management across
distributed, heterogeneous systems. It is the first approach that automatically generates
consistency enforcement objects from a declarative specification of application data consistency
requirements, where those requirements can include different kinds of approximate consistency. It
is also the first proposed approach to do this in heterogeneous environments that include both
active and passive data sources. We have demonstrated these capabilities in a software prototype
and have shown that, given the linearity of the cost functions, the MAC has the potential to scale
up to servers with large instance populations supporting many quasi-views.

Another contribution of this work is the introduction and formalization of quasi-views. Quasi-
views provide a declarative mechanism for specifying application data consistency requirements.
Quasi-views extend quasi-caches by providing: mechanisms to resolve data heterogeneity issues
between servers and clients, and a new type of staleness condition, user-defined-deltas, which was
essential for our proof-of-concept application. In addition, we have defined a declarative quasi-
view specification language, based on a modest extension to SQL. To our knowledge, this is the
first formal language defined for specifying approximate consistency requirements.

There are a number of promising areas for future research. First, there is a need to apply these
techniques to realistic applications having diverse consistency requirements. Such experimentation
could point to a need to support new kinds of approximate consistency predicates. Second,
empirical work is needed to replace some of the default parameter values used in our performance
analysis with real world numbers. Third, this work could be extended to support a richer set of
conditions (e.g., “refresh my cache when the price of some stock goes up by 3% within one
hour”). Sistla and Wolfson (1995) have developed a rich language for describing temporal
triggers. Incorporating such predicates into our mediation architecture would be both useful and
challenging.

25

A final area of research would be to explore the applicability of our approach to data
warehousing applications. Typically, warehouses contain static collections of materialized views
of multiple heterogeneous data sources (Poe, 1995). The views are static, because there is a
requirement that decision support applications not interfere with the performance of databases that
support on-line transaction processing (OLTP). However, our techniques have the potential to
give warehouse designers a new capability: to specify declaratively changes which are so
significant that they should cause an update to the contents of the warehouse. Empirical
investigation is required to find out if these techniques are indeed useful for data warehouses and,
if so, what changes in our architecture are required to make them so.

Acknowledgments

This research was partially supported by MITRE Sponsored Research and an ARPA grant,
administered by the Office of Naval Research under grant number N0014-92-J-4038. The authors
would like to thank Arnie Rosenthal, who provided insightful feedback, especially regarding eager
vs. lazy refresh strategies. In addition, we would like to thank Trish Carbone for her creativity in
finding applications for this and related research, Eric Peterson for his help with implementation,
and Ernie Carbone for his assistance with developing the proof-of-concept application. Finally,
the first author would like to thank his management at MITRE for their support, especially Barbara
Toohill and Andrea Weiss.

Bibliography
Ahmed, R., et al. (1991). The Pegasus Heterogeneous Multidatabase System. Computer, 24(12).
Alonso, R., Barbara, D., and Garcia-Molina, H. (1990). Data Caching Issues in an Information

Retrieval System. ACM Trans. on Database Systems, 15(3).
Alonso, R. and Korth, H. (1993). Database Issues in Nomadic Computing. Proc. of

ACM-SIGMOD Int. Conf. on Management of Data. Washington, DC.
Barsalou, T, Keller, A., Siambela, N., and Wiederhold, G. (1991). Updating Relational

Databases through Object-Based Views. Proc. of ACM-SIGMOD Int. Conf. on Management
of Data. Denver, CO.

Blakeley, J., Larson, P., and Tompa, F. (1986). Efficiently Updating Materialized Views. Proc.
of ACM-SIGMOD Int. Conf. on Management of Data, Washington, DC.

Ceri, S., and Widom, J. (1991). Deriving Production Rules for Incremental View Maintenance.
Proc. of 17th Int. Conf. on Very Large Data Bases, Barcelona, Spain.

Ceri, S., and Widom, J. (1992). Managing Semantic Heterogeneity with Production Rules and
Persistent Queues. IBM Technical Report RJ9064 (80754).

Hanson, E. (1987). A Performance Analysis of View Materializaion Strategies. Proc. of
ACM-SIGMOD Int. Conf. on Management of Data.

Hanson, E. and Widom, J. (1995). Rule Processing in Active Database Systems. In
L. Delcambre (Ed.), Advances in Databases and Artificial Intelligence, Vol. 1. Greenwich,
CT: JAI Press.

Kim, W., et al. (1990). Architecture of the ORION Next-Generation Database System. IEEE
Transactions on Knowledge and Data Engineering, 2(1).

26

Lindsay, B., Haas, L., Mohan, C., Pirahesh, H., and Wilms, P. (1986). A Snapshot Differential
Refresh Algorithm. Proc. of ACM-SIGMOD Int. Conf. on Management of Data, Washington,
DC.

Poe, V. (1995). Data Warehouse: Architecture is not Infrastructure. Database Programming and
Design, 8(7).

Rosenthal, A. and Seligman, L (1994). Data Integration in the Large: The Challenge of Reuse.
Proceedings of 20th International Conference on Very Large Data Bases, industrial track.
Santiago, Chile.

Rusinkiewicz, M., Sheth, A., and Karabatis, G. (1991). Specifying Interdatabase Dependencies
in a Multidatabase Environment. Computer, 24(12).

Sciore, E., Siegel, M., and Rosenthal, A. (1994). Using Semantic Values to Facilitate
Interoperability Among Heterogeneous Information Systems. ACM Transactions on Database
Systems. 19(2).

Segev, A. and Park, J. (1989). Updating Distributed Materialized Views. IEEE Trans. on
Knowledge and Data Engineering. 1(2).

Seligman, L. (1995). Quasi-view Specification Using an Extension of SQL. Working note,
available from the author.

Seligman, L. (1994). A Mediated Approach to Consistency Management Among Distributed,
Heterogeneous Information Systems. Ph.D. thesis, Department of Information Systems and
Systems Engineering, George Mason University, Fairfax, VA.

Seligman, L., and Kerschberg, L. (1993a). Knowledge-base/Database Consistency in a Federated
Multidatabase Environment. Proceedings of International Workshop on Research Issues in
Database Systems: Interoperability in Multidatabase Systems. IEEE Computer Society Press.

Seligman, L., and Kerschberg, L. (1993b). An Active Database Approach to Consistency
Management in Data- and Knowledge-based Systems. International Journal of Intelligent and
Cooperative Information Systems, 2(2).

Seligman, L., and Kerschberg, L. (1995). Active Federation: A New Architecture for Integrating
AI and Database Systems. In L. Delcambre (Ed.), Advances in Databases and Artificial
Intelligence, Vol. 1. Greenwich, CT: JAI Press.

Sistla, A.P., and O. Wolfson (1995). Temporal Conditions and Integrity Constraints in Active
Database Systems. Proc. of ACM-SIGMOD Int. Conf. on Management of Data. San Jose,
CA.

Stacey, D. (1994). Replication: DB2, Oracle, or Sybase? Database Programming and Design,
7(12).

Wiederhold, G. (1992a). Mediators in the Architecture of Future Information Systems. IEEE
Computer, 25(3).

Wiederhold, G. (1992b). The Roles of Artificial Intelligence in Information Systems. Journal of
Intelligent Information Systems, 1(1), Kluwer Academic Publishers.

