A Mediator for Approximate Consistency:
Supporting “Good Enough” Materialized Views

Len Seligman Larry Kerschberg
The MITRE Corporation George Mason University
seligman@mitre.org kersch@gmu.edu
Abstract

This paperaddressethe needs ofapplicationdesigners who woultke to
tell an automatedssistanthe following: “Here is aquery that defines a view |
want to materialize within my application. | need this view to rerapproximately
consistent withthe state of the datsources from whichihe view is derived, in
accordance withdeclaratively specifiedstalenesspredicates. Wherthe view
becomes stale, follow the refresh strategy | specify (e.g., eager, lazy, hybrid). You
must do this in heterogeneous environments containing both active and patsive
sources.”

This paper describes anchitecture that realizehis vision. The approach
supports materialized, object-basaews, calledquasi-views defined over shared
databases. Quasi-vievaserefreshed according tihe consistency conditions and
refresh strategies specified declaratively by application designers. These conditions
allow for the deviation of quasi-views from their database counterparts according to
well-defined and monitored approximate consistency predicates.layéy of
software called &ediator for Approximate Consistenaytomatically generates the
database objects necessary to enforce these consisamdiyions, shielding the
application developer frorthe implementation details aonsistency maintenance.

In addition, it does this for both active and passive (e.g., legacy) data sources.

This paper formalizegjuasi-views, presents declarative quasi-view
specificationlanguage, and describes anchitecture andmplementation of a
Mediator for Approximate Consistency.

1. Introduction

Many data-intensive informatiosystemshave databases whiare constantly being updated
by transactions, by sensdatafrom satellites, and by value-added processinglath to create
information products. In addition, many automated information systems need to:

. transform and cache information from dynamic, shared databases,
. reason about the current state of those data, and
. perform long-running tasks without locking the objects about which they are
reasoning, so as to allow concurrent access by other applications.
Many of these applications can tolerate some deviation between the state of their catiras and
of the shared databases, as long asdéngation is within specified toleranceépplications with
these characteristics include: (1) coordination of workflow among interconnected aspects of global



enterpriseqe.g., design,manufacturing, distributionetc.), (2) networkmanagement anthult
diagnosis, (3) on-linenonitoring of compleXenvironments, such dactories andpbower plants,
(4) automated securities trading, and (4) tactical military planning.

In previous work (Seligman andKerschberg, 1993a, 1993b, 1995), wlescribed the
requirements of such applications and proposedramtecturdfor addressing those requirements.
Since these publications, we hayeneralized and refinedur approachrealized it in prototype
software, used it tgonstruct an application, and analyzedo#gsformance. This paper presents
these new results.

The approachsupportsmaterialized, object-basedews, called quasi-views defined over
shared databases. Quasi-vieasrefreshed according time consistency conditions and refresh
strategies specified declaratively by application designers. These conditions allow for the deviation
of quasi-views fromtheir database counterparts according to well-defined and monitored
approximate consistency predicates.

The approach relies on an intelligent interfacédth activeand passivelatasourceghat we
call a Mediatorfor ApproximateConsistency (MAC). The MAC has several unique features:
(1) it permits applications to specify their consistency requiremesitgy adeclarative language;
(2) it automatically generates the database objeetsessary to enforce those consistency
requirements, shieldintpe application developdrom the implementation details aonsistency
maintenance(3) it does this in heterogeneous environmdimas includeboth active and passive
(e.g., legacy) data sources; and (4) it provides mechanisms for restdenpeterogeneitgsues
between client applications and the databases that serve them.

This paper is organized dsllows. Section 2 introduces quasi-viesbjects, whichextend
guasi-caching to suppotte transformation of objects before they asehed. In addition, it
defines adeclarative languager specifyingquasi-views, based onraodest extension t8QL,
and provides illustrative examples. Section 3 presengsdhuitecture andesign forapproximate
consistency mediators, including an approach to coping with heterogeneous environments.
Section 4 describes an implementation of the approach in prototype software, the development of a
proof-of-concept application, and a performamaecelysis. Section 5 compares thdAC with
related work. Section 6 presents our conclusions and some directions for future research.

2. Quasi-views

This section describepiasi-viewswhich extend quasi-caching (Alonso, et al., 1990) by
adding support for: (1) resolving heterogeneity issues between data sources and receivers, and (2)
new types of consistency conditions. In addition, this section presents a language for specifying
guasi-views and provides illustrative examples.



2.1. Quasi-views: Description and Formal Framework

Informally, a quasi-view is anaterializedview whoseinstances are allowed tdeviate in
controlled ways from the corresponding instances of a similarly defined traditiemal A quasi-
view is to a traditional view as a quasi-cache is to a traditmacdle inwhich perfect coherency is
maintained. Waenow define quasi-viewsmore formally, beginning withthe concept of a@uasi-
view server.

Definition. A quasi-viewserverQVS is a datasource from which quasi-views (defined
below) can bederived. Quasi-viewserversare typicallydatabases, thougihey canalso beflat
files, text-based information retrievaystems geographic informatiorsystems, spreadsheets, or
other data sources, as long as they have available query language front-ends or gateloegk to a
data access language. A quasi-view server QVS maycestlized or distributedatabase, or a
federation of databases.

Assume that G a class in a quasi-view server QVS. It hdsbutes {A...Am}, eachwith
an associatedomain, andmay have a set ahethods. Eachserver class C has axtent of
instances. An instance of C is referred to as.aach objectjchas a value wfor each attribute
Ak 0{A1...Am} of C, and that value must be in the domain q@f A

Definition. A gquasi-viewclassQ is a class in a&lient applicationwhich is defined by a
seven-tuple:

Q = <N’ S’ Al 81 Vlwl H>

where N is the class name, S is a (possibly empty) set of superclasses, A is a set of attributes, B is
a set of behaviors, V is a query language view expressigm set of staleness conditions, and H

is a set ofimplementationhints to the quasi-view server. Some dfiese require additional
clarification:

. A, theattributesof Q, can include both locally defined attributes, as well as those
inherited from any superclasses of Q. A includes attributes whose derivations are
specified in the query language view expression V. In addition, there may be
attributes in A which are not derived from objects in the server and which are only
meaningful within the applicatioh.

. B is a (possibly empty) set béhaviorghat can include both locally defined
methods, as well as inherited ones.

1These are called “transient slots” in (Paepcke, 1989).



. V is a query languageew expressioagainst one or more classes in the quasi-view
server. This query describes the conditions under which a quasi-copy (defined
below) should be created in the client application. In addition, V describes
derivations for all derived attributes in A. Each of these derivations is a mapping
from a set of attributes of one or more server classes to an attfibude dhese
derivations can use functions which traverse relationship links and can use any
methods defined for server classes being accessed. Importantly, the derivations can
include arbitrary functions, which can be nested as required. As a result, functions
can be used as in (Ahmed, et al., 1991) to reconcile both representation and semantic
heterogeneity between Q and the server classes from which it is derived.

. w, thestaleness conditionslescribe the conditions under which instances of Q are to
be considered stale—i.e., they no longer meet the specified coherency coaditions.

. H is a set ofmplementation hintsThe most important of these is the
refresh-strategywhich tells the quasi-view server what to do when a quasi-copy’s
staleness-conditions have been satisfied. Possible values for refresh-strategy include
“eager” (i.e., refresh the quasi-copy immediately), “lazy” (i.e., send only a flag
indicating that the quasi-copy is now stale, then refresh when the object is next
accessed), “opportunistic” (i.e., “use an eager refresh strategy when the network load
permits and a lazy strategy otherwise”), and “eager except <attribute-list>" (i.e.,
“refresh immediately, except for the listed attributes”). The last option permits an
eager strategy to be used for some attributes, while using a lazy strategy for images,
video, or other large objects which may be costly to transmit.

Other possible implementation hints include the priority of messages to the
client about this quasi-view class (vis a vis other quasi-views) as well as information
about static data that the server need not continually monitor. In certain cases, such
hints can have significant performance benefits. The set of allowable implementation
hints should be extensible, to allow implementors to provide hints that would be
useful in particular environments.

Definition. A quasi-view objects an object in a client applicatiavhich is an instance of a
guasi-view class. Following Alonso, et al., we sometimes refer to a quasebjett as ajuasi-

copy.

Quasi-viewobjects, like the view-objects ofBarsalou, et al. (1991jare objectswhich are
constructed from query expressions against a pivot class (or relation) and a set of adtiiseaal

2Staleness conditions (i.e., the conditions under which the quasi-view becomes stale) are
the complement of coherency conditions (i.e., the conditions under which the quasi-view is still
acceptable). We use “staleness” rather than “coherency” conditions, because our users found it
more intuitive to specify the conditions under which something ought to happen (e.g., a refresh)
rather than those under which coherency remains acceptable.



(or relations) to which the pivot class is relate@Eachquasi-viewobject @' of a quasi-view class
Qis aquasi-copyof some ¢—i.e., aninstance(or tuple) of the pivotclass (orrelation) from
which Qis derived. In our formulatiorynlike that of(Alonso, 1990), a quasi-copyj’ can be
substantially transformed from thgfoom which it is derived.

Example. A quasi-view server contains the followinglation: Stock(name, code, category,
current-price, chairman-video). Suppose one wantssiate aguasi-view clasgalled Blue-Chip-
Stock which is derived from Stock. A possible quasi-view class definition follows:

N = Blue-Chip-Stock
S = {Investment}
A = {name, stock-code, current-price, last-ceo-press-conference, sell-at-price,
buy-at-price}
B = {Buy, Sell}
V = “Select name, stock-code = code, current-price = Dollars-to-yen(current-price),
last-ceo-press-conference = Convert-format(chairman-video)
From Stock
where category = ‘Blue Chip”
w = {"When current-price deviates by more than 5% from the currently cached price”}
H = {refresh-strategy = “Eager except {chairman-video}”,
static-fields = {name, stock-code}}

Blue-Chip-Stock has onenmediatesuperclasscalled “Investment.” The attributes of Blue-
Chip-Stock are name, stock-code, current-price, last-ceo-press-conference, sell-at-price, and buy-
at-price, and its methodseBuy andSell. The query V indicateghat instances of Blue-Chip-

Stock should be created for all instances of Stock for wtategory = “BlueChip”. In addition,

the query describeghe derivations ofname, stock-code, current-price, and last-ceo-press-
conference: they get the valuesStbck.name, Stock.code, Dollars-to-yen(Stock.current-price),
and Convert-format(Stock.chairman-video) respectively, where both Dollars-to-yen and Convert-
format are functions defined within tlogiasi-view server.(Derivations are noprovided forsell-
at-price and buy-at-pricéhoseare non-persistent attributes of Blue-Chip-Stock which dmdye
meaning within the particular application.)

When the staleness conditions are satisfied as a result of apdate to an instance 8tock,
then thecorresponding quasi-copy is considered stalée first specifiedimplementation hint
concerns refresh-strategy. Becatlserefresh-strategy isEager excep{chairman-video}’, stale
guasi-copiesare refreshed immediately, witlthe exception of the value of the attribute
chairman-video, which is refreshed lazilyThe secondimplementation hint indicates that the
values of name and stock-code are static and therefore do not need to be refreshed.

3A pivot relation is a relation on which a view-object is “anchored,” constituting its core
component. The concept is formally defined in (Barsalou, et al., 1991).



2.2. Specifying Quasi-view Classes

This section presents an extension of SQL that can be used to specify quadassss. The
proposed language provides a clean separation of the quasi-view definition from optiorthhtints
can be given to thquasi-view server so as to increase performance EBMF grammarfor the
specification language is shown in Figuré 1.

<quasi-view-def> = create quasi-viewquasi-view-name (<target-list>)
[under superclass {, superclass}*]
as<select-statement>
[with staleness conditions<staleness-conds>]
[with hints <hint> {, <hint>}*]
<target-list> = client-attribute-name {, client-attribute-name}*
<select-statement> :=select[alwayg] <value-exprs>
from class-name {, class-name}*
[where predicate]
<value-exprs> = <value-expr> {, <value-expr>}*
<value-expr> = [server-class-name.]server-attribute-name |

constant |

function(<value-expr> {, <value-expr>}*)
<staleness-conds> ::=any change| never | <staleness-cond}; <staleness-cond>}*
<staleness-cond> ::=any change toserver-atttribute-name |

{value | percent} server-attribute-name positive-integer |
version positive-integer |
time positive-integer time-unit |
predicate(<value-exprs>) |
user-defined-delta
predicate (delta(<attribute-list>) [, <value-exprs>])
with delta-function function
<hint> = refresh-strategy <refresh-strategy> |
retract-instances {yes|no} |
static-attributes <attribute-list>
<refresh-strategy> :’= eager | opportunistic | lazy |
eagerexcept <attribute-list> |
opportunistic except <attribute-list>
<attribute-list> ;= server-attribute-name {, server-attribute-name}*

Figure 1. SQL Extension for Specifying Quasi-view Classes

Figure 2 illustrates a specification for a quasi-view ctslked FriendlyTrack, which provides
position and other information omilitary ships and planes from selectedllied countries.
FriendlyTrack hasattributes ID, Velocity, Location, Home-port, Image, Flagand Force-
magnitude, and it has one superclass, InterestingEnfitg “selectalways” statement meatisat
an instance of FriendlyTradhould becreatedwhenever there is an instance of Track with Flag
equal to either “US”, “UK”, or “DE”. Had “alwaysbeen omittedthe quasi-view wouldcontain
only those instance ofrack satisfyingthe predicate atjuasi-viewinitialization time; theserver
would not continue to monitor for new Track instances meeting the predicate.

4Space does not permit a detailed language description; such a description can be found in
(Seligman, 1995).



Following the keyword “always” is a list of derivations of attributes of FriendlyTrack. These
derivations are illustrated iRigure 3. 1D, Imageand Flagare derived triviallyfrom Track.ID,
Track.lmage, and Track.Flag respectively. Location is derived by appglynfunctionlist to the
arguments Track.Latitude and Track.Longitud&he derivation ofHome-port illustrates the
resolution of structural heterogeneity; it is derived by applyinghéimeefunction to the value of
Track.Home-facility, whos@&lomainconsists of instances difie class Facility. More complex
forms of heterogeneity could be resolved similarly using arbitrary functions (nested as required) in
derivations. Noderivation is specifiedfor the attribute force-magnitude, because it is a
nonpersistent attribute only meaningful within the application program.

The staleness conditiondescribe the conditionsnder whichthe quasi-view no longemeets
the user’s specified coherency requirements. This occurs when Track.Speed varges Han
50 percent from the value of Velocity for a correspondjogsi-copy, whenever @ached instance
of Track is updated 5 or more times since the last refresh, or whenever Track.Image is updated.

create quasi-viewFriendlyTrack
(ID, Velocity, Location, Home-port, Image, Flag, Force-magnitude)
under InterestingEntityas
selectalways ID, Speed, List(Latitude, Longitude), Name(Home-facility), Image,
Flag
from Track
where Flag in (*US”, “UK”, “DE”)
with staleness-conditions
percent Speed 50,
version 5,
any change tolmage,
user-defined-delta
> (delta (Latitude, Longitude), 20))
with delta-function Distance-using-lat-long
with hints
refresh-strategy eagerexcept Image

Figure 2. Example Quasi-view Specification

The last staleness condition in Figure 2 issar-defined-deltaa type of condition which was
essentiaffor our prototypeapplications and which is natiscussed in previous/ork. User-
defined-deltas arased to describdatachanges in theerverthat causequasi-copies tdecome
stalewhen those conditions depend upon changesuitiple attributes or to non-atomic oion-
numericattributes. The example illustratelsow auser-defined-delta can track the magnitude of
changes in Location, which is represented as a pair of complex attrifinesnterpretation of the
last staleness condition is this: a quasi-copy becastas when the change in<Latitude,
Longitude> exceed®0, wherethe delta ismeasured by invokinghe function Distance-using-lat-
long with the arguments Latitudé,ongitude, Cached-value-for-Latitude, and Cached-value-for-
Longitude.



One implementatiomint is specified in Figure 2:that therefresh strategy iseager except
Image.” This indicates that quasi-copies should be refreshed as sthay &scomestale,except
for the attribute Image, which is refreshed only when it is accessed.

Track
InterestingEntity ID
A Speed
Derivations Latitude
Longitude
is-a Home-facility — e—
@ Image has-
NeutralTrack Flag home-
«— 5 facility
ID
Velocity ‘/ /
Location
Image “@——T o Facility
Flag 4/"‘ Derivations
< Name
Home-port Latitude
Force-Magnitude Longitude
——
Classes in Quasi-view Client Classes in Quasi-view Server

Figure 3. Attribute Derivations for Example

3. Approximate Consistency Mediation

Central toour approach to consisteneyanagementcross heterogeneous systems is a
Mediator for Approximate ConsistencdMAC). An architecturefor approximate consistency
mediation is presented in (Seligman aferschberg, 1993b).This section presentsrafinement
of that architecture which better supports the needs of heterogeneous systems.

The termmediatorwas defined by Wiederhold (1992a) and refersaftwarethat “simplifies,
abstracts, reduces, mergesegplainsdata” inorder to“createinformationfor a higherlayer of
applications.” A mediator for approximate consistency abstracts away most changes to underlying
data sources and only reports those updates the application has defined as being “significant.” The
MAC provides a “consistent enough” view of the component data sources (in terms of the staleness
conditions described in a quasi-view specification) for the application to accomplish its tasks.

Figure 4 illustrates our architecture for approximate consistency mediation. The mediator itself
consists of three major submodules: Thanslator,which processes requests fraypplications to
the component data sources, bhessage Handlewhich manages a quetsr handling messages
from data sources tdient applications, and language-spec#igplicationprogramming interfaces
(API) to the mediator. In addition, the approach relies@ppers which provide descriptions of
the sourcesjncluding the capabilities of the database managesystéms oother softwarehat
manage them.



Application-1

quasi-view class
definitions,
refresh requests

staleness

cache refresh and

messages

guasi-view class

refresh requests

Application-n

cache refresh and
staleness
messages

definitions,

Language-specific
API (e.g., CLOS)

r/

N

MAC

'

Language-specific
API (e.g., C++)

[l

Cache refresh

AN

and staleness

Message messages
Translator -
anslato Handler
me(}ad?ta qL(Jjeries o metadata queries code to install
and returne quasl-view and returned polling procedure on
metadata on maintenance metadata on server
source X objects source Y
Wrapper Wrapper Polling
for Active Data for Passive Data Procedure
Source X Source Y
quasi-view N \
maintenance objects \
in language of source \
\
Active Passive >
Data Source X Source Y
Cache refresh and
| staleness messages -

Figure 4. Architecture for Approximate Consistency Mediation

An application declaratively specifies itonsistency requirements by defining quasi-view
classes using either the SQL extension described abav&@ngy alanguage-specifié\PI, such as
the oneimplementedor the Commoriisp ObjectSystem (CLOS) (Seligmari,994). The API
converts quasi-view specifications into a canoniicah expected byhe Translator. Applications
also can use library functions provided the API to modify existingjuasi-view class definitions
(e.g., their staleness conditions) or to requesiremediaterefresh of some aall of theinstances
of specified quasi-view classes.

3.1 The Translator

The Translator generates the rules, objects, and/or programs necessary to maintain the specified
guasi-view classes. In order to do this in a heterogeneous envirotineemtanslator queries the



wrappers ofrelevant datssources. Eachwrapper returngnetadatawhich describeghe active
capabilities of the source’s data mana@ey., DBMS, file system, etc.)the privileges granted to
the mediator(e.g., does it have permission tccreate rules on this source?), asell as
miscellaneous administrative information.

The Translatorusesthe metadataeturned by thewrappers todeterminewhat objects to
generate. Therare two main categories ofources for whichmonitoring objects must be
generated: activand passiveones. Active sourcesare those which supporEvent-Condition-
Action (ECA) rules (Hansorand Widom,1995), while passivesourcesarethose which daot.
Note that active sources can include passive so(ecgs legacy databasesgjhich are “wrapped”
to support rule processing. For examplee couldreplicate asubset of a passiw#atabase in an
activeone using “asynchronousplication” software such athat offered by Sybase,Oracle, or
IBM (Stacey, 1994). The consistency mediator could regard such a source as being active.

For passivedata sources,the Translator generates a procedwieich polls the source
periodically to determine if anguasi-viewsneed to beefreshed. Notéhat activedatabases on
which the mediator lacks Create Rule privilegesst be considered passive thne Translator,
unless the source is wrapped as described in the previous paragraph.

For active data sources, the Translator translates declarative quasi-view specifications into the
following: (1) queries to be executed immediately, (2) rules for monitoring the future state of the
database, and (3) data definition language commands that result in the creation of and updates to
staleness conditions as well as other quasi-view maintenance objects in the database. The queries
that are to be executed immediately are used to initialize the extension of the quasi-view class. The
rules are of three typeselection-rulesthat are used to monitor the data source for conditions
warranting the creation of a new instance of the quasi-view o#iss;tion-rules that monitor the
database for conditions under which a quasi-copy should be purgedfrasti-rulesthat are
used to monitor the database for conditions which cause quasi-copies to be considered stale.

In addition to an initialization query and the rules descrddealve,the Translatomustcreate a
number of other objects to help the mediaosurethat the defined coherenagonditions are
enforced. These objects represent information on the currently defined staleness conditions and the
guasi-views they support, what base table (or base class) instances are constrained by which quasi-
views, and state information on some of the quasi-copies, particularly thosegtttainstrained by
delta conditions (e.g., refresh when attribwtearies by more than 20% from its cached value).

While it would be possible to represent all this information in rules, we recommend against this
in order tominimize thenumber of rules required and to avoid frequent run-time changes to the
rule-base. There aretwo reasons for wanting to dbesethings. First,there is an autonomy
issue. Database administrators are aware that rules haveaneat DBAs with whom wehave
spokenare uncomfortablevith having mediatorgor users)install andmake frequent changes to
databaserules. Second, unnecessanje-base changes should bgoided for performance
reasons. Imany activedatabasearticularlythosethat maintain a Retaetwork or otherwise
incrementally compute condition results, adding and deleting rules is computationally expensive.

10



Name: R_1
Event: update to track.speed
Condition: new.ID =“001" AND
(new.speed 500 OR
new.speed 200)
Action:
set rule.condition to
concat(“new.ID = ‘001" AND 7,
“(new.speed ",
compute_new_high_threshhold(new.speed),
“ OR new.speed 7,
compute_new_low_threshhold(new.speed), “)")
where rule.name = “R_1"

Figure 5. Example of a Self-modifying Rule

Based on the above, we offer some degjigidelinesfor approximate consistenapediators,
which we have followed in our own implementation. First, we sugbesise ofseparate objects
to represent required information on the state of ghasi-copies,jnstead of embeddinghat
knowledge in rules. Figure 5 shows an example of a rule that violates this guiddiem@roblem
with this approach ighat it requires self-modifyingrules, with which few DBAs would be
comfortable. Self-modifying rules are required, because dweeyaquasi-copy is refreshed, the
conditions of relevantules need to be changed reflect thenew thresholds beyond which the
guasi-copyagain becomestale. Forthesereasons, wehave removed the&uasi-copy state
information from monitoring rules and have put it in separate objects, as discussed below.

Another design suggestion is to define the rules that check staleness conditions at the class (not
the instance) level. Instance level rules require both more rules and rule base maintenance. E.g.,
for the example presented in Figure 2, there should be one rule monitoring the database for
staleness conditions for all Track instances, not one for each instance for which there exists a
guasi-copy.

These guidelines led us to our current design, in which the Translator generates instances of the
following classes:

. Quasi-view which contains general information on the quasi-view class.

. Staleness-condition-definitipwhich has subclasses for the different kinds of
staleness conditions (e.g., delta, version, user-defined-delta). This class represents
all information on a staleness condition that applies across all instances for which
guasi-copies exist.

. Staleness-conditignvhich contains information needed to evaluate the conditions
described in Staleness-condition-definition objects as they pertain to particular
instances. This includes information on the state of the quasi-copies. Subclasses of
Staleness-condition include delta-condition, version-condition, and user-defined-
delta-condition.

11



. Staleness-condition-collectipwhich provides a way of grouping all the staleness-
condition objects that pertain to a particular database instance.

. Refresh-rulewhich triggers checking of staleness-conditions. For reasons described
above, there is only one refresh-rule for each server class from which quasi-views are
derived.

Figure 6 illustrategshe objects that are creatadd maintained by the Translator sapport
maintenance of approximate consistency. The example chosen is the quasi-viepedgdisstion
from Figure 2, which has the following staleness conditions:

percent Speed 50,
version 5,
any change tolmage,
user-defined-delta
> (delta (Latitude, Longitude), 20))
with delta-function Distance-using-lat-long

The Translatomuses thisspecification of consistency requirementscteate theobjects shown
below the dashed line in Figure @-ourinstances of subclasses of Staleness-condition-definition
are created: delta-condition-definition-1, version-condition-definition-1, always-condition-
definition-1, and user-defined-delta-condition-definition-One rule, refresh-rule-1, is used to
determine when the conditions should be tested.

Figure 6 also illustrates what happewisen twoTrack instancestrack-1 and track-2shown
above thesolid line), meet theselection conditiongor the quasi-view and have quasi-copies
created for them. Ahattime, the objectsshownbetween thelashed and solid lineme created.
When thequasi-copiesare created, a Staleness-condition-collectionctisatedfor each cached
instance. Each Staleness-condition-collection contggmnters to instances of subclasses of
Staleness-condition. For exampigleness-condition-collectionkias pointers to itgonstituent
Staleness-conditions: delta-condition-1, version-condition-1, and user-defined-delta-condition-1.
These in turn have pointers to the objects that maintain information on the definitiongeffabi
conditions—i.e., delta-condition-definition-1, version-condition-definition-1, and user-defined-
delta-condition-definition-1. No Staleness-condition object is reqdwedhe “any change to
Image” condition(i.e., an“always” staleness condition), because this condiype has noneed
to record information on the state of any quasi-copies.

Now suppose that track-1 has its Speed changed to 26. In that case, refresh-rulefiaveould
its event triggered (because of the update to an instaribeaci). Because theule’s condition is
always Truethe actionwould be executed.The rule’s actionissues a query ovenstances of
Staleness-condition-collection searchiiog any with aconstrained-instance sldhat points to
track-1. Then, foeach Staleness-condition-collection returned byaiery (in thiscase,only
staleness-condition-collection-1), tbendition-satisfiednethod would be evaluated, which would
in turn check delta-condition-lyersion-condition-1, always-condition-definition-1, and user-

12



defined-delta-condition-1. Because none of these would returntheugyasi-copy would not be
refreshed. The only action thatwould result isthat theupdates-since-last-refregiot of version-
condition-1 would be incremented.

The fact that thguasi-copy is not refreshedter this update to track-1 is consistent with the
goals of quasi-viewsRecall that aquasi-view specificationleclarativelydescribes what kinds of
changes constitutggnificantchanges to the application. The applicasbould bensulated from
all changes which fail this significance test. In this ctds® active databadeas successfully done
this filtering andhas done so usingpjects that th&AC generated automaticaliyom the quasi-
view specification.

Now supposehat track-1lhas itsLatitude changed t639.8 N” and Longitude changed to
“125.1 E”. Again, refresh-rule-1 wouldave the same initisdffect, causingevaluation of the
condition-satisfiedmethod of staleness-condition-collection-1, which in twould check the
staleness conditions to which pbints. When user-defined-delta-condition-1 e¢hecked, the
predicate of thecorresponding user-defined-delta-condition-definition is evaluated. This time,
whenthe predicate is evaluateslipposehat distance-using-lat-longeturns 42i.e., track-1 has
moved 42 miles fronthe location in th&uasi-copy). Since that is greater tha&®, the predicate
would returnTrue, causinghe condition-satisfiedmethods of staleness-condition-collection-1 to
returnTrue. Referring to the definition ofefresh-rule-1 (shown in Figur@), one can se¢hat
process-stale-quasi-copyould be called. This not only refreshibe quasi-copy but also updates
user-defined-delta-condition-1 and version-condition-1 with new valueg&cned-values and
updates-since-last-refresh respectively.

Again, this behavior is consistent withe goals of quasi-views. The user-defined-delta-
condition-definition that is part ofhis quasi-view is intended to ensutet only significant
changes in location aresported. Becausedistance-using-lat-longreportedthat the change
exceeded the significantlereshold specified ithe predicate, thquasi-copy is considered stale.
The quasi-copy is refreshathmediatelywith the exception of the attributenage, inaccordance
with the statedrefresh-strategy. Again, this sccomplished by objects that thdAC has
generated automatically from the declarative quasi-view specification.

13



(Track)

Name: Track-1
Flag: "US"
Speed: 20
Latitude: "39.1 N"
Longitude: "125.2 E"
Image:

<Binary Object>

(Track)

Name: Track-2
Flag: "UK"
Speed: 30
Latitude: "37.6 N"

Objects above the solid line
are database instances.

Longitude: "121.6 E"
Image:

<Binary Object>

(staleness-condition-collection-1)

Combination-operator: OR

/

(delta-condition-1)
Cached-value: 20
High-limit: 10
Low-limit: 30

(version-condition-1)
Updates-since-
last-refresh: 0

((delta-condition-deﬁnition-l)
Type: percent
Constrained-class:
Track
Triggering-rule:
refresh-rule-1
Constrained-attribute:
Speed

\_ Epsilon: 50

Objects between the lines
are created when
quasi-copies are created.

(staleness-condition-collection-2)

Combination-operator: OR

(user-defined-
delta-condition-1)

Cached-values:
"39.1N"
"125.2 E"

(delta-condition-2)
Cached-value: 30
High-limit: 15
Low-limit: 45

/

(version-condition-2)

Updates-since-
last-refresh: 0

(version-condition-

definition-1)
. (always-condition-
Type: version definition-1)
Constrained-class:
Track Constrained-class: Track

Triggering-rule:

refresh-rule-1
Constrained-attributes:
(Image)

Triggering-rule:
refresh-rule-1
Epsilon: 5

| 7

(user-defined-
delta-condition-2)
Cached-values:
"37.6 N"
"121.6 E"

( L ) N\
(quasi-view-1) (user-defined-delta-condition-definition-1)
Application-class: FriendlyTrack Type: Predicate:
Server-Class: Track User-defined-delta (> (Distance-using-lat-lon
Initial-Query: Cc_)ns1re_1ined—class: Track (Latitude *self*)
(select Track Triggering-rule: (Longitude *self*)
(member Flag '(US UK DE))) refresh-rule-1 (first *cached-values*)
Refresh-strategy: Constrained-attributes: (second *cached-values*))
(eager except (Image)) (Latitude I__ongltude) 20)
Refresh-rules: refresh-rule-1 Delta-function:
J Distance-using-lat-long
. J/
( )
(refresh-rule-1)
Event: Update to Track
Condition: True
Action: . .
(Ioop for staleness-conds in Objects below the dashed line are
(select staleness-condition-collection generated by the Translator when it
(equal constrained-instance *new*)) processes quasi-view specifications.
do (if (condition-satisfied staleness-conds)
(process-stale-quasi-copy
(quasi-view staleness-conds)
*new*
L M) )

Figure 6. Objects Generated by the Mediator

14



3.2 The Message Handler and Application Programming Interface

The previous section described the role of the Translator in generating the obgssary to
monitor both active and passive data sources for changes which should result in creating, deleting,
or modifying instances of a quasi-view or in markihgm as beingtale. Oncethose objects are
generatedthere must be a mechanidor notifying the application that thesgperations should
take place. That mechanism is provided by the Message Handler and the API.

The Message Handler receives notification of updates to the quasi-view extension fdaita the
sources and stores those messages in a priority queue until the application is reeelyethem.
The Message Handler accefsth synchronous messages, whene immediateresponses to
gueries forwarded tthe database by thEranslator, and asynchronousessages, whichesult
from rule firings withinactive datasources or frongenerated procedurdisat poll passivedata
sources. The asynchronous messagean be eitherefresh messages, whickesult in creation,
deletion, or update of instances the quasi-view, orstalenessmessages, whicimark certain
guasi-view objects (or specific attribute values of those objects) as being stale.

The API provides functions to dequeue messages from the Message Handler queue and to map
them to operations (e.g., insert, update, and delete) in the client environment. In attditidR]
includes support for a lazy refresh strategy. This includes extending the built-in accessor functions
for the attributes of a quasi-view class so that they perform object faulting whenever arfarlgect
specific attribute value) being accessed is markedtalse. For examplehe accessor function
definedfor Stock.chairman-video (frorthe example in Sectio?.1) checks to see if the current
value for that attribute is stale. If itis, it issues a refresh requése taanslator, which translates
the request into a query against the component data Source.

3.3 Resolving Data Heterogeneity

There aretwo main types of source/receiver heterogeneity with which applications must
contend: infrastructure heterogendigyg., differences indatamodels, languagef)BMSs) and
dataheterogeneity. This work addresses some aspedtdrastructure heterogeneity in Section
3.1, particularly differences in the “activeness” datasource$. We now discusdbriefly our
approach to resolving data heterogeneity, including both representation and semantic heterogeneity.

As described in Section 2, arbitrary functions can be us#teiderivations of attribute values
for the instances of a quasi-view class. These functions can be used to resoteprbetntation

5This functionality is most easily provided in languages like CLOS that provide good
metaclass support. In these languages, one can create a metaclass for quasi-view class which
automatically gives accessor functions for the slots of that class the required object faulting
functionality.

6Many other aspects of infrastructure heterogeneity (e.g., heterogeneity in data models and
languages) are receiving considerable attention in the commercial marketplace (Rosenthal and
Seligman, 1994).

15



and semantic heterogeneity between data sources and client applications. One way to do this is for
the application developer to specify these mappings explicitly.

A more flexible approach is tase amediator to generate thesgappings, as irthe context
mediation work of Sciore, Siegel, and Rosenti&i94). Acontext mediator can generate a view
specification fromdeclarativedescriptions ofthe data receive(i.e., anapplication), thedata
sources, their mappings to a comnmnology, and dibrary of conversiorfunctions. While the
MAC could be enhanced to provide this functionality, we prefer to use a more modular approach in
which context mediation is separatébm consistency management-or example, acontext
mediator could generate a vighatresolves source/receiver heterogeneity. Tarerated view
would be used as the foundation of the quasi-view specificalitve. application developevould
need to add only the application’s consistency requirentergs staleness conditions and refresh
strategy). This kind oflexible combination of mediators is exactlyhat is envisioned by
Wiederhold (1992b).

4. Prototype Implementation

The MAC architecture described abokiasbeen realized iprototypesoftware. Thissection
describeghe prototype andur experiences developing a proof-of-concept application. It closes
with a brief discussion of the performance consequences of using the MAC.

4.1 Application-independent Portions of the Prototype

The prototypemplementation is illustrated iRigure 7. The application-independeparts of
the prototype include the MAGwvhich includesthe Translator,the MessageHandler, and a
Common LispObject System (CLOS)application programming interface (API); thdRROW
active object database; and an end-user tool for modifying quasi-view definitions.

The MAC prototype implements the functionality described in finevious section—i.e.,
taking a declarativeguasi-view specification andutomatically generating theiles and other
objects required to properiyaintain thequasi-view extension. Aletailed description of the
techniques for generating these objects appears in (Seligman, 1994).

The currentMAC implementation generates these objgdotsARROW, an extensibleactive
object database we implemented by extendiagca,the commercial implementation of Orion
(Kim, 1990). The most notable feature of ARROW, other thsmpport for Event-Condition-
Action rules, is its extensibility—its behavior (e.g., its conflict resolution strategy) can be modified
easily by making small changes to the methods of a small number of ARROW cidssesletall
on ARROW can be found in (Seligman, 1994).

The MAC hasbeen implemented iGommon Lisp running on &un Sparcstation under the
Unix operating system. To date, wdave implementedonly a CLOS API. However,
development of amew APl would be a modest effort requiring ortlye following: (1) a

16



preprocessor to transform quasi-view specifications from an extenstbe application language
(e.g., aC++ extension) to oucanonicalquasi-view specification language a(®) code to map
canonical refresh messages into statements processible by the applicatioeengG++).

&
User I_m <\> Planner's Assistant
\ (proof-of-concept

application)

changes to
quasi-view quasi-view
definitions definitions
Graphical Tool
P inserts, updates,
for Mo‘_j'fY'”g refresh and deletes of
Quasi-view requests CLOS objects;
Definitions mark "stale"
\ objects
Mediator for ' '
Approg/mate Common Lisp Object System
Consistency Application Programming Interface
refresh insert, update, delete,
requests and "make stale"
messages
Message
Translator 9
Handler
insert, update, delete,
and "make stale"
DDL. DML messages
ARROW
Active Object
DBMS
Application-independent C)/ é \(D\D
portion of the rules and other objects for
Prototype maintaining quasi-view
extensions

Figure 7. Prototype System
To define a quasi-view class and its characteristics, uses the quasi-view specification

language described in Secti@2. Modifications to the specification ardone using methods

described in (Seligmari,994), whichenablestaleness conditions and other aspecthefjuasi-

17



view definition to be modified atrun-time. While these interfaces are appropriate for
programmers, we wanted temonstrate thatools could becreated toassist end-users with
defining and modifying quasi-view specifications. In our prototypplementation, we have
developed a Staleness Conditigulitor, atool with a graphicaluser interface thatprovides
assistance with the latter task.

Figure 8 shows the basic layout of the Staleness Condition Editor. On l& farascrolling
list of quasi-view classes defined for a particular client. In the middle is a list of attribartdise
currently selected class) on which staleness conditions can be added and deldteslrighnis a
list of the conditions currently defined ftrat <class,attribute>pair. Finally,there is an English
language explanation of the currently seleateddition. The condition inFigure 8 meanshat
guasi-copies in this quasi-view should be refreshed whertbeervalue ofwind-speed in the
corresponding class in the server changes by more than 15 from the cachéd value.

Interprocesscommunication in the prototype is achieved bsing Itasca’'sRemote Lisp
application programming interfaceyhich enablestwo (potentially distributed)processes to
communicate using Unix sockets.

4.2 Proof-of-concept Application

The proof-of-concept application isased orthe characteristics of a generic militamission
planning system. The database used by the application contains information on the following:

. Tracks—these indicate the presence of some entity at a certain position. The entities
could be ships or airplanes and could be friendly, enemy, neutral, or civilian.

. Targets—candidate targets. These have location and description, and are rated
according to “value” as well as risk of collateral damage.

. Threats—surface-to-air missiles, artillery, and other threats to friendly assets.

. Climatology—Descriptions of typical weather conditions for an area at a particular
time of year.

. Weather reports—These include one, three, and five day forecasts as well as reports
of observed weather conditions.

Figure 7 illustrateshe applicationwhich supports d&@uman plannemwho monitorstracks,
targets, threats, climatology, amdeather reports andses thisinformation to construct and
monitor mission plans. The user describes his data consistency requiresnegtee quasi-view
specification functions provided byhe application programming interface to the MAC.
Modifications to quasi-view specifications are done with the tool described in the previous section.

"The tool assumes the use of an eager refresh strategy.

18



=|

Database Consistency Rule Editor

Fife Edit Debug Search

All Classes: Class Attributes: Update Constraints:
1-DAY-FORECAST AREA 4 i ALLE 15.0]
10-0BJECT CURREMT
3-DAY-FORECAST HUMIDITY
E-DAY-FORECAS INSTAMCE-ID
ALLIED-TRACK bddn-AIR-TERMPERA
AREA hAA X =4 SIBILITY
CLIMATOLOGY bAIN=-AIR-TEMPERA™
WERCHANT-TRACK bAIN=YISIBILITY
OBSERVED-WEATHER SEA-STATE
ORAMGE-AIR-TRACE WATER-TEMPERATL
ORAMGE-SHIP-TRACK WIND-DIRECTION
STRIKE-WARFARE-CLASS W IND-SPEED
TARGET
THREAT
TRACK ¥ ¥ 7]
J= I J=d = J=d I=

Refresh Class Listl Explanation of Current Constraint:

Update any time the value of the
WIND-SPEED attribute of
5—DAY—FORECAST changes by more

than 15.0 knots/hr.
Add Constraintl Delete Constraintl

Constraint Granularity Affribuie _||

Figure 8. Staleness Condition Editor

Both quasi-view definitions and modificatioase sent tothe Translator, which generates an
initialization query, selectionretraction, and refrestules, aswell as other objectfor enforcing
the specified conditions. These are all created in the data definition and data manipulation language
of ARROW (i.e., the query language ©Ofion plus extensions for supportifi€CA rules). When
selection, retraction, and refresh rules fire in ARROW, information on domain instances is sent to
the Message Handler. The display program requests messagdbdrbfassage Handler via the
API, which maps the messages to inserts, updategjedeis of CLOS objects in the application
cache. The display program thedisplaysall relevant applicatioiknowledge base updates to the
user.

This application has several characteristics that make it well suited MAGe First, there is
an overwhelming amount of data that could be presented to the user. Users must have the ability to
specify what information is significant and have othigt informationpresented to them. It is
essential thatisers beable todescribe selection conditioise., the conditionsunder whichthey

19



will be made aware of the existence of an entity) iicesh conditiongi.e., the conditionsunder
which they will be notified of updates to a selectadity). Second, users must &lgle tospecify
several different types of refreslonditions, as describdzklow. Third,tolerancedor the kind
and degree of data inconsistency depend on the tygataénd on the currergituation. Fourth,
users must have control over the enforced consistency constraints and ahlstthechangéem
with no interruption irservice. Finally, thispplicationhasanother characteristic that makes the
MAC especially suitable: Theetworkshave extremelyow bandwidth. As a resulminimizing
the amount of network traffic is an important gdal.

4.3 Experiences with the Proof-of-concept Application

This section describes our experiences with the proof-of-concept application. It describes how
the MAC supportsthe definition of dataconsistency conditions for aealistic application,
automatically generatesonsistency enforcement objedts the definedconsistency conditions,
and reduces the number of refresh messages from a server to a client application.

In an effort toassesghe utility of theMAC, we asked two individuals witlconsiderable
expertise in the domain of tactical military mission planning to devise a set of dlzstsesuld be
used to support planner and sompotentiallyuseful consistency conditions for those classes of
data? The domain expertsame upwith a set of 11 quasi-viewlassesgachwith an associated
selection condition, and with a total of 17 staleness conditions among them.

Using our initial version othe MAC, we were onlyable tosupport 7 out ofhe 17staleness
conditions described by the domanrperts. This wabecause the implementatioras limited to
supportingthe cache coheren@pnditions described i(Alonso, et al.,, 1990). Howeveafter
expanding the MAC to support arbitrary predicates and user-defined delta conditions, vablevere
to support all of the specified selection and staleness conditions.

An interesting findingwas how usefuthe user-defined-delta conditions turned out to be in
developing themission planning applicationFor examplethey were essentidbr tracking the
magnitude of changes in the location of objects, as shown in the quasi-view specification in Figure
2.

In addition, user-defined-delta conditions proved tonmgortant everfor tracking changes to
some atomic attributes, as in the following example:

8Low bandwidth networks are typical of military environments, but will also become
increasingly important in civilian applications with the growth of wireless networks supporting
nomadic computing. This sentiment is echoed in a recent paper on nomadic computing which
states that “...network bandwidth will remain a major performance bottleneck for system design in
the near future” (Alonso and Korth, 1993).

9These classes and consistency conditions are not intended to resemble those of any real
operational system, however, they do capture the spirit of those systems in terms of the kinds of
consistency constraints that seem useful.

20



user-defined-delta
>(delta(wind-direction), 90)
with delta-function Direction-change-in-degrees

In this example, wind-direction is represented in degrees ageger from 0 td359, where 0 is
North and 180 is South. The reasosiraple value staleness conditiofe.g., whenevethe value

of wind-direction changes by more th80) cannot beused isbecause the change cannot be
measured by simplsubtraction. For example,cdange in wind-direction from 2 ®58 should
fail this staleness condition, because it is onghange of 4degreesfar lessthan the specified
threshold of 90. For this reason, a user-defihgthfunction, Direction-change-in-degrees, must
be used.

Oncequasi-views were definefbr our application, wenext ran the Translator to generate
ARROW rules and other objects that enforce the specified consistenditions. Wehen sent a
stream of updates to the databaseriter to se¢hatonly updateshat cause objects tmeet the
staleness conditioractuallyresult in refreshing a quasi-view. Taghlight this, we created an
interface with two scrolling windows, shown in Figure Bhe window onthe leftshowsactivity
against the server database, which in this application is known as the Force Over-thelmadzon
Coordinator (FOTC). The window on the right shows insert, updatijeletemessages sent to
the Message Handler, in response to selection and staleness conditiorsatisfiegl. Appearing
belowthe messageiindows aretwo counterspne showingthe number of updates to teerver
database, whil¢he other oneshowsthe number of updates tuasi-copies caused by staleness
conditions being satisfied.

As expected, use dhe MAC has resulted in eeduction in the number oéfreshmessages,
compared to approaches that enforce completsistency. As describedbove, this igritical to
the mission planning application because of the low bandwidth networks being employéest In a
run constructed by a domain expert, use of the MAC resulted in 8 updates being propagated to the
client out of atotal of 138 updates tthe database. In othewords, 94% ofthe updates to the
database were not considered significanth® application,based onthe definedquasi-view
specifications. As a resulhe updatesvere not propagated the applicationsparingthe users
the burden of reviewingdatanot relevant to their currenisks. Of coursepne cannotmake
generalizations about the magnitude of the reduction in messzitie, because it ientirely
dependentupon the staleness conditionthat are specifiecand the nature of updates to the
underlying database. Nevertheless, it is encouraging to have obtained this amount of filtering from
guasi-view definitions and an update stream that was considered plausible by a domain expert.

4.4 Performance

The MAC results in reduced messagaffic as well as reducegrocessing byclient
applications, because theaeefewer updates fothe application tgprocess. Aglemonstrated in

21



the proof-of-concept application, these savings can be quite significant, dependirtheaupaoasi-
views specified and the characteristics of the update streasert@r databases. However, the
savings are at the expense of increased load on each quasi-view server.

In (Seligman, 1994), we present a detailed analysteeobverhead caused by thiAC. The
increased load on eaclerver is caused the need to checkelection, retraction, and staleness
conditions. The analysis considerthe overhead of checking these conditievisen creating,
deleting, and updating instances in a quasi-view server.

Our conclusion ighat theoverhead is primarily a function of Q, the numberqoBsi-views
defined on the class on which updases beingoerformed. The value of , the totalnumber of
guasi-copies on any instance of any class in a given server, has only affeoatn the overhead
for updates. The assumptions behind the analysis are described in detail in (Seligman, 1994).

Importantly, all of the cost functions are linear, so even if some of our assumptions prove to be
unrealistic, only the constants need to be refigured. Also, the overhead per update operation is not
affected by the size of the datab&eey., the numbers of tuples). Givethe linearity of the cost
functions andthe irrelevance of database&e, the MAC hasthe potential to scale up to large
databases that support multiple client applications.

5. Related Work

Quasi-view classes are related to the view-objecBao$alou, et al. (1991), whidre object-
based views of relational databases. However, because view-@vgecikst materialized, they do
not supporteffectively theneeds of applications which musdchedata, perform long-running
analyses of those data, and which need to be informed of changesthehagbplication defines as
being “significant.” Quasi-view classesipportthese applications by materializingveew and
providing “good enoughfi.e., approximate) consistency betwettie quasi-copies anthe base
objects from they are derived.

This work builds upomuasi-cachingAlonso, et al., 1990). Quasi-caches contaiquasi-
copies, whichare client-cached copies of database objedisch are allowed to deviate in
controlled ways fromthe primary copies. Their work, like ours, can besaid to support
approximate consistency ofchent cache. Our work extendsthat work in the following ways.
First, we automatically generate rules and other consistency enforcement objectslédanative
specification of consistencgequirements. In addition, wieave defined an architectutbat
supports this in heterogeneous environments that include both active and passive Sewwed,
we make no special assumptions about the capabilities afatasources. By contrast, Alsono’s
work is presented in the context of information retriesstems withouilt-in support for quasi-
caching. Third, intheir approach, forevery object oin the quasi-cache there is exactly one
correspondingpbject o in the centralatabase, anthe representations of o and are identical.
Quasi-viewsgeneralize quasi-cachesgopport transformation dhe data to be cachdé.g., to
support user views or bridgmurce/receiver heterogeneity)rinally, we have extendedlelta

22



conditions to supponnonitoring changes to complex attributes @ndups of attributes(e.g.,
changes to location).

A number of papers addrefiz issue ofefficient support for updatingnaterializedviews
(e.q., Blakeley, etal., 1986; Ceri andVidom, 1991;Hanson, 1987)put these papers do not
addresgechniquedor enforcingapproximate client cacheonsistency. The main exceptions to
this are Lindsay etl. (1986)and Segev and Pa(k989), whichdescribe efficient algorithms for
incrementally maintaining databasmapshots. These techniques could hesed to enforce
approximate cacheonsistency alonghe temporatlimension, but offer no support for enforcing
other kinds of consistency conditions (e.g., delta, version, or user-defined-delta).

A few papers address the issue of interdatabase consistency. Rusinkiewicz et dig\t®%il)

=| Message Display |
Updates To FOTC Updates From FOTC
Attr-vals: (TRACK-NUMBER 157 LATITUDE 39.5 N LONGITUDE Attr-vals: (LATITUDE 42.0 N LONGITUDE 130.0 E
UPDT Class: ORBMOE-SHIP-TRA&CK—; Inst: T153— ISRT Class: ORANGE-AIR-TRACK—: Inst: T176—
Attr-vals: (TRACK-NUMBER 153 LATITUDE 38.1 N LONGITUDE Attr-vals: (LATITUDE 27.0 M LOMGITUDE 180.5 E
UPDT Class: 1-DAY-FORECAST—; Inst: ODF1- ISRT Class: ORANGE-AIR-TRACK—; Inst: T177-—
fttr-vals: (AREA LAUNCH WIND-DIRECTIOM NE HUMIDITY 0.7 Attr-vals: (LATITUDE 27.0 M LONGITUDE 160.25 |
UPDT Class: 1-DAY-FORECAST—; Inst: ODF2- ISRT Class: ORANGE-AIR-TRACK—: Inst: T178—
Attr-vals: (AREA EMROUTE WIND-DIRECTION ME HUMIDITY O. Attr-vals: (LATITUDE 27.0 M LONGITUDE 160.75 |
UPDT Class: 1-DAY—FORECAST—; Inst: ODF3— ISRT Class: ORANGE-AIR-TRACK—; Inst: T179-
Attr=vals: (AREA TARCET WIND-DIRECTION WMW HUMIDITY 0. Attr=vals: (LATITUDE 26.9 N LONGCITUDE 160.75 |
UPDT Class: S-DAY-FORECAST—; Inst: FOF2- ISRT Class: 1-DAY—FORECAST—; Inst: ODF3—
Attr-vals: (AREA ENROUTE WIND-DIRECTION ME HUMIDITY O. Attr-vals: (AREA TARCET WIND-DIRECTION N WIND-
UPDT Class: S-DAY-FORECAST—; Inst: FDFI- ISRT Class: 1-DAY—FORECAST—; Inst: ODF1-—
Attr-vals: (AREA LAUNCH WIND-DIRECTION ME HUMIDITY 0.7 Attr-vals: (AREA LAUNCH WIND-DIRECTION E WIND-
UPDT Class: S-DAY-FORECAST—; Inst: FDF3- ISRT Class: 1-DAY-FORECAST—; Inst: ODF2-
fttr-vals: C(AREA TARCET WIND-DIRECTION NMW HUMIDITY O. Attr-vals: C(AREA ENROUTE WIND-DIRECTION N WINI
UPDT Class: OBSERVED-WEATHER—: Inst: (M- ISRT Class: S5-DAY—FORECAST—; Inst: FDF2—
Attr-vals: (AREA LAUNCH WIND-DIRECTIOW EME HUMIDITY O. Attr-vals: (AREA EMROUTE WIND-DIRECTION N WINI
UPDT Class: QBSERVED-WEATHER—; Inst: Owz— ISRT Class: 3-DAY—FORECAST—; Inst: FDF1-
Attr=vals: (AREA ENROUTE WIND-DIRECTION ENE HUMIDITY 0 Attr=vals: C(AREA LAUNCH WIND-DIRECTION E WIND-
UPDT Class: OBSERVED-WEATHER—: Inst: (W3- ISRT Class: 5-DAY—FORECAST—; Inst: FDF3—
Attr-vals: (AREA TARCET WIND-DIRECTION NE HUMIDITY 0.7 Attr-vals: (AREA TARCET WIND-DIRECTION N WIND-
UPDT Class: OBSERVED-WEATHER—; Inst: (OW1— UPDT Class: 1-DAY—FORECAST—; Inst: ODF1-—
Attr-vals: (AREA LAUNCH WIND-DIRECTION NME HUMIDITY 0. Attr-vals: (AREA LAUNCH WIND-DIRECTION ME WINI
UPDT Class: OBSERVED-WEATHER—; Inst: Oh2— UPDT Class: 1-DAY—FORECAST—; Inst: ODF2-—
Attr-vals: (AREA ENROUTE WIND-DIRECTION ENE HUMIDITY O Attr-vals: C(AREA ENROUTE WIND-DIRECTION NE WII
UPDT Class: OBSERVED-WEATHER—: Inst: (W3- UPDT Class: 1-DAY—FORECAST—; Inst: ODF3—
Attr-vals: (AREA TARCET WIND-DIRECTIOW ME HUMIDITY 0.7 Attr-vals: (AREA TARCET WIND-DIRECTION MM@ WII
ISRT Class: THREAT—; Inst: THRE— ISRT Class: THREAT—; Inst: THRE—
Attr=vals: C(UNIQUE-ID THRE— TYPE—OF-THREAT S&-2 LATITU Attr-Wals: (LATITUDE 35.5 N LOWGITUDE 125.3 E
Update Message Counter: | 62 Update hMessage Counter: | 4
Load Unconstrained Versi0n| Load Constrained Versionl Single Stepl Continuel Dismiss |

Figure 9. Updates to Server (on left) and Messages to Client (on right)

23



richer specification language for consistency constraints than we do, but provide no mechanism for
enforcing those constraints other than user-defprededures.Our approach is t@automatically
generate the required databaskes and constraint objects fromdaclarativespecification. Ceri

and Widom (1992) provide a declarative specification langémgexistence and value constraints
across components of multidatabasesystem andautomatically generate active databaskes

which enforce those constraints. Howevbey do not provide any mechanigan specifying or
maintaining approximate consistency constraints.

6. Conclusions

As described in (Seligman arkerschberg, 1995)many applications need to reason about
data which are consistent with the states of dynamic, skatadources, akeast within specified
tolerances. These applications require mechanisms f() describing declaratively how
consistent theidatamust be, and (2) forgenerating consistency enforcement objects from the
declarative description of requirements. No previous approach supports this.

This paperhas presented an approach dpproximate consistencynanagementacross
distributed, heterogeneousystems. It isthe first approachthat automatically generates
consistency enforcement objects fronteclarative specification of application datansistency
requirements, where those requirements can include different kiagprokimateconsistency. It
is alsothe first proposed approach to do this in heterogeneous environthantsclude both
active and passive dasaurces. Wéave demonstrated these capabilities gof@ware prototype
and have shown thatgjven the linearity of theost functionsthe MAC hasthe potential to scale
up to servers with large instance populations supporting many quasi-views.

Another contribution of this work is the introduction and formalizatiogusi-views. Quasi-
views provide aleclarative mechanisor specifyingapplication dataconsistency requirements.
Quasi-views extend quasi-caches by providing: mechanisms to restdv@eterogeneitissues
between servers and clients, and a new type of staleness condition, user-defined-deltas, which was
essentiafor our proof-of-concept application. In addition, \wave defined a declarativguasi-
view specification language, based on a modest extens®@QIlto To our knowledge, this is the
first formal language defined for specifying approximate consistency requirements.

There are a number of promising areas for future research. First, there is a need to apply these

techniques to realistic applications having diverse consistency requirementsexSeramentation

could point to a need tsupport new kinds ofpproximate consistency predicate§econd,
empirical work is needed to replace somehef default parameter valuased in oumperformance
analysis withrealworld numbers. Third, this workould be extended teupport aricher set of
conditions(e.g., “refresh mycachewhenthe price ofsome stock goes up by 3%ithin one

hour’). Sistla and Wolfson (1995have developed a rich languaf describingtemporal

triggers. Incorporating sugbredicates intaur mediation architecturezould be both useful and
challenging.

24



A final area of researchvould be toexplore the applicability ofour approach todata
warehousing applications. Typically, warehousestain static collections of materializegews
of multiple heterogeneoudatasources (Poe, 1995)The views are static, because¢here is a
requirement that decision support applications not interferethatiperformance of databagbat
supporton-line transaction processif@LTP). However, outechniques have the potential to
give warehouse designers a naapability: to specify declaratively changes whichare so
significant that theyshould cause an update to the contents of Werehouse. Empirical
investigation is required to find out if these techniques are indsefl fordatawarehousesnd,
if so, what changes in our architecture are required to make them so.

Acknowledgments

This researchwas partially supported byMITRE SponsoredResearch and a®RPA grant,
administered by the Office of Naval Research under grant nuN®t4-92-J-4038.The authors
would like to thank Arnie Rosenthal, who provided insightful feedbesgecially regardingager
vs. lazy refresh strategies. In addition, we wdile to thankTrish Carbone for hetreativity in
finding applicationdor this andrelatedresearchEric Peterson for higielp with implementation,
and Ernie Carbontor his assistance wittleveloping theproof-of-concept application. Finally,
the first author would like to thank his management at MITRE for twgport,especially Barbara
Toohill and Andrea Weiss.

Bibliography
Ahmed, R., et al. (1991). The Pegasus Heterogeneous Multidatabase Systeputey 24(12).

Alonso, R., Barbara, Dand Garcia-Molina, H(1990). DataCachinglssues in arinformation
Retrieval SystemACM Trans. on Database SysterhS(3).

Alonso, R. and Korth, H. (1993). Databaselssues in Nomadic Computing. Proc. of
ACM-SIGMOD Int. Conf. on Management of Dat&ashington, DC.

Barsalou, T, Keller, A.,Siambela,N., and Wiederhold, G.(1991). Updating Relational
Databases through Object-Based Viewsoc. of ACM-SIGMOD IntConf. onManagement
of Data Denver, CO.

Blakeley, J., Larson, P., and Tompa, F. (198Ejficiently UpdatingMaterializedViews. Proc.
of ACM-SIGMOD Int. Conf. on Management of Dadgashington, DC.

Ceri, S., and Widom, J(1991). Deriving Production Rules folincremental View Maintenance.
Proc. of 17th Int. Conf. on Very Large Data Badgarcelona, Spain.

Ceri, S., and Widom, J(1992). ManagingSemantic Heterogeneityith Production Rules and
Persistent QueuedBM Technical Report RJ9064 (80754).

Hanson, E. (1987). Aerformance Analysis oWiew Materializaion Strategies. Proc. of
ACM-SIGMOD Int. Conf. on Management of Data.

Hanson, E.and Widom, J.(1995). Rule Processing inActive DatabaseSystems. In
L. Delcambre (Ed.)Advances irDatabases andhrtificial Intelligence,Vol. 1. Greenwich,
CT: JAIl Press.

Kim, W., et al. (1990). Architecture of the ORIONNext-GeneratiorDatabaseSystem |EEE
Transactions on Knowledge and Data Engineer2(@).

25



Lindsay, B., Haas, L., Mohan, C., Pirahesh, H., and Wilms, P. (1986). A Snap8aantial
Refresh Algorithm.Proc. of ACM-SIGMOD Int. Conf. on Management of D&t&ashington,
DC.

Poe, V. (1995). DataWarehouse: Architecture i®ot Infrastructure. DatabaseProgramming and
Design 8(7).

Rosenthal, A. and Seligman,(L994). Datalntegration in the Large: The Challenge Réuse.
Proceedings of 20tinternational Conference orVery Large Data Bases industrial track.
Santiago, Chile.

Rusinkiewicz, M., Sheth, Aand Karabatis, G(1991). Specifying Interdatabase Dependencies
in a Multidatabase EnvironmenComputey 24(12).

Sciore, E., Siegel, M., and Rosenthal, A.(1994). Using Semantic Values to Facilitate
Interoperability Among Heterogeneous Informatiystems. ACM Transactions orDatabase
Systems 19(2).

Segev, A.and Park, J. (1989). Updating DistributedMaterialized Views. |EEE Trans. on
Knowledge and Data Engineerind.(2).

Seligman, L. (1995). Quasi-view SpecificatiotJsing an Extension of SQL Working note,
available from the author.

Seligman, L. (1994). A Mediated Approach t€onsistencyManagementAmong Distributed,
Heterogeneous Informatid@ystems Ph.D. thesisDepartment ofinformation Systems and
Systems Engineering, George Mason University, Fairfax, VA.

Seligman, L., and Kerschberg, L. (1993a). Knowledge-base/Database ConsisteRreganated
MultidatabaseEnvironment. Proceedings ofnternational Workshop ornResearchissues in
Database Systems: Interoperability in Multidatabase SystéatsE Computer Society Press.

Seligman,L., and Kerschberg, L. (1993b). Armctive DatabaseApproach to Consistency
Management in Dataand Knowledge-baseBystems. International Journal of Intelligent and
Cooperative Information Systen2).

Seligman, L., and Kerschberg, L. (1995). Active Federation: A Nmhitecturefor Integrating
Al and DatabaseSystems. In L. Delcambre (Ed.jdvances inDatabases andArtificial
Intelligence, Vol. 1 Greenwich, CT: JAI Press.

Sistla,A.P., and O. Wolfson1995). TemporalConditions and Integrity Constraints Active
Databasesystems. Proc. of ACM-SIGMOD IntConf. onManagement oData SanJose,
CA.

Stacey, D. (1994).Replication:DB2, Oracle, or Sybase”DatabaseProgramming andDesign
7(12).

Wiederhold, G. (1992a).Mediators in the Architecture dfuture InformationSystems.|IEEE
Computey 25(3).

Wiederhold, G. (1992b). The Roles Aiftificial Intelligence inInformation Systems. Journal of
Intelligent Information System#(1), Kluwer Academic Publishers.

26



