
DYNAMIC META-DATA SUPPORT FOR INFORMATION INTEGRATION
AND SHARING ACROSS HETEROGENEOUS DATABASES

by

Wiput Phijaisanit
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
in Partial Fulfillment of

the Requirements for the Degree
of

Doctor of Philosophy
Information Technology

Committee:

__________________________________ Dr. Larry Kerschberg, Dissertation Director

__________________________________ Dr. Alex Brodsky

__________________________________ Dr. David A. Schum

__________________________________ Dr. Xiaoyang Wang

__________________________________ Dr. Carl Harris, Interim Associate Dean for
 Graduate Studies and Research

__________________________________ Dr. W. Murray Black, Interim Dean, School
 of Information Technology and Engineering

Date:______________________________ Summer Semester 1997
George Mason University
Fairfax, Virginia

Dynamic Meta-Data Support for Information Integration
and Sharing Across Heterogeneous Databases

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University.

By

Wiput Phijaisanit

M.B.A, Management, Oklahoma City University, Oklahoma, 1991
B.E., Electrical Engineering, King Mongkut’s Institute of Technology Ladkrabang,

Thailand, 1988.

Director: Dr. Larry Kerschberg
Chairman,

Information and Software Systems Engineering

Summer 1997
George Mason University

Fairfax, Virginia

Copyright 1997 Wiput Phijaisanit
All Rights Reserved

i

Acknowledgments

I would like to thank my dissertation director, Dr. Larry Kerschberg, for his

encouragement and support throughout this research. I would like to thank the rest of my

committee members, Dr. Alex Brodsky, Dr. David A. Schum, and Dr. Xiaoyang Wang

for their comments and suggestions. I would like to thank William Wong, and Atcha

Wong for their understanding and sharing.

Above all I would like to thank my mother, M.R. Narumol Phijaisanit, and my

brother, Wichack Phijaisanit, for their unconditional love and support. Without them, I

will never be as I am today.

ii

Table of Contents

Page
List of
Figures…………………………………………………………………………………….
iv
Abstract……………………………………………………………………………………
………. vi
1. Introduction..1

1.1 Overview..1
1.2 Terminology...3
1.3 Problem Statement and Contribution...7
1.4 Organization of the Dissertation ..9

2. Background and Related Work ..11
2.1 Federated Database Systems..11

2.1.1 DDTS (Distributed Database Testbed System)...11
2.1.2 MULTIBASE..12
2.1.3 MRDSM (Multics Relational Data Store Multidatabase).................................13
2.1.4 Alberta Land Related Information System (LRIS) ...14
2.1.5 FEderated MUltilingual System (FEMUS)...16

2.2 Mediator...17
2.2.1 Context Mediator ..17

2.3 Conclusion ...18
3. Meta-Data and Property Knowledge Package ...20

3.1 Definition of Data, Meta-Data, and Property Knowledge Package20
3.2 Knowledge Specifications for Property Knowledge Package and Dynamic Meta-
data...25

3.2.1 Property Knowledge Package specification ..25
3.2.2 Dynamic Meta-Data Specification. ...26

3.2.2.1 Unit-Type Dynamic Meta-data ..27
3.2.2.2 Data Source Dynamic Meta-data ...32

4. Unit Value Mediator ..35
4.1 Unit Value Mediator Architecture ...35
4.2 Unit Value Conversion Characteristics..37
4.3 Conversion Knowledge and Reference Knowledge Characteristics........................40
4.4 Scenario for the Unit Value Mediator..41

5. Mediation Database System...45

iii

5.1 Mediation Database System Components ...46
5.1.1 Data Dictionary ...46

5.1.1.1 Domain Dependent Knowledge ...47
5.1.1.2 Domain Independent Knowledge...53

5.1.2 Query Formulator and Query Processor..59
5.1.3 Mediators ..60

5.2 Multiple Unit Value Concept...60
5.3 Extended Query Language Specification...61

6. The InfoFED Federated Database System ...68
6.1 The InfoFED Federated Database System Architecture ..69
6.2 Scenario for the InfoFED Federated Database System..75
6.3 Information Integration ..77

7. Prototype ..86
7.1 The Unit Value Mediator Prototype...86
7.2 The InfoFED Prototype..88

8. Conclusion ...98
8.1 Goals Achieved..98
8.2 Future Directions ...100

References………………………………………………..…….......……………………......
.101
Appendix A: Prototype High Level Data and Knowledge Structure .……............…109

A.1 Overview of COOL
…………………………………………...………………….…..109
A.2 High Level Data and Knowledge Structure for Domain Dependent
Knowledge………………………………………………………………………………
……..113
A.3 High Level Data and Knowledge Structure for Domain Independent
Knowledge………………………………………………………………………………
……..118

Appendix B: Extended Query Language
Specification…………………………………….133

iv

Table of Figures

Page
Figure 1-1 Federated Database System Architecture ...3
Figure 2-1 DDTS Architecture ..12
Figure 2-2 Multibase Architecture...13
Figure 2-3 MRDSM Architecture ..14
Figure 2-4 LRIS Four Level Schema Architecture ..15
Figure 2-5 The FEMUS Architecture ..16
Figure 2-6 An Architecture for the Semantic Interoperability using Semantic Values17
Figure 3-1 Example of Meta-Data ...21
Figure 3-2 Knowledge Representation by the Data Model..23
Figure 3-3 Example of Property Knowledge Package ...26
Figure 3-4 Example of Unit-type Dynamic Meta-Data..31
Figure 3-5 Example of the URL ..32
Figure 3-6 Example of Data Source Dynamic Meta-Data Knowledge..............................33
Figure 4-1 Unit Value Mediator Architecture..35
Figure 4-2 Examples of Conversion knowledge objects and Reference Knowledge objects44
Figure 5-1 Mediation Database System Components..45
Figure 5-2 Example of Class Diagram for the Application Domain ‘Airline’50
Figure 5-3 Example of Instances for the 'Employee' Class..52
Figure 5-4 The Organization of the Conversion Knowledge...53
Figure 5-5 The Organization of the Reference Knowledge ...56
Figure 5-6 Example of Instance for the Class ‘Exchange-Rate’..59
Figure 5-7 Attribute Information Tree ...61
Figure 5-8 Example of a query that involves Unit-type DMD ..66
Figure 6-1 The InfoFED Federated Database System Architecture...................................70
Figure 6-2 Data Obtaining Process ..71
Figure 6-3 Example of Data Source in the HTML Format ..74
Figure 6-4 Information Flow Diagram in the InfoFED Federated Database System.........76
Figure 6-5 Example of schema mapping knowledge specification81
Figure 6-6 Local Data Source Accessing Process..82
Figure 6-7 Import Data Format in a Tabular Format ...84
Figure 7-1 The Unit Value Mediator ...88
Figure 7-2 InfoFED Main Menu ..90
Figure 7-3 InfoFED Application Domain ‘Airline’ Main Menu91
Figure 7-4 InfoFED Browser Mode...93

v

Figure 7-5 Query Frame for InfoFED ..94
Figure 7-6 New Register Data Source Frame for InfoFED..97

Abstract

DYNAMIC META-DATA SUPPORT FOR INFORMATION INTEGRATION
AND SHARING ACROSS HETEROGENEOUS DATABASES

Wiput Phijaisanit

George Mason University, 1997

Dissertation Director: Dr. Larry Kerschberg

In a multidatabase environment, meta-data plays a more important role than in a

single database environment. The federated database system manipulates data from

several data sources. Users hardly have enough knowledge about the underlying meaning

of the global schema. Meta-data describes the data semantic information that can help

users to interpret the data. It provides necessary information for both query processing

and data integration in a federated database system. However, traditional data modeling

techniques such as relational data model and semantic data model are not designed to

support efficiently the definition, storage and manipulation of complex meta-data.

The dissertation investigates on how the schema of the data model can be

extended to support the meta-data, how this meta-data can enhance the semantics of a

database schema, support data integration and mediation services, and facilitate query

processing in a federated database system. The dissertation develops the Mediation Data

Model. The Mediation Data Model provides an extensible schema that supports the

dynamic meta-data, and a framework for specifying mediation services within the data

model. The dynamic meta-data describes different types of data semantic information, in

addition to the traditional static meta-data. The dynamic meta-data allows each instance

object of a class to have associated with it distinct meta-data, whereas static meta-data

assigns the same meta-data to an entire class rather than instances of a class. The

Mediation Data Model provides the association of multiple unit values to an instance of a

data type. The concept of Multiple Unit Value (MUV) is implemented by means of the

Unit-type Dynamic Meta-Data, the Unit Value Mediator and the extended DML. The

MUV concept allows object attributes to have values expressed in convertible units.

The dissertation also develops the federated database system architecture and a

working prototype, called InfoFED. InfoFED makes use of the Mediation Data Model as

a common data model to provide the self-describing data as well as an intelligent data

manipulation language to users, and to improve data integration by reducing the schema

integration conflicts. InfoFED also provides a browser for both data and meta-data, an

object-oriented federated schema, and the data source registration and management.

1. Introduction

1.1 Overview

Multidatabases [HBP92, HBP94, and Litwin88] are becoming more important as

applications increasingly require access to diverse databases. Multidatabases are

sometimes referred to as heterogeneous distributed databases. Multidatabases are an

important area of current research. However, the problems and issues faced by

multidatabase architects and designers are numerous because multidatabase management

systems (DBMS) are composed of heterogeneous hardware, operating systems, database

management systems and applications which result in several information integration

conflicts [Bertino91, Heiler&Siegel91, and BLN86].

One of the solutions to the information integration problems among

heterogeneous distributed databases is the federated database system approach

[Sheth&Larson90]. A federated database system is a distributed system that acts as a front

end to multiple local DBMSs. The federated database system provides a logically

integrated view of existing heterogeneous, distributed databases. It entails developing a

global schema (view) of the component heterogeneous databases, where definitions of

these databases are expressed in a common data definition language, and discrepancies

among these definitions are resolved before they are integrated into the global schema.

1

2

 The federated database system usually provides full query facilities and insulates

users from the component databases via its global schema. Although the integration

process may use a common data model such as the traditional relational, functional, or

object-oriented data model, it usually presents mutual semantic conflicts. These conflicts

involve differences, redundancies, and incompatibilities with respect to names, unit

values, and meanings among similar data.

This dissertation discusses the roles of meta-data and mediators that enhance the

expressive capability of the data model, support query processing, and facilitate the data

integration in the federated database system. The dissertation proposes the Mediation

Data Model which extends its schema to support the Property Knowledge Package that is

associated to each data element in the data model. The Property Knowledge Package is, in

addition to the schema, the description package of the data element. It contains Dynamic

Meta-Data types that enhance the data model by supporting the Multiple Unit Value

Concept and provide information on unit type and data source that is useful for

automating conflict resolution in federated database systems. The unit type information

enhances the data model to support the Multiple Unit Value Concept which, in turn,

allows heterogeneous databases to export their data in their own unit values without any

unit conversion. The data source information, when presented with the data element,

helps users to distinguish among different sources of the same data. These concepts will

be presented in subsequent chapters.

1

3

1.2 Terminology

Before proceeding, it is useful to discuss the terminology used in this dissertation.

The dissertation proposes the use of the federated database system as a

 basic architecture for integrating data from heterogeneous database systems.

Export Schema

Local Schema

Database

Export Schema

Local Schema

Database

Schema Integration

Schema Definition

Schema Translation

Component Schema Component Schema

External Schema External Schema

Federated Schema Federated Data Dictionary

Figure 1-1 Federated Database System Architecture

A federated database system provides a global schema, expressed using the

common data model’s data representation, for resolving the differences in the data

representation and functions among local DBMSs. Local DBMSs maintain their

autonomy in which they preserve existing organizational investments in local applications

4

and user training, while providing a significant new function of global data access. Many

of the existing federated database systems share the common architecture as shown in

Figure 1-1 [Sheth&Larson90].

Each database has its own local schema. The Component schema is derived by

translating local schemas into the common data model of the Federated Database System.

The common data model facilitates the integration and allows access through a common

query mechanism. Each database presents an export schema to the federation. This

schema is either its actual component schema or a derived schema hiding some private

local schema. For negotiation between databases, each federation has a single federated

data dictionary, which is a distinguished component whose information domain is the

federation itself.

The common data model is used in the federated database system to facilitate the

schema integration from heterogeneous database systems. There are several types of

integration conflicts that the federated database system designer has to deal with. The

following is a classification of some of the possible conflicts between any two database

schemas.

1) Identity conflicts. Identity conflicts occur when the same concept is represented by

different objects in different databases. For example, copies of the same book stored in

both IS-Library schema and Math-Library schema with different local identifiers.

2) Schema conflicts. Schema conflicts occur when the schemas that represent the same

concept are not identical. Two major types of schema conflicts are naming conflicts and

structural conflicts.

5

Naming conflicts occur when one name is used for more than one concept

(homonyms) or when one concept is described by more than one name (synonyms). For

example, in a homonyms case, the term “media” refers to magazines in one schema while

it refers to videotapes in another. In a synonyms case, the term “reference” in one schema

and the term “bibliography” in another schema are used to refer to the same concept as “a

list of writings”.

Structural conflicts occur when the same concept is represented by different

constructs of the data model, i.e., by a method in one database and a class in the other.

For example, in the IS-Library schema, the number of citations is an attribute of the class

‘Book’ but in the Math-Library schema, it is a method recomputed upon request. The

Structural conflicts also occur when the same concept is modeled by the same constructs,

but classes have either different structure (missing or different relations/dependencies) or

different behavior (different or missing operations). For example, the class ‘Book’ has an

attribute ‘keyword’ in one schema but not in the other.

3) Semantic conflicts. Semantic conflicts occur when the same concept is interpreted

differently in different databases. This category includes scale or rate differences. For

example, a term ‘Conference’ is referred to conference in one schema but not in the other.

4) Data conflicts. Data conflicts occur when the data values of the same concept are

different in different databases. For example, the same person appears with different

salary values.

Recently, the object-oriented data model [Brathwaite92, Edward90, PBE95,

RBPEL91 and Zhu&Maier88] has become a choice to represent the real world concept. It

6

supports a richer semantic compared to other types of data models such as the relational

data model.

Object Orientation is an abstraction mechanism in which the world is modeled as

a collection of independent objects that communicate with each other by exchanging

messages. An object is characterized by its state and behavior and has a unique identifier

assigned to it upon its creation. The state of an object is defined as a set of values of

instance variables. The value of an instance variable is also an object. The behavior of an

object is modeled by a set of operations or methods that are applicable to it. Methods are

involved in sending messages to the appropriate object. The state of an object can be

accessed only through messages; thus, the implementation of an object is hidden from

other objects.

Each object is an instance of a class. A class is a template from which objects may

be created. All objects of a class have the same kind of instance variables, share common

operations, and therefore demonstrate uniform behavior. Classes are also objects. The

instance variables of a class are called class variables and the methods of a class are

called class methods. Class variables represent properties common to all instances of the

class. A typical class method is “new”, which creates an instance of the class.

Classes of objects are arranged in a hierarchy or in a graph to describe the

relationships of objects in a system. Classes are arranged in a hierarchy with the most

general classes at the top and the more specialized classes below. When a class B is

defined as a subclass of class A, class B inherits all the methods and variables of class A.

Class A is called a superclass of class B. Class B may include additional methods and

7

variables. Furthermore, class B may redefine any method inherited from class A to suit its

own needs.

The relations typically supported by the object oriented data model are: the

classification or instance-of relation between an object and the class (typically one) of

which it is an instance; the generalization/specialization or is-a relation between a class

and its superclasses; and the aggregation relation between an object and its instance

variables.

A mediator [Wiederhold92, and Wiederhold95] is a software module that exploits

the encoded knowledge about certain sets or subsets of data to create information for a

higher layer of an application. The mediator provides domain specialization services and

will play a more important role in the information integration process from multiple data

and information sources. Information-processing tasks in mediators include accessing to

appropriate resources, data selection, format conversion, bringing data to common

abstraction levels, integration of information from different sources, and preparing

information for delivery to the customer.

1.3 Problem Statement and Contribution

In a multidatabase environment, meta-data plays a more important role than in a

single database environment. The federated database system manipulates data from

several data sources. Users hardly have enough knowledge about the underlying meaning

of the global schema. The meta-data describes the data semantic information that can help

users to interpret the data. In the data integration process, meta-data provides necessary

8

information for mediators to use in both query processing and data integration in a

federated database system. However, traditional data modeling techniques such as

relational data model and semantic data model are not designed to support efficiently the

definition, storage, and manipulation of complex meta-data. Investigations should be

made on how the schema of the data model can be extended to support the meta-data,

how this meta-data can enhance the semantics of a database schema, support data

integration and mediation services, and facilitate query processing in a federated database

system.

The work described in this dissertation provides three major contributions. The

first is the introduction of the concept of dynamic meta-data and its specification for

describing different types of data semantic information, in addition to the traditional static

meta-data. The dynamic meta-data allows each instance object of a class to associate

within itself its distinct meta-data information, whereas the static meta-data assigns the

same meta-data information to all instance objects of a class.

 The second contribution is the Mediation Data Model. The Mediation Data

Model provides an extensible schema that supports the dynamic meta-data, and a

framework for specifying mediator services within the data model. The Mediation Data

Model also provides the association of multiple unit values to an instance of a data type.

The concept of Multiple Unit Value (MUV) is implemented by means of the Unit-type

Dynamic Meta-Data, the Unit Value Mediator and the extended DML. The MUV concept

allows object attributes to have values expressed in convertible units.

9

The final contribution of this dissertation is the federated database system

architecture, called InfoFED. InfoFED makes use of the Mediation Data Model as a

common data model to provide the self-describing data as well as an intelligent data

manipulation language to users, and to improve data integration by reducing the schema

integration conflicts. The schema integration conflicts are reduced because the Mediation

Data Model supports the MUV concept allowing heterogeneous databases to export their

data in their own unit value without any unit conversion. The Unit Value Mediator

provides translation and conversion services. The architecture also provides a browser for

both data and meta-data, an object-oriented federated schema, and the data source

registration and management.

1.4 Organization of the Dissertation

In Chapter 2, the background and related work is discussed. Briefly discussed in

the presentation is the survey of the federated database system architectures and

mediators. Chapter 3, explains the definitions of data and meta-data which is further

characterized as dynamic and static. The specification of the data, meta-data, and the

Property Knowledge Package to which a list of the dynamic meta-data for each data

element is attached are described in this chapter.

To represent the real world, a data model may involve unit types. Since each

current data model supports only one unit value for each attribute, Chapter 3 introduces

the Unit Value mediator that provides the unit conversion services. Chapter 5 explains

how the Property Knowledge Package can be incorporated into the data model, that is, the

10

Mediation Data Model. The discussion shows how the Unit Value mediator can be

coordinated within the Mediation Data Model and uses the Unit-type Dynamic Meta-Data

to support the Multiple Unit Value concept. Chapter 5 introduces the InfoFED Federated

Database System architecture and discusses the role of the Mediation Data Model within

the architecture.

As a proof of concept, the implementation of the Unit Value Mediator and the

InfoFED Federated Database System prototypes are presented in chapter 6. Finally

chapter 8 discusses conclusions and suggestions for the future research.

2. Background and Related Work

The related work can be defined into two major areas which are federated

database systems and mediators. A federated database system provides the architecture

for integrating information from autonomous, heterogeneous databases. The mediators

provide domain specialization services which can be used to support the data integration

and the query processing in the multidatabase system, i.e., the federated database system.

2.1 Federated Database Systems

Over the past several years, there have been a number of projects centered on

solving the problems of accessing heterogeneous and autonomous databases. The

following section briefly describes some of the research systems that use the federated

database system approach in dealing with heterogeneous and autonomous database

access.

2.1.1 DDTS (Distributed Database Testbed System)

DDTS has a single federated schema called the Global Representation Schema,

which is expressed in the relational data model [Dwyer&Larson87]. The External Schema

in DDTS is called as the Conceptual Schema represented in the Entity-Category-

Relationship (ECR) model. Users formulate requests directly against the conceptual

schema in the GORDAS query language. 11

12

Local Schema

Database

Local Schema

Database

User View

Enterprise View
(ECR Model)

Local DBMS
View

Local Representation
Schema

External Schema External Schema

Conceptual Schema

Database Dictionary

Local Representation
Schema

Global Representation
Schema

Global and Local
Representation View
(Relational Model)

Internal Schema

Figure 2-1 DDTS Architecture

2.1.2 MULTIBASE

Multibase [Thomas90] is a system for integrating access to pre-existing,

heterogeneous, distributed databases. Users access the database system through a single

global schema expressed in DAPLEX [Shipman81] which is a functional data model.

Component DBMSs supported by Multibase include both CODASYL (Conference on

Data System Language) and relational databases. A user submits a query to the system

(with DAPLEX) over the global schema. The query translator translates the global query

into a global query over the disjoint union of local schemas using information from the

13

Auxiliary schemas. The Auxiliary schema holds additional data not stored in any

component DBMSs and information needed to resolve inconsistencies.

A Multibase prototype has been implemented in Ada. It executes on a VAX under

the VMS operating system.

Global View

Global Schema
Using Local Terms

Global View

Component Schema

Local Schema

Database

Auxiliary
Database

Component Schema

Local Schema

Database

DAPLEX Model

DAPLEX Model
Using Local Terms

DAPLEX Model

CODASYL &
Relational Model

Figure 2-2 Multibase Architecture

2.1.3 MRDSM (Multics Relational Data Store Multidatabase)

The MRDSM [Litwin&Abdellatif86] Multidatabase architecture is a loosely-

coupled federated database system and is based on interoperability among heterogeneous

databases. All participating database systems retain autonomy and control over their data.

MRDSM has no global schema and its general architecture is shown in Figure 2-3.

14

Interdatabase dependencies

Export Schema

MRDSM Software

Interdatabase dependencies

Export Schema

Interdatabase dependencies

Export Schema

Figure 2-3 MRDSM Architecture

Databases become participants when their export schema is defined to MRDSM.

An export schema may be a conceptual schema, a data model, or a database view schema.

The goal of MRDSM is to allow users to formulate a query with a single statement by

using the MRDSM data manipulation language, MDSL. Both retrieval and update

operation are allowed. However, users must know the contents of the participating

databases to formulate MDSL queries.

2.1.4 Alberta Land Related Information System (LRIS)

The LRIS [Goodman94] is a project that provides on line, query-only access to

several sources of land related data. The data is stored and maintained independently by

different agencies and departments throughout the province of Alberta. The LRIS is

developed using the federated database system architecture as described in

[Sheth&Larson90]. The LRIS consists of a four level schema architecture (Figure 2-4)

15

which includes the external schema, the federated schema, the component schema, and

the local schema.

External
Schema

Federated
Schema

Component
Schema

Local
Schema

Supplier 1
(IDMS)

Supplier 2
(IDMS)

Supplier 3
(Arc/Info)

Supplier 4
(Oracle)

Figure 2-4 LRIS Four Level Schema Architecture

The initial project combines four data sources of land related data into a single

federated database; two IDMS databases, one Oracle database and a spatial database

implemented using Arc/Info and Oracle. The common data model is based on the

relational data model, with extensions to include spatial data types such as POINTS,

POLYGONS, and POLYLINES. It supports spatial query operators, such as OVERLAPS,

WITHIN, and BUFFER, to allow constraints to be applied against these spatial data

types.

16

2.1.5 FEderated MUltilingual System (FEMUS)

Export Schema

Local Schema

Database

Export Schema

Local Schema

Database

Heterogeneous

Homogeneous

Heterogeneous

Component Schema Component Schema

Import Schema Import Schema

Federated Schema

Local
Federated Schema

Global View

Figure 2-5 The FEMUS Architecture

FEMUS [ADSYTY93] has a six-level architecture as in Figure 2-5 compared to

the five-level architecture of Figure 1-1. The additional level is the local integration of

federated schema. FEMUS supports two different database approaches: one is based on

semantic data model (ERC+), and the other is based on an object-oriented model

(COCOON [Scholl&Schek92]).

17

2.2 Mediator

A mediator is a software module that exploits encoded knowledge about certain

sets or subsets of data to create information for a higher layer of application. One example

of a mediator is the “context mediator” proposed in [GMS94, and SSR94].

2.2.1 Context Mediator

Data Environment
Semantic Value,
Schema Semantic
Value Specification

Context Mediator

Data Source

Shared Ontology

Data Environment
Semantic Value,
Schema Semantic
Value Specification

Data SourceContext
Transformation

Conversion
Libraries

query

result

Figure 2-6 An Architecture for the Semantic Interoperability using Semantic Values

Each information system component may have an associated data environment. A

data environment contains two parts. The semantic value schema specifies attributes and

properties, and the semantic value specification specifies values for some or all of these

properties. The context mediator uses the data environments to determine whether a

requested data exchange is possible and, if so, to determine necessary conversions. The

shared ontology component specifies terminology mappings. These mappings describe

18

the naming equivalence among the component information systems. The conversion

library contains conversion functions.

2.3 Conclusion

The systems reviewed in the preceding sections are all designed to address the

problems of integrating existing database systems. The federated database system

architecture provides a framework for integrating the information from heterogeneous

data sources, where mediators provide semantic conflict resolution services among

different data sources. When the number of data sources increases, the semantic

incompatibility problems become more difficult to solve. The mediator, which provides

semantic conflict resolution services, can enhance the information integration process in

the federated database system. However, all of the reviewed federated database systems

do not incorporate mediators into their architecture. This dissertation presents such an

approach.

Among the problems of integrating mediators to the federated database system

architecture is the lack of semantic representation of the data domains in the data model.

Mediators require such semantic information as an input, in addition to the actual data

elements to process the information [Gattorna96]. The reviewed federated database

systems use either the relational data model, a semantic data model or an object oriented

data model as their global data model. The semantic data model and the object oriented

data model provide a better framework to model the real world enterprise than the

19

relational data model. However, these data models were not designed specifically to

incorporate semantic information about the data domains.

In [SSR94], the semantic information of the data domain is provided by each

DBMS as the data environment for processing by the mediators. This approach limits the

capabilities of the mediator. The dissertation shows that, with mediators tightly integrated

into the data model architecture, they not only provide a basic conflict resolution function

but also enhance the data model with additional system capabilities. These extensible

system capabilities enhance the data integration process in a federated database system.

3. Meta-Data and Property Knowledge Package

3.1 Definition of Data, Meta-Data, and Property Knowledge Package

This section discusses the definition of data, meta-data, and the Property

Knowledge Package, together with their specifications. Data is a collection of facts,

whereas meta-data is the data that describes data, that is, data about data. Meta-data is an

abstraction of data and is higher-level data that describes lower-level data [APT96]. The

meta-data complements data with knowledge, which provides the information for

applications so that they can understand and use the data. Without the meta-data to

provide context and usage information, data becomes unusable. In the early days of

commercial computing, each application created and handled its own data files. Because

the files’ meta-data was embedded in the application’s data definitions, no application

could make sense of another application’s files. Since databases were introduced, they

have brought the concept of storing the meta-data in the database catalog, not in the

individual programs, therefore allowing different applications to access to the same

database. A database uses its schema to describe or structure the real word concepts as

classes and relationships among classes. This schema information can be considered as

the meta-data for instances of classes which are defined within the data model. Two types

20

21

of meta-data that are commonly found in a data model are meta-data for properties of

classes, and meta-data for instance objects.

 Meta-data for classes

Superclass = (Person, Employee)

Subclass = (Employee, Person)

 Schema definition (the meta-data for instance objects) for “Person” and “Employee” classes

 Person = (Name String[10])

Employee = (Name String[10], Salary Number[5])

 Instances (fact)

 Employee = (John, 2500)

 Employee = (Peter, 3000)

Figure 3-1 Example of Meta-Data

In the data model, the meta-data describes the data of the level below. The meta-

data for classes describes the information about classes. From the example in Figure 3-1,

the meta-data for classes contains the information about superclass and subclass

relationships between the class ‘Person’ and the class ‘Employee’. Thus, ‘Person’ is a

superclass of ‘Employee’, and conversely, ‘Employee’ is a subclass of ‘Person’. In the

same way, the meta-data for instance objects describes the information about instance

objects. From the example, there are two instance objects of the class ‘Employee’ which

has two attributes, i.e. ‘Name’ and ‘Salary’. The first instance object has the name as

‘John’ and has the salary as ‘2500’ whereas another instance object has the name as

22

‘Peter’ and has the salary as ‘3000’. Most of existing works emphasize the extension of

the meta-data for classes. Different kinds of the meta-data for classes, such as a class

thesaurus, a class antonym etc., are described in [Weishar93]. The class thesaurus

supports different names which refer to the same class. This dissertation emphasizes on

the meta-data for instance objects which can be categorized as static or dynamic.

Static Meta-Data (SMD) is the meta-data that is fixed for all instances of the

same class. An example of the Static Meta-Data is a traditional schema definition, i.e.,

class names, attribute names, data types, etc. From the example in Figure 3-2, the

attribute information is part of the schema definition and is static meta-data. For all data

elements, i.e, ‘2500’ and ‘3000’, of the same class, the attribute names are defined as

‘Salary’.

All of existing data models support static meta-data. Most of them, however, do

not support the dynamic meta-data.

Dynamic Meta-Data (DMD) is the meta-data that can be veried for each instance

of the same class. Examples of the Dynamic Meta-Data are the attributes unit type (e.g., a

unit type of the attribute ‘Salary’), security (e.g., classify, unclassify, etc.), data source

location, etc. This DMD assists users in understanding the actual context of data and

provides the necessary information that is needed by mediators for their processes.

Property Knowledge Package is a package of differentiated and specialized data

descriptions, i.e., it contains a list of well defined Dynamic Meta-Data. The Property

Knowledge Package provides the additional meta-data which augments the schema

23

information of each data element. It describes the meaning of the data element to which

the knowledge is attached, in addition to the information defined by the schema.

Static Meta-Data Data
Schema Data Element

Attribute Salary 2500

Attribute Salary 3000

a. Information which is described by schema and data element.

Static Meta-Data Data Dynamic Meta-Data
Schema Data Element Property Knowledge Package

(Attribute.Value) (Attribute.Property)

Attribute Salary 2500 : Unit-type Currency USD 1 Time-range Month -1
: Source URL http://gmu.edu/db1.cgi :
: Security Class Unclassify :

Attribute Salary 3000 : Unit-type Currency CND 1 Time-range Week -1
: Source URL http://gmu.edu/db2.cgi :
: Security Class Classify :

b. Information which is described by schema, data element, and property knowledge
package.

Figure 3-2 Knowledge Representation by the Data Model

Existing data models describe real world concepts through the schema (static

meta-data) and data elements as shown in Figure 3-2a. This knowledge alone is

sometimes insufficient to represent the actual meaning of the real world concepts,

especially in an interoperable environment. As the example in Figure 3-2a shows, the

attribute salary has the value of ‘2500’. It is unclear what the unit value of this ‘2500’ is

24

(what are the currency and periodicity of the salary). Users must have some background

knowledge about the underlying meaning (e.g., attribute unit value, data source, etc.) of

the data’s schema in order to understand the actual meaning of the data element. Without

this meta-data, automated conflict resolution becomes more difficult in multidatabase

environment, where the data integration is required for the data from different schemas

that may have different semantic meaning (i.e., unit value). Users also require the

explanation information about the data more in the multidatabase environment than in a

single database system. For instance, users may want to know which source provides the

data in addition to the data definition.

In Figure 3-2b, the proposed concept describes the real world through the schema

definition (static meta-data), the data element, and the Property Knowledge Package

(dynamic meta-data). The Property Knowledge Package contains necessary information

that makes the data element explicit in the interoperable environment. The Property

Knowledge Package contains different types of the Dynamic Meta-Data (DMD) such as

attribute unit type, data source, etc. From the example in Figure 3-2b, the attribute

‘Salary’ has the value of ‘2500’. The unit value of this 2500 is ‘US_Dollar/month’ (USD1

* Month-1) and the data value (2500) is obtained from the URL address of

‘http://gmu.edu/db1.cgi’. The security property of the data is ‘unclassify’ meaning that the

data is accessible to unclassified or higher users in a security lattice.

The DMD also allows the data schema to describe the domain of class attribute in

a broader meaning. For example, in defining an attribute salary, if the schema supports

only the Static Meta-Data, one fixed unit value such as ‘US_Dollar/Month’ must be

25

assigned to the attribute salary unit type. With the DMD, the attribute salary unit type can

be defined in a general meaning such as in ‘Currency per Time-range’ and supports all

different unit values (ex. ‘US_Dollar/Month’, ‘Canadian_Dollar/Week’, Thai_Baht/Day,

etc.). This is preferable in the real world environment.

3.2 Knowledge Specifications for Property Knowledge Package and Dynamic Meta-

data

A Property Knowledge Package is a package of differentiated and specialized data

descriptions, i.e., it contains a list of well-defined Dynamic Meta-Data (DMD). Each

DMD describes a specific type of data description (meta-data). The following sections

explain their specifications and components.

3.2.1 Property Knowledge Package specification

The syntax for the Property Knowledge Package is as follows:

Syntax:

Property Knowledge Package ::= : <DMD1>: <DMD2>: ... : <DMDi>:

Where <DMDi> is a Dynamic Meta-Data specification type i.

The Property Knowledge Package specification contains a list of different types of

the DMD. In the package, the colon symbol (‘:’) denotes the start and the end of the

expression and the separation of the DMD in the list.

Figure 3-3 is an example of the Property Knowledge Package which contains two

DMD types: 1) unit-type DMD and 2) data source DMD. From the example, the Property

26

Knowledge Package indicates that the data has the unit type of ‘Currency per Time-

range’, has the unit value of ‘Canadian Dollar per Month’, and is obtained from the URL

address at ‘http://isse.gmu.edu/db.cgi’. The details on how to interpret each DMD will be

discussed in the next section.

: Unit-type Currency CND 1 Time-range Month -1 : Source URL http://isse.gmu.edu/db.cgi :

DMD1 DMD2

Property Knowledge Package

Figure 3-3 Example of Property Knowledge Package

3.2.2 Dynamic Meta-Data Specification.

The syntax for the Dynamic Meta-Data is as follows:

Syntax:

DMD ::= <DMD-Header> <DMD-Specification>

Where <DMD-Header> ∈ Supported-DMD-type
Where Supported-DMD-type is a set of dynamic meta-data types that are

supported in the Property Knowledge Package
<DMD-Specification> is a data specification.

Each DMD is composed of two sections: the header section (<DMD-Header>)

and the data specification section (<DMD-Specification>). The header section is a string

that represents the type of the DMD, ex. Unit-type and Source. The <DMD-Header> must

be a member in the Supported-DMD-type set. The Supported-DMD-type set contains a

27

finite set of string members, each of which represents the DMD type that is supported in

the Property Knowledge Package. The data specification section contains the information

that describes the DMD type that is stated in the header section. Each DMD type has a

different specification that is specialized for its type. Unit-type DMD and Data-Source

DMD are described here as a proof of concept. Therefore,

Supported-DMD-type = {Unit-type, Source}

 Where the first member ‘Unit-type’ represents Unit-type DMD and the ‘Source’

represents Data-Source DMD.

Property Knowledge Package is designed to be extensible to support new DMD

types. Each DMD type may play a different role. Some DMD types, such as the Data-

source DMD, are intended only for the data interpretation. Others, such as the Unit-type

DMD, are intended for interpreting the data and supporting a new system capability in the

data model (Multiple Unit Value concept). Different DMD types such as security,

temporal, data quality, etc. may be added to the Property Knowledge Package. This

additional knowledge will augment the data model to represent more complex types of

information and support new system capabilities.

3.2.2.1 Unit-Type Dynamic Meta-data

The Unit-type DMD has been implemented in the prototype since the Unit-type

DMD is the most basic semantic information in the Property Knowledge Package. The

Unit-type DMD provides the information about the unit type and the unit value of the

data that the knowledge is attached to. Examples of unit type are ‘Currency’, ‘Weight’,

28

‘Time-range’, etc. Examples of unit value of ‘Time-range’ unit type are ‘Hour’, ‘Day’,

‘Week’, ‘Month’, etc. Unit type can be a combination of more than one unit types. For

example, the salary unit type is a combination of ‘Currency’ unit type and ‘Time-range’

unit type, i.e., ‘Currency1*Time-range-1’. With the Unit-type DMD, the data model can be

extended to support the Multiple Unit Value concept (Discussed in Chapter 3). The

Multiple Unit Value concept allows the instance of each attribute to be stored, retrieved,

and manipulated in more than one unit value which is preferable in most applications.

The syntax of the Unit-type DMD contains a list of at least one unit type and a

conversion information set at the end of the list. The syntax for the Unit-type DMD can

be stated as follows:

Syntax:

Unit-type DMD ::= <Unit-type-DMD-Header> <Unit-type-DMD-Specification>

Where
<Unit-type-DMD-Header> ::= Unit-type
<Unit-type-DMD-Specification> ::= <Unit-set>+ [<Conversion-info-set>] | None
<Unit-set> ::= t v ±1
where t is a type of the unit.
 t ∈ Supported-Unit-type

where Supported-Unit-type is a set of unit types that are supported by the
system.

v is a value of the unit.
vi ∈ Supported-Unit-value
where Supported-Unit-value is a set of unit values for a specific unit type

that are supported by the system.
±1 indicates the power of t (+1 means t1 where -1 means t-1) and v (+1 means v1

where -1 means v-1)
<Conversion-info-set> ::= by <oid>+
where <Conversion-info-set> is a special section that contains the information on

how the data is converted form its original unit value.

29

<oid> is the object identification of the object that is involved in
converting the data.

A full format of Unit-type DMD can be expressed as follows:

Syntax:

 Unit-type DMD = Unit-type t1 v1 ±1 t2 v2 ±1 ... tn vn ±1 [by oid1 … oidn]

The Unit-type DMD specification contains a list of different types of the <Unit-

set>. The <Unit-Set> contains the information about the data unit type and the data unit

value. Each <Unit-set> is composed of three sections: the unit type (t), unit value (v), and

the power indicator (±1).

The unit type is a string that represents the type of the unit, ex. Currency, and

Weight. The unit type must be a member of the Supported-Unit-type set. The Supported-

Unit-type set contains a finite set of string members, each of which represents the type of

the unit that is supported by the system.

The unit value is a string that represents the value of the unit for a type of the unit

that is stated in the unit type section, ex. the unit value ‘Kilogram’, ‘Gram’, and ‘Pound’

for the unit type ‘Weight’. The unit value must be a member of the Supported-Unit-value

set of the unit type that is stated in the unit type section. For each unit type, there is a

Supported-Unit-value set that contains a finite set of string members each of which

represents the value of the unit that supports that unit type.

For example, let

30

Supported-Unit-type1 = {Currency, Time-range, Length}

From the example, there are three unit types that are supported by the

representation: the currency (‘Currency’), the time-range (‘Time-range’), and the length

(‘Length’). For each supported unit type, there must be a Supported-Unit-value set that

defines all the supported unit values for that unit type.

From the example, the Supported-Unit-value sets for the currency unit type, the

time-range unit type, and the length unit type are respectively presented below:

Currency-Supported-Unit-value = {usd, cnd, frf, jpy, dem, thb}
Time-range-Supported-Unit-value = {second, minute, hour, day, week, month,

year}
Length-Supported-Unit-value = {millimeter, centimeter, meter, kilometer, inch,

foot, yard, rod, mile}

The power value, ‘±1’, of the unit type and the unit value in the Unit-set indicates

the multiplication relation among the unit types or the unit values in each of Unit-sets.

The value ‘1’ of the power designates the variable as a multiplier whereas the value ‘-1’

of the power designates it as a denominator.

Therefore, the final unit type is the product of the multiplication (or division) of

all the unit types from each <Unit-set>. From the syntax of the Unit-type DMD, the

interpretation for the unit type is:

t1
±1* t2

±1* ... tn
±1

1 Four unit types which are ‘Currency’, ‘Length’, ‘Time-range’, and ‘Weight’ are supported and

implemented in the study (See Appendix A).

31

Likewise, the final unit value is the product of the multiplication (or divide) of all

the unit values from each <Unit-set>. From the syntax of the Unit-type DMD, the

interpretation for the unit value is:

v1
±1* v2

±1* ... vn
±1

The <Conversion-info-set> is a special section that contains the information on

how the data is converted from its original unit value. This information contains the list

of objects that are involved in the data conversion process. The converted data is

converted by using following objects.

oid1, oid2, … oidn

The following is an example of a unit-type DMD.

Unit-type Currency CND 1 Time-range Month -1 by [c001] [usd-cnd]

Unit-Set1 Unit-Set2

Unit-type DMD

Conversion-information-set

DMD-SpecificationDMD-Header

Figure 3-4 Example of Unit-type Dynamic Meta-Data

In this example, the final unit type expressed in the Unit-type DMD is a

compound of two basic unit types: ‘Currency’ from <Unit-Set1> and ‘Time-range’ from

32

<Unit-Set2>. The unit type of this example is ‘Currency/Time-range’ (‘Currency1*Time-

range-1’) and the unit value is ‘Canadian_Dollar/Month’ (‘CND1*Month-1’). The

information also indicates that the data has been converted to this unit type value by using

‘[C001]’ and ‘[usd-cnd]’ objects (discussed in section 5.1.1.2).

3.2.2.2 Data Source Dynamic Meta-data

The Data Source DMD contains the information of the sources of the data. The

syntax for the Data Source DMD can be written as follows:

Syntax:

Data-source DMD ::= <Source-DMD-Header> <Source-DMD-Specification>

Where
<Source-DMD-Header> ::= Source.
<Source-DMD-Specification> ::= URL <url>
<url> is an Uniform Resource Locator.

Uniform Resource Locators (URLs) are a scheme for specifying Internet resources

on the World Wide Web using a single line of printable ASCII characters [Graham95]. A

typical URL composes of three different parts as shown in the below example:

h t t p : / / i s s e . g m u . e d u : 8 0 0 1 / p a t h / d b . c g i

Protocol Port

Domain name Directory and
resource details

Figure 3-5 Example of the URL

33

1.) Protocol. The first string in the URL specifies the Internet protocol to use in accessing

the resource. URL schemes are defined for most Internet protocols, including FTP,

Gopher, HTTP, etc.

2.) Address and Port Number. The second part of this URL is the Internet address of the

server; this information lies between the double forward slash (//) and a terminating

forward slash (/). This example gives the domain name of the server and the port number

to contact.

3.) Resource Location. The last section is the path information required to locate the

resource on the server. Often, this resembles a directory path leading down to a file or a

common gateway interface (CGI) program.

The following is an example of the Data Source DMD.

Source URL http://isse.gmu.edu/db.cgi

Data-source DMD

Source-SpecificationSource-Header

Figure 3-6 Example of Data Source Dynamic Meta-Data Knowledge

Each data source has its unique URL address. The Data Source DMD helps users

to distinguish among different sources of the same data in the interoperable environment.

The Data Source DMD allows users to filter the retrieved data based on data source

34

grouping. Data sources could be grouped by the data source domain (e.g., edu, mil, gov,

or, etc.) or data quality (e.g., Class A, Class B, etc.) that is graded by creditable agents.

4. Unit Value Mediator

The Unit Value mediator (UV mediator) is a mediator that provides unit

conversion services. The architecture and its properties are described in this chapter. The

next chapter will discuss how the UV mediator can be incorporated within the data model

to support Multiple Unit Value concept which enhances both data processing and data

integration in a federated database system.

4.1 Unit Value Mediator Architecture

Unit-Value (UV)

Mediator

Control
(Requested Unit-type DMD)

Data & Unit-type DMD
Input
Data & Unit-type DMD

Conversion Explanation

Conversion
Knowledge

Reference
Knowledge

 Figure 4-1 Unit Value Mediator Architecture

35

36

The Unit Value Mediator is modeled using the Service Description Diagram

which was proposed in the referenced architecture for the intelligent integration of

information [AHKS95]. The Unit Value Mediator architecture consists of the following

components:

1.) Data & Unit-type DMD. Data is a fact, whereas Unit-type DMD contains information

about the unit type and unit value of the data (explained in the previous section).

2.) Unit Value Mediator. The Unit Value Mediator (UV Mediator) is a special agent that

is responsible for exchanging the unit values.

UV-Mediator(a, u, u′) = (a′, u″)

The UV Mediator takes the data (a) and data’s Unit-type DMD (u), and a

requested Unit-type DMD (u′) as its input. Users control the output by assigning the

desired unit value to the requested Unit-type DMD (u′). The UV Mediator converts the

data from its unit value to the requested unit value and returns a converted data (a′) and a

converted Unit type DMD (u″) as its output.

The UV mediator itself does not contain the knowledge about how to convert the

data. To support conversions among different unit values within the unit type, the system

must provide the conversion knowledge and the necessary reference knowledge to

support that unit type. When the UV mediator detects the unit value conflict, it assigns an

appropriate conversion function, as the Conversion Knowledge object, and a conversion

rate, as the Reference Knowledge object, to solve the conflict. For example, to support

37

conversions among different unit values (usd, cnd, thb, jpy, etc.) within the currency unit

type, the system provides a currency unit type conversion function and necessary currency

exchange rates.

3.) Unit-type Conversion Knowledge and Reference Knowledge. The UV Mediator

requires two kinds of knowledge, Unit-type Conversion Knowledge and Reference

Knowledge, to support the unit value conversion. The Unit-type Conversion Knowledge

is a collection of conversion objects. Each conversion object contains the meta-data of the

conversion function. The conversion function contains the knowledge of how the data can

be converted to a specific unit type. Examples of the Unit-type Conversion Knowledge

are the currency unit type conversion and the weight unit type conversion.

To support each conversion, the conversion function requests conversion rate

information from the Reference Knowledge. The Reference knowledge is a collection of

reference objects, each of which contains the fact (i.e., conversion rate, etc.) that will be

used by conversion objects to perform a unit conversion. An example of a reference

object that is returned from the Reference Knowledge is the currency exchange rate. The

knowledge specification for the Conversion Knowledge and the Reference Knowledge

will be discussed in Chapter 5.

4.2 Unit Value Conversion Characteristics.

Let

Unit-type Conversion function = ƒ(a,v,v′,±1) = a′

38

where ƒ is a unit-type conversion function converting the value ‘a’ of unit value

‘v’ to the value ‘a′’ of unit value ‘v′’. The ‘±1’ guides the conversion function to perform

a multiplication (+1) or division (-1) operation which reflects the role of the unit in the

unit type. The ‘±1’ allows the functions to perform the inverse calculation which allows

the function to convert the data back to its original value (i.e., a = ƒ(ƒ(a,v,v′,1),v,v′,-1).

For example,

Weight-unit-type-ƒ(10, kg, pound,1) = 22

is a weight unit type conversion function that converts a value ‘10’ of the unit value ‘kg’

to a value ‘22’ of the unit value ‘pound’. The value can be inverted back to the original

value as:

Weight-unit-type-ƒ(22, kg, pound,-1) = 10

There are certain conversion properties that are required for the unit-type

conversion functions. These properties ensure that data can be converted to any unit value

in a given unit type domain. They also ensure that the result of relational operations (e.g.,

>, ≥, <, ≤, =, etc.) in the data manipulation language that performed on any two converted

data will yield the same result for any unit value. These conversion properties are total,

lossless and order-preserving [SSR94].

 A total conversion is one in which all conversion functions are defined for all

arguments. This restriction ensures that the data value can be converted to any unit value

39

in a given supported unit-value domain. An example of a non-total property is a currency

conversion since some of exchange rate values may not be available to support converting

data to some currency unit value. But within a given currency unit type domain, we can

force the currency conversion to have a total property.

A lossless conversion is one to which it makes no difference whether a value is

converted from one property value to another directly or sequentially. Formally, ƒ is

lossless if ƒ(a,v1,v1,±1) = a, and ƒ(a,v1,v3,±1) = ƒ(ƒ(a,v1,v2,±1),v2,v3,±1) for any values of

a, v1, v2, and u3. In the case where v1 = v3, the conversion function converts values from

one unit type to another and back again, resulting in the original value. For example in the

‘Length’ unit type, the data value ‘a’ of the unit value ‘meter’ is converted to the unit

value ‘mile’ and then is converted back to the unit value ‘meter’ must return the same

value as ‘a’. An example of non-lossless conversion is a document type conversion

function. Consider converting a document from a document type ‘Word 7’ to ‘Text’ and

converting it back to a document type ‘Word 7’. The conversion from document type

‘Word 7’ to ‘Text’ will lose its original text format supported by ‘Word 7’, and it is

obvious that converting back to a document type ‘Word 7’ will not obtain the same

original document, i.e., a ≠ ƒ(ƒ(a,v1,v2,±1),v2,v1,±1).

An order-preserving conversion is one that does not change the order of any two

values after converting them. Formally, ƒ is order-preserving if a > a′ then ƒ(a,v,v′,±1) >

ƒ(a′,v,v′,±1) for any values of v, a′, v, and v′. This restriction ensures that when the unit

values are converted, they do not change their relative order. For example, if the data

40

value ‘a’ is greater than the data value ‘a′’ in the unit value ‘mile’, the data value ‘a’ will

be greater than the data value ‘a′’ in any unit value within the unit type ‘Length, i.e. yard,

mile, kilometer, meter, etc.

Examples of total, lossless, and order-preserving characteristics are a weight unit

type conversion and a length unit type conversion.

4.3 Conversion Knowledge and Reference Knowledge Characteristics

Knowledge can be characterized as static and dynamic. Static knowledge is based

on current human knowledge or strong belief that has been true for a long period of time.

Examples are length conversion ratio, time range conversion ratio, etc. ‘Washington DC

is the capital of the USA’ can be considered static since the fact is based on a human

strong belief. Dynamic knowledge, on the other hand, changes regularly. An example is a

currency exchange rate.

The Unit-type Conversion Knowledge is considered static. Although the system

allows different conversion objects to perform on the same conversion type, these

different conversion objects will yield the same conversion results in order to maintain

conversion properties despite the differences in the algorithm they use. The Reference

Knowledge, however, contains both dynamic and static knowledge. Examples of static

Reference Knowledge are length conversion ratio, weight conversion ratio, etc. These

facts do not change. An example of Reference Knowledge that is dynamic is the currency

exchange rate, which changes overtime.

41

4.4 Scenario for the Unit Value Mediator

The system works in the following manner. The UV Mediator is an agent that is

responsible for checking the data and its unit value against the requested unit value. If

there are any conflicts or unit conversions are required, the UV Mediator requests

appropriate conversion objects from the Unit-type Conversion Knowledge to solve each

conflict. Conversion objects, in turn, may request additional information such as

conversion rate from the Reference Knowledge. The UV Mediator performs the unit

conversion and returns the converted data and its unit type along with the explanation of

the conversion, the <Conversion-info-set> section in the Unit-type DMD. The

<Conversion-info-set> contains a list of pairs of the Unit-type Conversion Knowledge

object and the Reference Knowledge object that are used for converting the data.

The conversion explanation in the <Conversion-info-set> becomes more

important especially when Reference Knowledge objects that are dynamic are involved. If

the conversion involves any dynamic objects, the validity of the converted data will

depend on these dynamic objects. For example, currency unit conversion may require the

currency exchange rate reference knowledge for its conversion. Since currency exchange

rate objects are dynamic and usually change daily, the converted data using these currency

exchange rate objects will be invalid in the next day as these currency exchange rate

objects change their values. The <Conversion-info-set> informs users about the change of

the data and allows users to convert the data back to it original unit value.

For example, let

42

a = 36000
u = ‘Unit-type Currency usd 1 Time-range year -1’
u′ = ‘Unit-type Currency thb 1 Time-range month -1’

UV-Mediator (36000, ‘Unit-type Currency usd 1 Time-range year -1’,
‘Unit-type Currency thb 1 Time-range month -1’)

 = (76110, ‘Unit-type Currency thb 1 Time-range month -1 by [c001]
[usd-thb] [t001] [year-month]’)

Note: usd = US Dollar
 thb = Thai Baht

The UV Mediator converts data from the data values ‘36000’ with the Unit-type

DMD of ‘Unit-type Currency usd 1 Time-range year -1’ to the requested Unit-type DMD

of ‘Unit-type Currency thb 1 Time-range month -1’.

The UV mediator detects two unit type conflicts: the ‘Currency’ unit type conflict

and the ‘Time-range’ unit type conflict. The appropriate Conversion Knowledge objects

and Reference Knowledge objects are called to solve these conflicts. The <conversion-

info-set> in the output Unit-type DMD provides the information on how the data value is

converted. Two pairs of the Conversion Knowledge object and the Reference Knowledge

object, ([c001], [usd-thb]) and ([t001], [year-month]), are used to solve the ‘Currency’

unit type conflict and the ‘Time-range’ unit type conflict respectively. The Conversion

Knowledge object ([c001], [t001]) contains the meta-data about the conversion function

where the Reference Knowledge object ([usd-thb], [year-month]) provides the conversion

rate that is used by the conversion function. From the knowledge specification in Figure

4-2, the function ‘c-convert’, from [c001]’s ‘Program.value’ attribute, and conversion rate

43

‘25.37’, from usd-thb’s ‘Rate.value’ attribute, are used to solve the ‘Currency’ unit type

conflict. The function ‘t-convert’, from [t001]’s ‘Program.value’ attribute, and conversion

rate ’12’, from year-month’s ‘Rate.value’ attribute, are used to solve the ‘Time-range’

unit type conflict.

Conversion Knowledge objects and Reference Knowledge objects provide not

only the conversion function and the conversion rate, but also other useful information

about the conversion function and the conversion rate. From the example, both the

currency conversion function (c-convert) and the time-range conversion function (t-

convert) are specified by the programmer named ‘Joe Smith’. The currency exchange rate

([usd-thb]) has a version dated ‘12/18/96’. The currency exchange rate is the type of

Reference Knowledge that is dynamic. The converted data value ‘76110’ will become

invalid as soon as the currency exchange rate ([usd-thb]) version dated ‘12/18/96’

expires; that is, the new version dated of the currency exchange rate value is defined as a

new day begins. Although the converted data has become invalid, Conversion and

Reference Knowledge objects, in the <conversion-info-set>, provide the necessary

information for converting the data back to its original value so that it becomes valid

again.

44

([c001] of Currency

 (Program.value c-convert)
 (Program.prop ": Unit-type None :
 Source URL http://isse.gmu.edu/wiput/query.cgi :")
 (Designer.value Joe Smith)
 (Designer.prop ": Unit-type None :
 Source URL http://isse.gmu.edu/wiput/query.cgi:")
 (Version.value "1/29/96")
 (Version.prop ": Unit-type None :
 Source URL http://isse.gmu.edu/wiput/query.cgi:")
)

([t001] of Time-range

 (Program.value t-convert)
 (Program.prop ": Unit-type None :
 Source URL http://isse.gmu.edu/wiput/query.cgi:")
 (Designer.value Jame Smith)
 (Designer.prop ": Unit-type None :
 Source URL http://isse.gmu.edu/wiput/query.cgi:")
 (Version.value "1/29/96")
 (Version.prop ": Unit-type None :
 Source URL http://isse.gmu.edu/wiput/query.cgi:")
)

([usd-thb] of Exchange-rate
 (From.value usd)
 (From.prop ": Unit-type None :
 Source URL gopher://una.hh.lib.umich.edu/00/ebb/monetary/noonfx.frb:")
 (To.value thb)
 (To.prop ": Unit-type None :
 Source URL gopher://una.hh.lib.umich.edu/00/ebb/monetary/noonfx.frb:")
 (Rate.value 25.370000)
 (Rate.prop ": Unit-type None :
 Source URL gopher://una.hh.lib.umich.edu/00/ebb/monetary/noonfx.frb:")
 (Valid.value Y)
 (Valid.prop ": Unit-type None :
 Source URL gopher://una.hh.lib.umich.edu/00/ebb/monetary/noonfx.frb:")
 (Version.value 12/18/96)
 (Version.prop ": Unit-type None :
 Source URL gopher://una.hh.lib.umich.edu/00/ebb/monetary/noonfx.frb:")
)

([year-month] of Time-range-info
 (From.value year)
 (From.prop ": Unit-type None : Source URL http://isse.gmu.edu/wiput/query.cgi:")
 (To.value month)
 (To.prop ": Unit-type None : Source URL http://isse.gmu.edu/wiput/query.cgi:")
 (Rate.value 12)
 (Rate.prop ": Unit-type None : Source URL http://isse.gmu.edu/wiput/query.cgi:")
 (Valid.value Y)
 (Valid.prop ": Unit-type None : Source URL http://isse.gmu.edu/wiput/query.cgi:")
)

Conversion Knowledge object ‘c001’ Reference Knowledge object ‘usd-thb’

Conversion Knowledge object ‘t001’ Reference Knowledge object ‘year-month’

 Unit-type DMD = ‘Unit-type Currency thb 1 time-range month -1 by [c001] [usd-thb] [t001] [year-month]’
 <conversion-info-set> = ‘by [c001] [usd-thb] [t001] [year-month]’

Figure 4-2 Examples of Conversion knowledge objects
and Reference Knowledge objects

5. Mediation Database System

This section discusses the Mediation Database System components together with

their data specification and the extended query facility that supports the system.

Mediation Database System

Data Dictionary

Query
Formulator

Mediators
(1…N)

Query
Processor

Domain Dependent KS
- Application Domain
Specification and
Mapping Knowledge

Domain Independent KS
- Conversion Knowledge
- Reference Knowledge
- Control Knowledge

Figure 5-1 Mediation Database System Components

The Mediation Database System is a database system that uses the Mediation Data

Model. The Mediation Data Model is an object-oriented data model that extends the

schema to include dynamic meta-data as well as static meta-data. The Mediation Data

Model incorporates mediator services to make use of dynamic meta-data to enhance the

data model capabilities. It supports the basic object-oriented concepts such as the

45

46

classification (instance-of) relation, the generalization/specialization (is-a) relation, and

the aggregation relation. The Mediation Data Model provides services and capabilities for

defining the data, structuring the data, accessing the data, allowing reorganization (i.e.,

changes in data content, structure, and size), and supporting programming interfaces.

5.1 Mediation Database System Components

5.1.1 Data Dictionary

Data dictionary is a specialized type of database containing meta-data, which is

managed by a data dictionary system. It is a repository of information describing the

characteristics of data that is used to design, monitor, document, protect, and control data

in information systems and databases. Data dictionary describes data through a schema

definition. Normally the attribute definition, which is a part of the schema definition,

stores only the data value. To improve the ability to represent the real world, the DMD is

required to interpret the data. The Mediation Data Model incorporates the DMD

information into the schema definition. The schema definition is extended by adding the

property attribute to each object's value attribute. This property attribute contains the

Property Knowledge Package, which in turn contains the DMD information. The

expression for the attribute can be written as:

Attribute = (Attribute.value, Attribute.prop)

47

For each pair of value attribute and property attribute, the value attribute stores the

actual data whereas the property attribute stores the Property Knowledge Package, that is,

the DMD of the data element in its pair attribute. When users request a value from the

Mediation Database System, a query of the Mediation Data Model is executed. The value

of the object's attribute that the system returns to the users include both the value and its

Property Knowledge Package, i.e., ‘Attribute.value’ and ‘Attribute.prop’.

Knowledge in the Data Dictionary can be classified into two groups, Domain

Dependent Knowledge and Domain Independent Knowledge [Weisher93]. Domain-

Dependent Knowledge represents the knowledge about application domains while

Domain Independent Knowledge represents the control knowledge associated with unit

conversion, general query formulation, query processing, etc.

5.1.1.1 Domain Dependent Knowledge

Domain Dependent Knowledge is used to define application domains. An

ontology may be used to represent an application domain. Ontology [Gruber93, and

Gruber&OlsenG94] is a shared specification of a conceptualization for a particular

subject domain. It is important to recall that the Property Knowledge Package, in the

‘Attribute.prop’, is not intended to describe the full semantic definition of the real world

concept. Each concept meaning must be clearly stated in the ontology definition. In the

extensible data schema where the ontology is defined in the Domain Dependent

Knowledge, its concept is enhanced by the information within the Property Knowledge

Package. A concept definition (Class) does not have to be specific but can be stated with

48

more general definition. For example, the salary definition can be defined in a general

unit type (‘Currency/Time-range’) instead of in one specific unit value (e.g.

‘US_Dollar/Month’).

An application domain is codified using the specification for an ‘Application’

class. This knowledge specification provides semantic information such as superclass,

subclass, etc. [Weisher93]. The knowledge specification for ‘Application’ class contains

the following information:

Application-object-class ::=
CLASS <name> HAS

SUPERCLASS (<Superclass-name>+)
SUBCLASS (<Subclass-name>+)
ATTRIBUTE (<value-property-attribute>+)
ATTRIBUTE-UNIT (: <attribute-unit-type :>+)
SYNONYM (<name>+)
DESCRIPTION (<description>)

Where
<value-property-attribute>::= <attribute-name.value> <domain>

<attribute-name.prop> <domain>
<domain> ::= string | number
<attribute-unit-type> ::= <attribute-name> <defined-unit-type>
<defined-unit-type> ::= Unit-type <unit>+ | NONE
<unit> ::= <unit-type> ±1
<unit-type> ∈ Supported-Unit-type set

The ‘Superclass’ attribute stores the parent class from which the current class

inherits properties. Formally, a superclass C is a proper superset of a given class B (i.e., B

⊂ C ⇔ ∀x [x ∈ B ⇒ x ∈ C] where B ≠ C).

49

The ‘Subclass’ attribute stores the child classes which receive all properties from

the current class. Again, formally, a subclass A is a proper subset of a given class B (i.e.,

A ⊂ B ⇔ ∀x [x ∈ A ⇒ x ∈ B] where A ≠ B).

The ‘Attribute’ attribute stores all value-property attributes that the class has.

Each of the value-property attributes is composed of the value attribute and the property

attribute (i.e., Value-Property attribute = (Attribute.value, Attribute.prop)). The value

attribute (Attribute.value) contains the actual data where the property attribute

(Attribute.prop) contains the Property Knowledge Package, i.e., the list of Dynamic

DMDs, that describes the semantic information of the actual data in its pair value

attribute.

The ‘Attribute-unit’ attribute stores the unit type information of each attribute in

the class. The unit type information is a basic type of semantic information that describes

properties of a class. However in most data models, it is not possible for a class to define

unit type information. Characteristically, unit type information is associated with

attributes that have domains that are numeric. Attributes with domain in the string

expression normally do not require a unit type to be associated with them. Examples are

the attribute ‘Salary’ of a class ‘Person’ and the attribute ‘Weight’ of a class ‘Aircraft’.

Both have the domain in ‘Number’ and therefore have unit types as ‘Currency/Time-

range’ and ‘Weight’ respectively. The attribute ‘Name’ and the attribute ‘Address’ of a

class ‘Employee’ have a domain in ‘String’ and do not have a unit type. Not all attributes

defined on numeric domains will have unit type information. For example, the attribute

50

‘Number-of employee’ of the class ‘Company’ has a domain in ‘Number’ but does not

have a unit type. If the attribute has no unit-type, the value ‘None’ is assigned.

The ‘Synonym’ attribute defines the set of terms that are similar to the term that

can be used to refer to the class. Formally, a term A is a synonym to a given term B (i.e.,

A = B ⇔ ∀x [x ∈ A ⇒ x ∈ B]). The synonym term concept allows the system to

understand the different names or appearances that are equivalent semantically.

The ‘Description’ attribute defines the description of the class in free text which is

useful to users who are browsing the application domain.

Entity

Employee
NUMBRER
& STRING Salary

Generalization

Legend

Fly

Value-Property
Attribute

Name

PilotEngineer

Aircraft
NUMBRER
& STRING

Aircraft-type

Weight

Fly-range

Figure 5-2 Example of Class Diagram for the Application Domain ‘Airline’

Figure 5-2 shows the class diagram for an application domain ‘Airline’. The

specification for the ‘Employee’ class is shown as follows:

CLASS Employee HAS
 SUPERCLASS (Entity)

51

SUBCLASS (Pilot Engineer)
ATTRIBUTE

Name.value string
Name.prop string
Salary.value number
Salary.prop string

ATTRIBUTE-UNIT (: Name Unit-type None :
Salary Unit-type Currency 1 Time-range -1 :)

SYNONYM (Worker)
DESCRIPTION (‘A person who works for another person’)

From the example, the ‘Employee’ class has an ‘Entity’ class as its superclass and

has two subclasses, ‘Pilot’ and ‘Engineer’ classes. The ‘Employee’ class has two pairs of

the value-property attribute which are (Name.value, Name.prop), and (Salary.value,

Salary.prop). The ‘Name’ attribute has no unit type, whereas the ‘Salary’ attribute has a

unit type as ‘Currency/Time-range’ (Currency1* Time-range-1). From the ‘Synonym’

attribute, the term ‘Worker’ is similar to the term ‘Employee’ and is also understood by

the system.

The example instances for the ‘Employee’ class are presented in table format

(Figure 5-3). Each attribute is expressed by a pair of value attribute and property

attribute. The Property Knowledge Package provides additional information for

interpreting the data with which it is associated. From the example, the employee named

‘Peter’ has the salary unit value in ‘US Dollar/Month’, whereas the employee named

‘Bob’ has the salary unit value in ‘Canadian Dollar/Month’.

ObjectID Name.value Name.prop Salary.value Salary.prop

52

[gen1] Peter : Source URL

 http://gmu.edu/db-1.cgi

: Unit-type None :

2500 : Source URL

 http://gmu.edu/db-1.cgi

: Unit-type Currency usd 1 Time-range month -1 :

[gen2] Bob : Source URL

 http://isse.gmu.edu/isse-db.cgi

: Unit-type None :

2500 : Source URL

 http://isse.gmu.edu/isse-db.cgi

: Unit-type Currency cnd 1 Time-range month -1 :

[gen3] Bob : Source URL

 http://gmu.edu/main-db.cgi

: Unit-type None :

2200 : Source URL

 http://gmu.edu/main-db.cgi

: Unit-type Currency cnd 1 Time-range month -1 :

[gen4] Susan : Source URL

 http://abc.com/db.cgi

: Unit-type None :

50000 : Source URL

 http://abc.com/db.cgi

: Unit-type Currency jpy 1 Time-range week -1 :

[gen5] Martin : Source URL

 http://abc.com/db.cgi

: Unit-type None :

2000 : Source URL

 http://abc.com/db.cgi

: Unit-type Currency thb 1 Time-range day -1 :

Figure 5-3 Example of Instances for the 'Employee' Class

The information in the property attribute also provides a simple method for

resolving potential data conflicts. From the example, there are two employees who have

the same name as ‘Bob’ but have different salary values, ‘2500’ and ‘2200’. Without

knowing where the data came from, users hardly decides which data should be trusted.

The Data-source DMD provides the data source information that helps users to

distinguish among different sources of the same data. From the example, the first Bob’s

salary (2500) has come from the data source’s URL address ‘http://isse.gmu.edu/isse-

db.cgi’ and the second Bob’s salary (2200) has come from the data source’s URL address

‘http://gmu.edu/main-db.cgi’. Users then may decide to trust the first data, ‘2500’, since it

is obtained from the department database (isse) which usually has more updated

information than the main database of the university.

53

5.1.1.2 Domain Independent Knowledge

Domain Independent Knowledge represents the knowledge associated with unit

conversion, general query formulation, query processing, etc. The knowledge is reusable

by all applications. As mentioned in the previous chapter, two types of the knowledge that

are associated with unit conversions and required by the Unit Value mediator are the

Conversion Knowledge and the Reference Knowledge.

5.1.1.2.1 Conversion Knowledge

The Conversion Knowledge contains the knowledge about the unit type

conversion. The Conversion Knowledge is organized as a class hierarchy (Figure 5-4)

with a ‘Conversion’ class as a root and different subclasses for each supported unit

conversion type; ex. ‘Currency’ class, ‘Time-range class, etc.

Conversion

Time-range

Instance-of

Generalization

Legend

……

Instance-of

[C00N][C001]

LengthCurrency

… [T00N][T001] …
……

Instance-of

Figure 5-4 The Organization of the Conversion Knowledge

54

Each subclass contains a collection of unit-type conversion knowledge objects,

each of which contains meta-data of a conversion function to support a unit type

conversion that is referred to by that subclass. For example, the ‘Currency’ class has

instance objects, ‘C001’, ‘C002’, …, ‘C00N’. Each instance object contains the meta-data

for a specified currency-unit-type conversion function that can be used by the UV

mediator if this instance object is called for services.

The Conversion Knowledge classes are codified using the knowledge

specification for the ‘Conversion’ class, which contains the following information:

Conversion Class ::=
CLASS <name> HAS

SUPERCLASS (<Superclass-name>)
SUBCLASS (<Subclass-name>)
DEFAULT-CALL (<Instance Object’s id>)
DESCRIPTION (<description>)
ATTRIBUTE

Program.value string
Program.prop string
Designer.value string
Designer.prop string
Version.value string
Version.prop string

Where
<Instance Object’s id> is an instance object that will be called automatically to perform

the conversion function

The ‘Superclass’ and ‘Subclass’ attributes contain the superclass and the subclass

information of the class respectively. The ‘Default-call’ attribute contains the default

class’s instance that will be automatically called if the unit type conversion function is

requested by the UV mediator.

55

The following is the ‘Currency’ class which stores currency unit type conversion

objects.

CLASS Currency HAS
SUPERCLASS (Conversion)
SUBCLASS ()
DEFAULT-CALL ([c001])
DESCRIPTION (‘Conversion knowledge that is responsible for converting the

currency unit type’)
ATTRIBUTE

Program.Value string
Program.prop string
Designer.value string
Designer.prop string
Version.value string
Version.prop string

In a query execution, when the Unit Value mediator detects any conflicts

regarding currency units or requires a currency unit conversion, the ‘Currency’ class is

called by the Unit Value mediator for the currency exchange service. The ‘Currency’

class will assign the conversion knowledge accordingly. Unless a specific currency

Conversion Knowledge object is requested, the ‘Currency’ class will assign its instance

object ‘[C001]’ (which is based on the value in the ‘Default-call’ attribute) to perform the

duties.

5.1.1.2.2 Reference Knowledge

The Reference Knowledge contains conversion rate information that is needed by

conversion functions to perform unit type conversion services. The Reference Knowledge

is organized as a class hierarchy (Figure 5-5) with a ‘Reference’ class as a root and

56

different subclasses for each supported unit conversion type; ex. ‘Exchange-rate’ class,

‘Time-range-rate’, etc. Each subclass contains a collection of Reference Knowledge

objects, each of which contains conversion rate information that will be used by a

conversion function to support the unit type conversion. For example, the ‘Exchange-rate’

class has instance objects ‘[usd-thb]’, ‘[usd-jpy]’, …, ‘[thb-usd]’. Each of this instance

object contains a currency conversion rate that can be used by a currency conversion

function if this object is called for services. This conversion rate information is kept

separately as an object making it easy for update and maintenance. The exchange rate

information is an example of the Reference Knowledge that needs a daily update. The

update information can be obtained automatically from on-line information sources on the

Internet.

Reference

Time-range-
rate

Generalization

Legend

……

Instance-of

[thb-usd][usd-thb]

Length-rateExchange-rate

… [year-day][day-year] …
……

Instance-of Instance-of

Figure 5-5 The Organization of the Reference Knowledge

57

The Reference Knowledge classes are codified using the specification for the

‘Reference’ class. The knowledge specification for the ‘Reference’ class contains the

following information.

Reference Class ::=
CLASS <class-name> HAS

SUPERCLASS (<superclass-name>)
SUBCLASS (<subclass-name>+)
UNIT-TYPE (<unit type>)
SUPPORTED-UNIT (<unit value>+)
DESCRIPTION (<description>)
ATTRIBUTE

From.value string
From.prop string
To.value string
To.prop string
Rate.value number
Rate.prop string
Version.value string
Version.prop string
Active.value string
Active.prop string

The ‘Superclass’ and ‘Subclass’ attributes contain the superclass and the subclass

information of the class respectively. The ‘Supported-unit’ attribute contains a list of

supported unit values for supporting unit conversions within the unit type that is defined

in the ‘Unit-type’ attribute.

The following is the knowledge specification for the ‘Exchange-Rate’ class which

is a reference knowledge .

CLASS Exchange-Rate HAS
SUPERCLASS (Reference)

58

SUBCLASS ()
UNIT-TYPE (Currency)
SUPPORTED-UNIT (usd frf jpy thb)
DESCRIPTION (‘Exchange rate knowledge’)
ATTRIBUTE

From.Value string
From.prop string
To.Value string
To.prop string
Rate.Value number
Rate.prop string
Date.Value string
Date.prop string
Active.Value string
Active.prop string

From the above example, the ‘Exchange-Rate’ class has the exchange rate

information for converting the currency unit among ‘usd’ (US Dollar), ‘frf’ (French

Franc), ‘jpy’ (Japanese Yen), and ‘thb’ (Thai Baht) unit values.

OID From.

value

From.prop To.

Value

To.prop Rate.

Value

Rate.prop Date.

Value

Date.prop Active

.value

Active.prop

[usd-frf1] USD : Source URL

 http://ny.edu/rate :

 Unit-type None :

FRF : Source URL

 http://una.hh.lib.. :

 Unit-type None :

5.42 : Source URL

 http://una.hh.lib.. :

 Unit-type None :

2/7/97 : Source URL

 http://una.hh.lib.. :

 Unit-type None :

N : Source URL

 http://una.hh.lib.. :

 Unit-type None :

[usd-frf2] USD : Source URL

 http://una.hh.lib.. :

 Unit-type None :

FRF : Source URL

http://una.hh.lib.. :

 Unit-type None :

5.64 : Source URL

http://una.hh.lib.. :
Unit-type None :

2/10/97 : Source URL

 http://una.hh.lib.. :

 Unit-type None :

Y : Source URL

 http://una.hh.lib.. :

 Unit-type None :

[usd-jpy] USD : Source URL

 http://una.hh.lib.. :

 Unit-type None :

JPY : Source URL

 http://una.hh.lib.. :

 Unit-type None :

124.5 : Source URL

 http://una.hh.lib.. :
Unit-type None :

2/10/97 : Source URL

 http://una.hh.lib.. :

 Unit-type None :

Y : Source URL

 http://una.hh.lib.. :

 Unit-type None :

….

….
[jpy-usd] JPY : Source URL

http://una.hh.lib.. :

 Unit-type None :

USD : Source URL

 http://una.hh.lib.. :

 Unit-type None :

0.008 : Source URL

http://una.hh.lib.. :

 Unit-type None :

2/10/97 : Source URL

 http://una.hh.lib.. :

 Unit-type None :

Y : Source URL

http://una.hh.lib.. :

 Unit-type None :

59

Figure 5-6 Example of Instance for the Class ‘Exchange-Rate’

Figure 5-6 is the example of ‘Exchange-rate’ instance objects presented in a table

format. There are two objects that contain currency exchange rate information for

converting from ‘usd’ unit value to ‘frf’ unit value. The instance object ‘[usd-frf2]’ has

more recent exchange rate information than the instance object ‘[usd-frf1]’ and is used by

default for a currency conversion. The exchange rate information can be automatically

obtained from the information sources on the Internet such as the Federal Reserve Bank

of New York at URL address ‘gopher://una.hh.lib.umich.edu/00/ebb/

monetary/noonfx.frb’.

5.1.2 Query Formulator and Query Processor

The Query Formulator accepts user requests for information and expresses those

requests in terms of the knowledge contained in the Ontology (Application Domain). If

errors are detected, the Query Formulator automatically attempts to make corrections. In

the process, the Query Formulator uses the knowledge such as the synonym meta-data

information to formulate a syntactically correct query. Once a query has been formulated,

the Query Formulator submits the query to the Query Processor. The Query Processor

then proceeds to plan and optimize the query steps and access strategies for subqueries to

data sources. The Query Processor may consult Mediators for resolving any unit conflicts

that may occur.

60

5.1.3 Mediators

A mediator, as described in Chapter 4, provides domain specialized services. The

mediators are configured to assist the query processing and the data integration in the

federated database system which integrates information from multiple data and

information sources, having a diversification of data formats, different meanings,

different time units, and providing differing levels of information quality [KGJM96]. The

UV Mediator is an example of a mediator that provides unit value conversion services.

5.2 Multiple Unit Value Concept

The Multiple Unit Value (MUV) concept is a system capability that extends the

schema definition to allow object attribute value to be stored, retrieved, and manipulated

in more than one unit value. For example, consider the attribute salary that is defined to

have a unit type as ‘Currency/Time-range’. Traditional data models must further define a

specific unit value, e.g., ‘US Dollar/Month’, ‘Yen/Week’, etc., for the attribute salary.

With MUV concept, the attribute salary does not need to be defined to any specific unit

value. It will support all these different unit values. To integrate the information in the

multidatabase environment, there is no necessity for data from different sources to be

converted. It can be imported and stored in its own actual unit value in order to avoid data

invalidity as the time changes.

The Multiple Unit Value (MUV) concept is the result of the cooperation among

the Unit-type DMD, the UV mediator, and the extended DML. The Unit-type DMD

allows data to be specified in different unit values. As a result, an attribute may contain

61

multiple conflicting unit values. The data manipulation language (DML) is extended so

that it can cope with the differences of unit values and correctly process queries. The UV

mediator is configured to be tightly integrated into the data model architecture. The UV

mediator will not only provide a basic unit value conflict resolution function for the DML

but also enhance the Mediation Data Model to support the MUV concept. In order to use

this new system capability, the DML must be extended to support it. The extended query

language specification is presented in the next section.

5.3 Extended Query Language Specification

In order to support the extensible schema definition of the Mediation Data Model,

the data manipulation language has to be extended. The schema definition defines the

class attribute as a pair attribute of the ‘value attribute’ and the ‘property attribute’, i.e.,

‘Attribute.value’, and ‘Attribute.prop’. Accordingly, the attribute information tree splits

into ‘value’ and ‘property’ branches (see Figure 5-7).

Attribute

Value Prop

Unit-type DMD Data Source DMD

Unit-type1 Unit-type n…

DMDn…

Level 1

Level 2

Level m

.

.

.

Figure 5-7 Attribute Information Tree

62

The DML must have the capabilities to retrieve and access both data values and

data properties. The query language requires extensible instructions for traversing down

the attribute information tree. The dot, ‘.’, notation is used and the syntax is presented as

follows:

Syntax:

Level1 (attribute-name) . Level2 (value | prop) . Level3 . … . Levelm

For example, users can retrieve the attribute salary’s value by defining the

attribute as ‘Salary.value’ and retrieve the attribute salary’s Unit-type DMD by specifying

the attribute as ‘Salary.prop.unit-type’. The ‘.’ tells the system to move down to a lower

level of the attribute information tree having the attribute name at the top of the tree. In

the case of ‘Salary.prop.unit-type’, the system goes down to the attribute’s unit-type and

returns all information of the unit type, including the information of all sub-level below

the unit-type, back to users.

The Mediation Data Model provides a query language for query execution of the

data which is stored in the data model. The query language specification is defined in the

following format:

SELECT (<attribute>+)
UNIT-AS (<unit-value>+)
FROM (<instance-set>+)
WHERE (<condition>) | TRUE

Where
<attribute>::= attr-name | attr-name.value | attr-name.prop |

attr-name.prop.unit-type | attr-name.prop.source

63

<unit-value>::= (= attr-name.prop.unit-type <Unit-type DMD>)
<instance-set>::= (?variable <class-name>)
<condition>::= <Boolean-expression>

The ‘Select’ clause defines an output which is composed of a list of attributes as

defined in the dot information tree specification. The ‘Unit-as’ clause defines the unit

value for the attributes in the ‘Select’ clause. The ‘From’ clause defines an instance set.

The instance set is a collection of instances. Each instance set member is an instance of a

set of classes that are defined in the application domain. The ‘Where’ clause defines a

Boolean expression which is the condition of the query. The result of the query is the set

of instances from the instance set that satisfies the Boolean expression. More details of

the query language specification are presented in Appendix B.

The Mediation Data Model also uses synonym meta-data to enhance the query

formulation and to deal with different terminology in the query.

The query below retrieves a salary value and a salary unit type of a ‘Worker’

named ‘Peter’.

SELECT (?ins:Name.value ?ins:Salary.value ?ins:Salary.prop.unit-type)
FROM ((?ins Worker))
WHERE (eq ?ins:Name.value ‘Peter’)

The query is firstly processed by Query Formulator, which detects that the term

‘Worker’ is not defined as any class in the application domain ‘Airline’. However, from

the synonym meta-data, the term ‘Worker’ is synonymous with the term ‘Employee’

64

which is a class in the application domain ‘Airline’. The Query Formulator then replaces

the term ‘Worker’ in the query with the term ‘Employee’ as in the query below before it

sends the query to the Query Processor for evaluation.

SELECT (?ins:Name.value ?ins:Salary.value ?ins:Salary.prop.unit-type)
FROM ((?ins Employee))
WHERE (eq ?ins:Name.value ‘Peter’)

From the instance table in Figure 5-3, the results return as follows:

Name.value Salary.value Salary.prop.unit-type

Peter 2500 Unit-type Currency usd 1 Time-range month -1

The DML also needs to be extended to support the Multiple Unit Value concept of

the data model. In the MUV concept, the data model can represent data in different unit

values on an attribute. The DML must have the capability to handle data in different unit

values to maintain the correct state of the data and to return correct results for the

operations that are performed on these data items. For example, let the first data item be

(1000, ‘Unit-type Length meter 1’) and the second data item be (1, ‘Unit-type Length

kilometer 1’). Although both data items have different values, they are actually the same

when scaled.

The Mediation Data Model provides a query language specification that supports

attributes of different unit type as shown in Figure 5-8. The ‘UNIT-AS’ clause is

introduced in addition to the traditional ‘SELECT-FROM-WHERE’ SQL query format.

65

The ‘UNIT-AS’ clause allows users to define a unit value for attributes that are stated in

the ‘Select’ clause. The query language allows users to include data unit value as

parameters in the query, which normally is not allowed by other query languages.

The Query Processor requires services from the Unit Value (UV) mediator when

unit value conflicts occur. There are two phases in the query evaluation process that

require services from the UV mediator: The pre-condition phase and The post-condition

phase.

The pre-condition phase involves the evaluation of the Boolean expression in the

‘WHERE’ clause against the instance set. The Boolean expression must return the correct

result when dealing with data in different unit values. The Boolean expression is

composed of well-formed predicate functions, math functions, etc. Since unit type

information is associated with attributes that have numeric domains, those functions must

be extended to handle data with unit values. The predicate functions such as greater than

function (>), less than function (<), equal function (=), etc., and the math functions such

as addition (+), subtraction (-), etc. are extended to deal with the unit value data. The

Query Processor calls the UV Mediator when using these functions to compare and

convert the data to the same unit value before any of these functions can be processed.

The post-condition phase considers the final returned instances that satisfy the

condition in the ‘WHERE’ clause. If unit values need any conversion to satisfy the user’s

request in the ‘UNIT-AS’ clause, Query Processor then calls the UV Mediator to convert

the data accordingly.

66

The example query in Figure 5-8 finds employee who have a salary greater than

2600 in ‘Canadian Dollars per month’ and presents the salary results in ‘Canadian Dollar

per month’ unit value.

SELECT (?ins:Name.value ?ins:Salary)
UNIT-AS ((= ?ins:Salary.prop.unit-type ‘Unit-type Currency cnd 1

Time-range month -1’))
FROM ((?ins Employee))
WHERE (> ?ins:Salary.value ?ins:Salary.prop.unit-type

2600 ‘Unit-type Currency cnd 1 Time-range month -1’)

Figure 5-8 Example of a query that involves Unit-type DMD

The salary value of each instance (?ins:Salary.value ?ins:Salary.prop.unit-type)

and the condition salary value (2600 ‘Unit-type Currency cnd 1 Time month -1’) must be

converted to the same unit value before the predicate function, ‘>’, can be processed.

Then, all satisfied results are returned and converted to the requested unit type (‘Unit-type

Currency cnd 1 Time-range month -1’). The Unit Value mediator is responsible for all

unit conversions that are required in the process. From the same instance table in Figure

5-3, the query returns the following results to the user.

Name.value Salary.value Salary.prop

Peter 3372.5 : Source URL http://gmu.edu/main-db.cgi

: Unit-type Currency cnd 1 Time-range month -1

 by [c001] [usd-cnd] :

67

Martin 3166.227 : Source URL http://abc.com/db.cgi

: Unit-type Currency cnd 1 Time-range month -1

 by [c001] [thb-cnd] [t001] [day-month] :

From the results shown in the above table, both salary values have been converted

from their original unit values. The Unit-type DMD of the attribute ‘Salary’ also provides

the conversion explanation information which tells how each data has been converted.

Let’s look at the first value ‘3372.5’. The objects ‘[c001]’ and ‘[usd-cnd]’, which are a

unit-type conversion knowledge object and a reference knowledge object respectively, are

used to derive this converted data. Therefore, the salary value of ‘3372.5’ is dependent on

these objects (‘[c001]’, ‘[usd-cnd]’). If these objects are updated or become invalid, the

salary value ‘3372.5’ will become invalid. The ‘[usd-cnd]’ is an instance of the

‘Exchange-rate’ class which is a kind of dynamic reference knowledge that has its value

updated daily. Therefore the converted data ‘3372.5’ may become invalid in the next day.

However, the conversion explanation information allows the converted data to be

converted back to its original unit value using the conversion values in effected at the

time of conversion. At the same time, users can track the history of how the data is

derived and thus feel more confident about the converted data. The conversion

explanation information becomes more important when two converted data are compared.

The system checks for any conflict in the explanation section of each object before

comparing them. For example, the converted data may use the currency exchange rate

from different reference knowledge objects (e.g., different dated versions). This results in

incompatibility between two converted data; hence the data can not be compared.

6. The InfoFED Federated Database System

The InfoFED Federated Database System is a virtual database system that

integrates data from autonomous and heterogeneous data sources. InfoFED operates

within the Internet environment. The ‘Internet’, described by the Federal Networking

Council (FNC), refers to the global information system that is logically linked together by

globally address space based on the Internet Protocol (IP) and is able to support

communications using the Transmission Control Protocol/Internet Protocol (TCP/IP).

The Internet allows interoperability among different platforms by providing a common

communication protocol connection. The Internet allows the designer to focus more on

the data representation conflict problems rather than hardware and operating system

conflict problems.

A federated database system provides a basic architecture for integrating

information from heterogeneous databases. InfoFED adopts the federated database system

as its referenced architecture. However, there is a major difference between this and the

federated database system architecture. The global view in the approach is not the result

of the integration from export schemas from local databases. The global view uses a well-

developed ontology as the shared specification of a conceptualization for all export

schemas. Since an ontology is intended to be created as a standard definition, the global

69

69

view that is created with an ontology will be more stable than one that is created as a

result of the schema integration from export schemas.

As mentioned earlier, the federated database system requires data from local

schemas to be converted and integrated into the common data model representation

format. InfoFED uses the Mediation Data Model as the common data model. The

Mediation Data Model supports the Multiple Unit Value Concept. The MUV concept

reduces meta-data conflicts by allowing heterogeneous databases to export their data in

their own unit values without any unit conversion. The Mediation Data Model also

provides information, e.g., the unit type and the data source, for describing a data

element. This information is very useful in the interoperable environment. For example,

the data source information, when presented together with the data element, helps users to

distinguish among different sources of the same data.

6.1 The InfoFED Federated Database System Architecture

The following discusses the four components of the InfoFED federated database

system as presented in Figure 6-1: 1) Federation Manager, 2) Data Sources, 3)

Information Gatherer, and 4) Users.

1.) Federation Manager. The Federation Manager manages the data that is gathered from

data sources on the Internet and provides users with access to data. The Federation

Manager is composed of four components: the Controller; the Mediation Database

System; the Data Source Communication Agent; and the Web Server.

70

Data Sources
Communication Agent

Web Server (HTTP)

Controller
(Request
Handler)

Web Server
(HTTP)

Data Source 1

Federation Manager

Users Local Data Sources

Query
Formulator

Mediator
(1…N)

Query
Processor

……

Internet

Web Server
(HTTP)

Data Source 2

Web Server
(HTTP)

Data Source N

Web Server
(HTTP)

 Information
Gatherer

Net Browser
(Exploerer,

Netscape, etc.)

Applications
(C++, Java, etc.)

InfoFED

Mediation Database System

Data Dictionary
 -Domain Dependent KS -Domain Independent KS

Figure 6-1 The InfoFED Federated Database System Architecture

The Controller provides an interface between the Federation Manager and users. It

controls and monitors the activities in the Federation Manager. The Mediation Database

System is a database management system, an extended data model that supports an

extensible schema, and uses mediators to support data integration and query processing.

The Data Source Communication Agent manages the connection to, and the data retrieval

from, data sources. The Web Server, using Hypertext Transfer Protocol (HTTP), provides

71

the network connection among the Federation Manager, data sources, Information

Gatherer, and users within the Internet environment. HTTP is the Web’s Remote

Procedure Call (RPC) on top of TCP/IP. HTTP allows the Federation Manager to

effectively access resources that are defined in the URL format and connected within the

Internet environment [Orfali&Harkey97].

2.) Data Sources. Data sources are the sources of data which information providers own

and export to the Federation Manager (global level). Data sources are site autonomous.

They retain control of information to be shared with the Federation Manager and decide

on which global requests they will service. There is no data source modification required

upon joining the Federation Manager. Data in the data sources is also independent from

changes at the global level.

Federation Manager

Federation Manager

CGI

Database

CGI

Database

HTML
Other

Information Gatherer

CGI CGI

a) Data Source Push b) Data Source Pull

Common data format

Common data format

Local data format

Figure 6-2 Data Obtaining Process

72

Common Gateway Interface programs (CGI programs) are required for the data

export processes. The Internet address of CGI programs which can be defined within the

URL specification allows the Federation Manager to locate and execute these CGI

programs over the Internet. The CGI programs provide wrapping services which make

data sources comply to an internal or external standard. The CGI programs modify

queries from the Federation Manager into the data source format before passing it to the

data sources. After that, the CGI programs modify data output from the data sources to

the Federation Manager format before exporting it.

InfoFED obtains information in two ways as shown in Figure 6-2: Data Source

Push and Data Source Pull. Data Source Push is the concept in which owners of data

sources would like to export (push) their data to the Federation Manager. In this scenario,

information providers provide the CGI programs that allow the Federation Manager to

access their data (Data Source Push). The data sources retain their autonomy and export

only the data portion they are willing to share. On the other hand, Data Source Pull is the

concept in which the Federation Manager goes out, through the Information Gatherer, to

get information from data sources on the Internet and imports (pull) information back to

the Federation Manager. In this scenario, the Federation Manager uses the CGI programs

that have been prepared by the Information Gatherer to access the data from data sources

(Data Source Pull). In this case, the meta-data of the data sources must be known to the

Information Gatherer.

Data sources can be represented in such formats as ORACLE, SYSBASE, CLIPS,

HTML, etc. Figure 6-3 shows an example of data source in HTML format. The example

73

shows the exchange rate information source that is provided by the Federal Reserve Bank

of New York. The data is presented in tabular form. The Information Gatherer provides

the CGI program that performs the wrapping service by restructuring the data into a

common data format which is understood by the Federation Manager. Although the

exchange rate information is updated daily, the data presentation form, i.e., meta-data,

does not change. This allows the Information Gatherer to routinely extract information

and bring it back to the Federation Manager.

3.) Information Gatherer. Information Gatherer is an agent that is responsible for

searching, retrieving, and extracting data (Data Source Pull) from data sources in the

World Wide Web. This information can help a corporation to reduce the cost of obtaining

and maintaining the information. For example, a corporation that needs daily currency

exchange rate information may obtain it from a bank which provides the information

through a fax or a delivery service. The corporation then has to pay for the bank services.

However, the daily currency exchange rate information is provided by several sites in the

World Wide Web. The Information Gatherer can go out to the World Wide Web and then

search and retrieve data back to the Federation Manager. Internet search engines

[Eichmann95] such as ‘Harvest’ [HSW95, and HSWBDM95], ‘Excite’, ‘Webcrawler’,

‘InfoSeek’, etc. can be used to assist the Information Gatherer to find the information in

the desired topic. The currency exchange rate information in Figure 6-3 example is a

result from these search engines.

74

Note: The exchange rate information from the Federal Reserve Bank of New York at the
URL addresses “gopher://una.hh.lib.umich.edu/00/ebb/monetary/noonfx.frb”

Figure 6-3 Example of Data Source in the HTML Format

From the results, Information Gatherer uses a specified script program (a CGI

program) to extract and restructure the data from the selected data source and import the

information to the Federation Manager. The Information Gatherer is also responsible for

75

monitoring any changes in the data structure of the data sources and accordingly

readjusting the data extracting strategy to match the changes. Also, Information Gatherer

can be located at the same address as the Federation Manager or at any third party agents

that are responsible for locating and collecting data for the Federation Manager.

4.) Users. Users are application programs or human beings who have an access to Internet

by means of a Web Browser, such as ‘Netscape Navigator’ and ‘Microsoft Internet

Explorer’, and request services from the Federation Manager.

6.2 Scenario for the InfoFED Federated Database System

This section describes each step annotated and the operations performed (or

represented) and information sent (transmitted) in the InfoFED federated database system

(Figure 6-4).

The process starts (step 1) when a user sends a request for information to the

Federation Manager over the Internet. The request is received by the Controller (Request

Handler). From the request, the Controller extracts the query to be processed and passes it

to the Mediation Database System. The Mediation Database System determines from the

query whether or not data is required from external sources. If the query requires no data

from external data sources, the Mediation Database System executes the query and

returns data to users (step 4). The Controller formats the output into an HTML document

and sends it over the Internet to the user.

76

Data Sources
Communication Agent

Web Server (HTTP)

Controller
(Request Handler)

Federation Manager (FM)

Query
Formulator

Mediator
(1…N)

Query
Processor

Internet

� �

�

�

Web Server
(HTTP)

Data Source 1

Data Sources

……

Web Server
(HTTP)

Data Source 2

Web Server
(HTTP)

Data Source N

Users

Net Browser
(Exploerer,

Netscape, etc.)

Web Server
(HTTP)

 Information
Gatherer

InfoFED

Data Dictionary
 -Domain Dependent KS -Domain Independent KS

Mediation Database System

 Figure 6-4 Information Flow Diagram in the InfoFED Federated Database System

However, if the query requires external data sources (step 2), the Mediation

Database System sends a request along with a list of data source URLs and necessary

information for contacting local data sources to the Controller. The Controller calls the

Data Source Communication Agent to retrieve data from multiple data sources based on

the information given by the Mediation Database System. Each data source returns the

requested data to the Data Source Communication Agent which will return all retrieved

77

data, in a common data format, to the Mediation Database System through the Controller

(step 3).

After the Mediation Database System receives all external data, it executes the

users’ query against all external data and returns the result to the Controller (step 4).

Then, the Controller formats the output into HTML format and sends the final results to

the user’s browser over the Internet.

6.3 Information Integration

This section discusses how the data from heterogeneous data sources can be

integrated and imported into InfoFED which uses the Mediation Data Model

representation. The Mediation Data Model is based on an object-oriented data model

which allows the entire federated database to be modeled as a single distributed complex

object. In InfoFED, different databases (data sources) are used as one shared data source.

As mentioned earlier, an ontology is specified at the Federation Manager (global level)

and used as a global schema for the exported knowledge from local databases.

To submit the data to the Federation Manager, each local database maps its export

schema to the global schema. Part of the integration responsibility is now shifted from the

Federation Manager to the local level. As a result, the data integration is based on the

willingness of the information providers to submit their data to the Federation Manager.

InfoFED supports mapping the knowledge from different data representation knowledge,

such as the relational data model, semantic data model, and the object oriented data

model, to the Mediation Database System. The schema mapping knowledge of InfoFED

78

maps each object class view from the global view with the views of local data sources.

This schema mapping contains information about who submitted the data for each object

in the global schema, where to obtain the data, and how to get and map the data to the

global schema. The schema mapping knowledge is stored as part of the domain

dependent knowledge in the Data Dictionary of the Federation Manager.

The schema mapping knowledge contains two object classes: the ‘Object-source’

class and the ‘Object-mapping’ class. The ‘Object-source’ class contains objects each of

which contains the list of the data sources that are willing to submit the data for an object

class in the global schema. Each data source for an object class in the global schema is

represented by an ‘Object-mapping’ object’s identification (id). The ‘Object-Mapping’

class contains object indicating for each data source, the location and access method, and

mapping of the data to the object class in the global schema.

Below is the knowledge specification for the ‘Object-source’ class

CLASS Object-source HAS
ATTRIBUTE

Term String
Source-list String

and the knowledge specification for defining instance objects of the ‘Object-source’ class.

(<object id> of Object-source
(Term <class-name>)
(Source-list <Object-Mapping objects’ ids>+)

)

The following is the knowledge specification for the ‘Object-mapping’ class

CLASS Object-mapping HAS
ATTRIBUTE

Term string

79

Url-source string
Map-query string
Map-attribute string

and the knowledge specification for defining instance objects of the ‘Object-mapping’

class.

(<object id> of Object-source
(Term <class-name>)
(Url-source <url>)
(Map-query <mapped-query>)
(Map-attribute : <mapped-attribute :>+)

)

Where
<url> is an URL of a CGI program to connect to a local data source
<mapped-query> is a query, in a local database DML format, for accessing the local

database
<mapped-attribute>::= <global-attribute> Attr <local-attribute> |

 <global-attribute> Default <default-value> |
 <global-attribute> NA

<local-attribute> ::= column-1 | column-2 | .. | column-N

The ‘Object-source’ class has two attributes: ‘Term’ and ‘Source-list’. The ‘Term’

attribute contains the name of the object class that is defined in the global schema, and

the ‘Source-list’ attribute contains a list of Object-Mapping objects’ ids. Each of the

Object-Mapping objects’ ids represents the source that submits data to the class that is

stated in the ‘Term’ attribute.

The ‘Object-mapping’ class has four attributes: ‘Term’, ‘Url-source’, ‘Map-

query’, and ‘Map-attribute’. The ‘Term’ attribute contains the name of the object class in

the global schema. The ‘Url-source’ attribute contains an URL address of the data source

CGI program.

80

The ‘Map-query’ attribute contains a mapped query that will be passed as a

parameter to the local database to create an exported object view for exporting the data

back to the Federation Manager. The ‘Map-attribute’ attribute contains information on

how the global attribute names are associated with the exported object view. The ‘Attr’

parameter indicates that the global attribute name is mapped to an exported object view’s

attribute name. If the exported object view does not provide a value for any global

attribute name, either the ‘Default’ or ‘NA’ parameters is used. The ‘Default’ parameter

indicates that the default value has been assigned to the global attribute name of all

instances. The default value allows the Federation Manager to integrate data from

traditional data models that do not support the property attribute. Although traditional

data models do not support the property attribute, it is possible to assign one specific

value to the property attribute. The ‘NA’ parameter indicates that there is no data to

assign to that attribute name.

The mapped query resolves different kinds of the schema integration conflicts,

i.e., the identity conflict, the semantic conflict and the structural conflict. The mapped

query creates an exported object view from the local database schema. Data from each

attribute of the exported object view can be mapped to the corresponding attribute of the

object class in the global schema by using the attribute mapping information from the

attribute ‘Map-attribute’.

81

Object-source
(Term01 of Object-source

(Term Pilot)
(Source-list Pi001 Pi002)

)

Object-mapping
(Pi001 of Object-mapping

(Term Pilot)
(Url-source "http://site.gmu.edu/wiput/oracle.cgi")
(Map-attribute
: Ssn.value Attr Column-1
: Ssn.property Default ": Source URL http://site.gmu.edu/wiput/oracle.cgi : Unit-
type None :"
: Last-name.value Attr Column-2
: Last-name.property Default ": Source URL http://site.gmu.edu/wiput/oracle.cgi :
Unit-type None :"
: First-name.value Attr Column-3
: First-name.property Default ": Source URL http://site.gmu.edu/wiput/oracle.cgi :
Unit-type None :"
: Salary.value Attr Column-4
: Salary.property Default ": Source URL http://site.gmu.edu/wiput/oracle.cgi :
Unit-type Currency usd 1 Time-range month -1 :"
: Fly.value Attr Column-5
: Fly.property Default ": Source URL http://site.gmu.edu/wiput/oracle.cgi : Unit-
type None :" :)
(Map-query "SELECT e.Ssn, e.Last-name, e.First-name, e.Salary, p.Fly

FROM Employee e, Pilot p
WHERE e.Ssn = p.Ssn;”)

)

Figure 6-5 Example of schema mapping knowledge specification

The global view is defined using the Mediation Data Model representation. The

Mediation Data Model supports the Multiple Unit Value concept. The Multiple Unit

Value concept reduces the complexity of the mapped query if the unit value conflict is

82

involved. The data sources can export their data in their own unit value without any

conversions.

The example of instance objects for an ‘Object-source’ class and an ‘Object-

mapping’ class which describe the schema mapping knowledge for the object class ‘Pilot’

is shown in Figure 6-5.

{O1, O2…,Oi}

Global Schema

Object-source Object-mapping

{V1, V2,…,Vi}

Local Schema

EV1 Exported Object View

{Oi1,Oi2,..,Oij}

Local data source: Oi1

Schema Mapping Knowledge

Oi1

� �

�

�

�

Federation Manager

Figure 6-6 Local Data Source Accessing Process

Figure 6-6 shows how the Federation Manager retrieves data from local data

sources. The global schema consists of a set of object classes, {O1,O2…, Oi}. When users

83

request information from the system, the Federation Manager checks which of the object

classes requires data retrievals. For each object class Oi that requires a data retrieval, the

Federation Manager queries the schema mapping knowledge (Step 1) for the list of data

sources, {Oi1, Oi2, …,Oij}, that provide data for object class Oi.

In Step 2, the schema mapping knowledge prepares, for each data source Oij, the

information on which sources to contact (the URL address of the CGI program), how to

retrieve the data (the map query) and how to map the data (the map attribute information)

to the object class Oi. Step 3, the Federation Manager connects to each data source and

executes the local CGI program to access the local data source.

Step 4, the mapped query, which is sent as a CGI parameter, is passed as a query

to the local database so as to create an exported object view, EV1. This exported object

view is recomputed whenever the local database is queried. Step 5, the CGI program

converts the data into the common import data format (a tabular format) such as in Figure

6-7 and returns it to the Federation Manager for the integration. As the data is returned,

the attribute mapping information is used for mapping the imported data to the common

data model representation at the Federation Manager. The system also automatically

generates implicit object identifiers with which to reference all imported instances

objects. An object identifier is a computer artifact and has no meaning other than to

identify and distinguish among imported instance objects.

84

 Begin-Data
 xxxx xxxx xxxx …… xxxx
 xxxx xxxx xxxx …… xxxx
 ….
 ….
 xxxx xxxx xxxx …… xxxx
 End

Column-1 Column-2 ….. Column-N

Row 1
Row 2
…
…
Row M

Begin of import data

End of import data

Figure 6-7 Import Data Format in a Tabular Format

For example, the object class ‘Pilot’ needs to retrieve the data from external data

sources. From the schema mapping knowledge in Figure 6-5, there are two data sources

that export data to the object class ‘Pilot’: ‘Pi001’ and ‘Pi002’ (Only the ‘Pi001’ is

explained here and a similar scenario applies to the ‘Pi002’).

The Federation Manager connects to the data source ‘Pi001’ through the URL

address ‘http://site.gmu.edu.edu/wiput/oracle.cgi’. The local CGI program, ‘oracle.cgi’, is

executed and passes the mapped query, from Pi001’s attribute ‘Map-query’, to the local

database. As the data is returned from the data sources, the attribute mapping information,

from Pi001’s attribute ‘Map-attribute’, is used to map the imported data to the common

data model representation (Mediation Data Model Representation) at the Federation

Manager. Although the data model at the data source ‘Pi001’ does not support the

property attribute, it is possible to assign a default value to it. The property attribute

contains the Property Knowledge Package which is composed of Data Source DMD and

Unit type DMD. The value of the Data Source DMD of all property attributes can be

assigned as ‘http://site.gmu.edu.edu/wiput/oracle.cgi’. For the Unit type DMD, only the

85

attribute ‘Salary’ has the unit type which has a value as ‘Unit-type Currency usd 1 Time-

range month -1’.

The Federation Manager also provides facilities for potential data sources to

register their sites by providing the appropriate URLs, the query that may be executed

locally, and the mapping of local data to global objects. The Federation Manager can then

task the Information Gatherer to obtain the data for analysis as to relevance, quality, and

overall site reliability before that site is formally incorporated into the federation.

7. Prototype

This chapter describes the prototypes that are implemented in this dissertation: the

Unit Value Mediator and the InfoFED federated database system. The Unit Value

Mediator is a stand alone agent that provides unit conversion services over the Internet.

InfoFED is a federated database system that uses the Mediation Data Model as a common

data model. The Mediation Database System provides a framework to incorporate

mediators, such as, the Unit Value Mediator, which enhances the query processing and

the data integration process within InfoFED.

7.1 The Unit Value Mediator Prototype

The Unit Value (UV) mediator is a stand alone agent that provides unit

conversion services over the Internet. Users use the UV mediator services by providing

the data, its Unit-type DMD, and the requested Unit type DMD. Then the UV mediator

converts data to the requested unit value.

The prototype is implemented in CLIPS (C Language Integrated Production

System) [Giarratano&Riley93, Giarratano93, NASA93a, NASA93b, and NASA93c]. The

UV mediator requires conversion knowledge and reference knowledge to support the unit

conversion. Both conversion knowledge and the reference knowledge are implemented in

87

87

the CLIPS Object-Oriented Language (COOL). COOL is an extension part of CLIPS to

support an object-oriented knowledge representation model (Appendix A.1).

The UV mediator provides the Graphic User Interface (GUI) and the

programming interface to users. Users can access the UV mediator’s GUI, Figure 7-1,

through the Internet. From the example, the user inputs values ‘3500’, ‘Unit-type

Currency usd 1 Time-range month -1’, and ‘Unit-type Currency thb 1 Time-range week -

1’ which represent the data, the data Unit-type DMD, and the requested Unit-type-DMD

respectively. Then, the user clicks the ‘submit’ button to request conversion services. The

example shows the conversion of the data ‘3500’ from the unit value ‘US_Dollar/month’

to ‘Thai_Baht/week’. The converted data and its Unit-type DMD is displayed in the

output section at the bottom of the screen. The ‘HELP’ page is also provided to assist

users. It provides the information such as the Unit-type DMD specification, the supported

unit types, and the supported unit values for each unit type.

The UV mediator also provides the programming interface which allows users or

application programs to connect and execute the UV mediator program over the Internet

using the standard URL format (HTTP/CGI). This allows the UV mediator to be

embedded in any application program that supports the built in network capability such as

the JAVA programming language [Flanagan96, Lemay&Perkins96, and Symantec96].

With some minor modification, the UV mediator can act as a middleware between users

and any data sources. It provides the unit conversion services by preparing the data from

the data sources to the users according to their requests.

88

Figure 7-1 The Unit Value Mediator

7.2 The InfoFED Prototype

InfoFED is a federated database system that integrates data from multiple

heterogeneous data sources. InfoFED uses the Mediation Data Model as a common data

89

model. The Mediation Data Model is developed in COOL. COOL supports classes,

attributes, and instances. It supports the classification concept, the

generalization/specialization concept [Smith&Smith77], and the aggregation concept.

The Mediation Data Model extends COOL to support the property attribute for storing

dynamic meta-data in addition to the traditional attribute values. InfoFED allows users to

browse both data and meta-data, and query data stored in multiple, heterogeneous

(ORACLE, CLIPS, SYSBASE, etc.) of database and file systems. In the initial prototype,

InfoFED connects to two types of data representation formats, an Oracle database and

CLIPS knowledge representation. In this prototype, the Data Source Communication

Agent was developed using JAVA language for accessing multiple data sources over the

Internet. JAVA language supports multithread programming which allows InfoFED to

concurrently connect to multiple data sources. Users can retrieve and manipulate data in

multiple unit values. The Unit Value Mediator, extended query language, and domain

independent knowledge sources (conversion and reference knowledge source) have been

developed. In this prototype, the Mediation Data Model serves as a common data model

to integrate multiple databases.

The InfoFED prototype also demonstrates how information integration concepts

from section 6.3 can be used to integrate data from heterogeneous database schemas to

the global view, via the Mediation Data Model. When users connect to InfoFED, it

provides them with choices of application domains that are supported by the system as

shown in Figure 7-2. InfoFED then loads the application domain in accordance with the

users’ selection. From the example, the application domain ‘Airline’ is selected. InfoFED

90

then displays the application domain main menu (Figure 7-3). From this screen, InfoFED

gives users three options for interacting with the application domain ‘Airline’; they are

Browser mode, Query mode, and Register New Source mode.

Figure 7-2 InfoFED Main Menu

91

Figure 7-3 InfoFED Application Domain ‘Airline’ Main Menu

In the Browser mode (Figure 7-4), users can select a class and move from one

class to another class in the information network and examine it. Users can browse

through both domain dependent and domain independent knowledge sources.

From the example, the class ‘Pilot’ is selected. The Browser Frame provides

different kinds of information about the class ‘Pilot’. The frame shows the meta-data

information such as superclasses, subclasses, and attributes which can be further selected

to move to other classes in the active application domain. For example, users can move to

92

investigate the class ‘Employee’ by selecting the term ‘Employee’ in the superclass slot.

The data source slot shows a list of data sources that provide data for InfoFED in the data

source slot. Users can select data sources from the list and the Federation Manager will

connect and retrieve data from these data sources accordingly so that users can further

examine the data.

The information from the browser frame assists users in formulating a complex

query in the query frame (Figure 7-5). This is very useful in the multidatabase

environment where users may not know all the information about the large complex

schema. In the query frame, users can query the Federation Manager through the extended

COOL query language as explained in the section 5.3. Users can retrieve data in any of

the unit values supported by the domain independent knowledge source.

93

Figure 7-4 InfoFED Browser Mode

94

Figure 7-5 Query Frame for InfoFED

95

The Query Frame allows users to formulate complex queries for InfoFED. From

the query in the Query Frame, the user requests the Federation Manager to find the pilot

who flies the aircraft which has a fly-range greater than 3500 miles and reports the pilot’s

name, how many Yens he earns per week, the aircraft type and the fly-range of the

aircraft. The query is defined as follows.

SELECT (?p:Name.value ?p:Salary ?a:Aircraft.value ?a:Fly-range)
UNIT-AS ((= ?p:Salary.prop.unit-type ‘Unit-type Currency jpy 1

Time-range week -1’))
FROM ((?p Pilot) (?a Aircraft))
WHERE (and (eq ?p:Fly.value ?:Aircraft.value)

(> ?a:Fly-range.value ?a:Fly-range.prop.unit-type
3500 ‘Unit-type Distance mile 1’))

At the Federation Manager, the user’s query is firstly received by Query

Formulator. Query Formulator checks for errors and tries to correct them. Then the query

is sent to Query Processor for evaluation. From the query, external data sources for the

class ‘Pilot’ and the class ‘Aircraft’ are required. The Communication Agent is

responsible for connecting to these data sources and retrieving data back to the Federation

Manager. After all data is returned, the federal query is processed and the instances that

satisfy all constraints are presented to the user.

InfoFED allows data providers to link their data sources to the Federation

Manager (Figure 7-6) by themselves. Each data provider can add, edit, or remove their

96

data from the Federation Manager. The information in the browser frame assists the data

providers to understand the global schema definition. Although the concept allows the

data providers to do the integration by themselves, it is necessary to have a closed

supervision on each integration of each data source. Automated or manual checking is

required to ensure the correctness of the data integration before allowing the data to be

accessed by other users.

97

Figure 7-6 New Register Data Source Frame for InfoFED

8. Conclusion

8.1 Goals Achieved

In heterogeneous database systems where data are constantly exchanged, meta-

data plays an increasingly important role than in a single database environment. The

federated database system accesses and manipulates data from several data sources. The

Mediation Data Model is introduced and developed. The Mediation Data Model provides

an extensible schema that supports dynamic meta-data as well as static meta-data, and a

framework for specifying mediator services within a data model. The dynamic meta-data

describes different types of data semantic information, in addition to the traditional static

meta-data. The dynamic meta-data allows each instance object of a class to have dynamic

meta-data associated as properties of attribute, whereas the static meta-data assigns the

same meta-data information common to all instance objects of a class. Dynamic Meta-

Data refers to properties of an attribute such as the data quality of an attribute value, the

reliability of the source provides the data, the units for the data value, and other

dynamically changing properties of attribute.

The Mediation Data Model demonstrates that the Dynamic Meta-Data (DMD) can

be used to enhance the semantics of a database schema, support data integration and

mediation services, and facilitate query processing in a federated database system. With

97

99

DMD attached to the data element, the Unit-Type DMD enables the Multiple Unit Value

(MUV) capability which allows object attributes to store, retrieve, and manipulate data in

convertible unit values. The Data Source DMD supplies to users the origin from which

the data is imported and helps users to distinguish among different sources of the same

data in a multidatabase environment.

The Mediation Data Model provides a framework to incorporate mediators into

the data model which, in turn, extends the data model capability. The Multiple Unit Value

(MUV) concept is implemented by means of Unit-Type DMD, Unit Value Mediator, and

extended Data Manipulation Language.

As the proof-of-concept, the Unit Value Mediator and the InfoFED federated

database system have been developed. InfoFED makes use of the Mediation Data Model

as a common data model to provide self-describing data as well as an intelligent data

manipulation language to users, and to improve data integration in a federated database

system. The Mediation Data Model provides self-describing data by supplying additional

information such as unit types and data sources to help users to interpret data. The

Mediation Data Model provides an intelligent data manipulation language by allowing

users to include unit type (dynamic meta-data) as parameters in a query. The Mediation

Data Model improves data integration by reducing the semantic conflicts among

heterogeneous data sources. The schema integration conflicts are reduced because the

Mediation Data Model supports the MUV concept allowing heterogeneous databases to

export their data in their own unit values while the Unit Value Mediator provides

translation and conversion services at the Federal level. InfoFED also provides a browser

100

for both data and meta-data, an object-oriented federated schema, and the data source

registration and management.

8.2 Future Directions

Mediators will be more commonly used as systems provide for domain

specialized services to support interoperability among heterogeneous data sources. The

research in this dissertation provides a framework for defining dynamic meta-data and

incorporating mediators into the data model, the Mediation Data Model. The framework

extends the data model capabilities to support more complex schema representation and

query processing, and enhances the data integration process in the multidatabase systems.

Additional types of dynamic meta-data and mediators should be investigated to

support new features in the data model. For example, the Media-type DMD and the

Media-type mediator should be investigated on how it can extend the data model to

support multimedia objects. The Data-source DMD and the Data-source mediator should

also be investigated on how it can extend the data model to support data filtering services.

Users can select the data based on the corporate type of data sources (ex., government,

education, etc.) or data quality of data sources in InfoFED.

Another area is the performance and the query optimization strategy. The

Mediation Data Model requires services from mediators in the query processing. These

mediators may incorporate functions that may perform complex calculations. The cost of

these functions may vary considerably. The processing costs will directly impact the

101

performance of the query processing. Different query optimization strategies and quality-

of-service models should be investigated for dealing with services involving mediators.

References

101

References

[ADSYTY93] M. Andersson, Y. Dupont, S. Spaccapietra, K. Y’etongnon, M. Tresch,
and H. Ye, “The FEMUS Experience in Building a Federated Multilingual
Database,” In Proc. 3rd Int’l Workshop on Research Issues on Data
Engineering: Interoperability in Multidatabase Systems, IEEE Computer
Society Press, April 1993, pp. 65-68.

[AHKS95] Yigal Arens, Richard Hull, Roger King, and Michael Siegel, Reference
Architecture for the Intelligent Integration of Information, Version 2.0
(Draft), August 22, 1995.

[APT96] “Briefing Paper: What is Metadata”, APT Software Tools Bulletins,
Available at: http://www.computerwire.com/bulletinsuk/ 212e_1a6.htm,
March 1996.

[Bertino91] E. Bertino, “Integration of Heterogeneous Data Repositories by using
Object-Oriented Views,” IEEE First International Workshop on
Inteoperability in Multidatabase Systems, Kyoto, Japan, 1991.

[BLN86] C. Batini, M. Lenzerini, and S. Navathe, "A Comparative Analysis of
Methodologies for Database Schema Integration," ACM Computing
Surveys, Vol. 18, Dec. 4, 1986.

[Brathwaite92] Kenmore S. Brathwaite, Object-Oriented Database Design: Concepts and
Application, Academic Press, 1992.

[CPM84] S. Ceri, G. Pelagatti, and P. Milano, Distributed Databases Principle and
Systems, McGraw-Hill, 1984.

[Dwyer&Larson87] P. A. Dwyer, and J. A. Larson, “Some Experiences with a Distributed
Database Testbed System,” Proceedings of the IEEE, Vol. 75, No. 5, May
1987.

[Edward90] J. M. Edward, “Object-Oriented,” Communication of ACM, Vol. 33, No. 9,
Sept. 1990.

102

104

[Eichmann95] David Eichmann, “Advances in Network Information Discovery and
Retrieval,” University of Houston, 1995.

[Flanagan96] David Flanagan, Java in a Nutshell, O’Reilly & Associates, Inc., 1996.

[FFMM94a] Tim Finin, Rich Fritzson, Don Mckay and Robin McEntire, “KQML as an
Agent Communication Language”, Proceedings of the Third International
Conference on Information and Knowledge Management, 1994.

[FFMM94b] Tim Finin, Rich Fritzson, Don Mckay and Robin McEntire, “KQML - A
Language and Protocal for Knowledge and Information Exchange”,
Available at: “http://www.cs.umbc.edu/kqml/papers/kqml94.ps”.

[Gattorna96] Giacomo Gattorna, “Advanced Database Topics: Chapter 23 Mediation in
DB Systems”, Available at: “http://www.cs.rpi.edu/~gattorng/ db1.html”,
1996.

[Giarratano93] Joseph C. Giarratano, CLIPS User’s Guide, NASA Lyndon B. Johnson
Space Center, May 1993.

[Goodman94] Jerome N. Goodman, “Alberta Land Related Information System, A
Federated Database Case Study”, Available from:
“http://wwwsgi.ursus.maine.edu/gisweb/spatdb/urisa/ur94037.html”, 1994.

[Graham95] Ian S. Graham, The HTML Source Book, John Wiley & Sons, Inc, 1995.

[Gruber93] Thomas R. Gruber, “Toward Principles for the Design of Ontologies Used
for Knowledge Sharing,” International Workshop on Formal Ontology,
March 1993.

[Gruber&Olsen94] Thomas R. Gruber, and Gregory R. Olsen, “An Ontology for
Engineering Mathematics,” Fourth International Conference on Principles
of Knowledge Representation and Reasoning, 1994.

[GMS94] C. H. Goh, S. E. Madnick, and M. D. Siegal, “Context Interchange:
Overcoming the Challenges of Large-Scale Interoperable Database
Systems in a Dynamic Environment,” Proceedings of the Third
International Conference on Information and Knowledge Management,
1994.

105

[Giarratano&Riley93] Joseph Giarratano, and Gary Riley, Expert Systems: Principles
and Programming, PWS Publishing Company, 1993.

[HBP92] A.R. Hurson, M.W. Bright, and S.H. Pakzad, “A taxonomy and Currency
Issues in Multidatabase Systems,” Computer, Vol.25, No. 3, Mar. 1992,
pp. 50-60.

[HBP94] A.R. Hurson, M.W. Bright, and S.H. Pakzad, Multidatabase Systems: an
Advanced Solution for Global Information sharing, IEEE Computer
Society Press, 1994.

[Hayne&Ram90] S. Hayne and S. Ram, “Multi-User View Integration System (MUVIS):
An Expert System for View Integration”, Proceedings of the 6th
International Conference on Data Engineering (Feb.), 1990.

[Howard&Rehak89] H. Craig Howard, and Daniel R. Rehak, “KADBASE Interfacing
Expert Systems with Database,” IEEE Expert, Fall 1989.

[Heiler&Siegel91] Sandra Heiler, and Michael Siegel, "Heterogeneous Information
Systems: Understanding Integration," IEEE First International Workshop
on Interoperability in Multidatabase Systems, Kyoto, Japan, 1991.

[HSW95] Darren R. Hardy, Michael F. Schwartz, and Duane Wessels, Harvest
User’s Manual, University of Colorado at Boulder, Sept. 1995.

[HSWBDM95] Darren R. Hardy, Michael F. Schwartz, Duane Wessels, C. M. Bowman,
Peter. B. Danzig, and Udi Manber, Harvest: A Scaleable, Customizable
Discovery and Access System, University of Colorado at Boulder, March.
1995.

[Jarke&Koch84] Matthias Jarke, and Jurgen Koch, “Query Optimization in Database
Systems”, ACM Computing Surveys. Vol. 16, No. 2, June 1984.

[KGJM96] L. Kerschberg, H. Gomaa, S. Jajodia, and A. Motro, Knowledge Rovers: A
Family of Intelligent Software Agents for Logistics for the Warrior Volume
1 : Technical Proposal. Department of Information and Software Systems
Engineering, George Mason University, 1996.

106

[Litwin88] W. Litwin, “From Database Systems to Multidatabase systems: Why and
How,” Proc. Sixth British National Conference On Databases, Cambridge
Univ. Press, New York, N.Y., 1988, pp. 161-188.

 [Litwin&Abdellatif86] W. Litwin, and A. Abdellatif, "Multidatabase Interoperability,"
IEEE Computer, 1986.

[LMR90] W. Litwin, L. Mark, and N. Roussopoulos, "Interoperability of Multiple
Autonomous Databases," ACM Computing Surveys, Vol. 22, No. 3, Sept.
1990, pp. 267-293.

[Lemay&Perkins96] Laura Lemay, and , Charles L. Perkins, Teach Yourself JAVA in 21
Days, Sams.net, 1996.

[Motro87] Motro, A., "Superviews: Virtual Integration of Multiple Database", IEEE
Transactions on Software Engineering, Vol SE-13, No 7 July, 1987.

[NASA93a] CLIPS Reference Manual Volume I: Basic Programming Guide, NASA
Lyndon B. Johnson Space Center, June, 1993.

[NASA93b] CLIPS Reference Manual Volume II: Advanced Programming Guide,
NASA Lyndon B. Johnson Space Center, June, 1993.

[NASA93c] CLIPS Reference Manual Volume III: Interfaces Guide, NASA Lyndon B.
Johnson Space Center, June, 1993.

[NEL86] S. Navathe, R. Elmasri, and J. Larsin, "Integrating User Views in Database
Design," IEEE Comput., Vol. 19 Jan 1, 1986.

[Orfali&Harky97] Robert Orfali and Dan Harky, Client/Server Programming with JAVA
and CORBA, John Wiley & Sons, Inc., 1997.

[PCKW89] K. Parsaya, M. Chignell, S. Khoshafian, and H. Wong, Intelligent
Databases., Wiley, 1989.

[PBE95] Evaggelia Pitoura, Omran Bukhres, and Ahmed Elmagarmid, “Object
Orientation in Multidatabase Systems,” ACM Computing Surveys, Vol. 27,
No. 2, June 1995, pp 141-195.

[RBPEL91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen,
Object-Oriented Modeling and Design. Prentice Hall, NJ, 1991.

107

[Shipman81] D. Shipman, “The Functional Data Model and the Data Language
DAPLEX,” ACM Transaction on Database Systems 6, No. 1, March 1981,
pp. 140-173.

[Symantec96] Café Companion, Symantec Corporation. 1996.

[Sheth&Larson90] A. Sheth, and J. Larson, “Federated Database Systems for Managing
Distributed, Heterogeneous, and Autonomous Databases,” ACM
Computing Surveys, Vol. 22, No. 3, Sept. 1990.

[Smith&Smith77] J. M. Smith, and D. Smith, “Data Abstraction: Aggregation and
Generalization,” Communications of the ACM 20, No. 6, June 1977, pp.
568-579.

[Scholl&Schek92] M.H. Scholl and H. J. Schek, “Survey of COCOON Project,” In R.
Bayer, T. Harder, and P.C. Lockemann, editors, Objektbanken Fur
Experten, Informatik Aktuell, October 1992, pp. 243-253. Also available
from http://www.informatik.uni-konstanz.de/~scholl/COCOON-
Pub/spp92.ps.

[SSR94] Michael Siegel, Edward Sciore, and Arnon Rosenthal, “Using Semantic

Values to Facilitate Interoperability Among Heterogeneous Information
Systems,” ACM Transactions on Database Systems, June, 1994.

[Thomas90] G. Thomas, “Heterogeneous Distributed Database Systems for Production
Use,” ACM Computing Surveys, Vol. 22, No. 3, Sept., 1990, pp. 237-266.

 [Yu&Chang84] C. T. Yu, and C. C. Chang, “Distributed Query Processing,” ACM
Computing Surveys. Vol. 16, No. 4, June 1984

[Weishar93] D. J. Weishar, A Knowledge-Base Architecture for Query Formulation
and Processing in Federated Heterogeneous Database, Doctoral
Dissertation, George Mason University, 1993.

[Wiederhold92] Gio Wiederhold, “The Roles of Artificial Intelligence in Information
Systems,” Journal of Intelligent Information Systems 1(1), 1992, pp. 35-
36.

[Wiederhold95] Gio Wiederhold, “Mediation in Information Systems,” ACM Computing
Surveys, Vol. 27, No. 2, June 1995, pp 265-267.

[Winston&Horn89] Patrick H. Winston, and Berthold K. P. Horn, LISP 3rd Edition,
Addison-Wesley Publishing Company, 1989.

108

[W&K91] D. J. Weishar and L. Kerschberg, “An Intelligent Heterogeneous
Autonomous Database Architecture for Semantic Heterogeneity Support,”
IEEE First International Workshop on Interoperability in Multidatabase
Systems, Kyoto, Japan, April 1991, pp 152-155.

[Zhu&Maier88] J. Zhu and D. Maier, “Abstract Objects in an Object-Oriented Data
Model,” Expert Database Systems, April 1988, pp. 3-16.

Appendices

108

Appendix A: Prototype High Level Data and Knowledge Structure

The prototype high level data and knowledge structure is presented in this section.

First, overview of COOL, the language i which the prototype is implemented, is

presented. The second and the third sections present the high level data and knowledge

structure for defining the Domain Dependent Knowledge, Application Domain, and the

Domain Independent Knowledge, Conversion Knowledge and Reference Knowledge.

A.1 Overview of COOL

COOL is an acronym for ‘CLIPS Object-Oriented Language’. COOL is the

extension of CLIPS (C Language Integrated Production System) to support object

oriented programming language. CLIPS is an expert system tool developed by the

Software Technology Branch (STB), NASA/Lyndon B. Johnson Space Center. It was first

released in 1986. CLIPS is designed to facilitate the development of software to model

human knowledge or expertise. CLIPS has also been designed for full integration with

other languages such as C and Ada.

COOL is an object-oriented programming language which supports five generally

accepted features of object-oriented programming: classes, message-handlers, abstraction,

encapsulation, inheritance, and polymorphism. COOL is a hybrid of features from many

different Object Oriented Programming (OOP) systems as well as new ideas. For

example, object encapsulation concepts are similar to those in Smalltalk, and the109

111

Common Lisp Object System (CLOS) [Winston&Horn89] provides the basis for multiple

inheritance rules. A mixture of ideas from Smalltalk, CLOS and other systems form the

foundation of messages.

COOL provides a command for creating classes as well as a query language to

query instances of these classes. COOL defines classes through a ‘defclass’ command. A

‘defclass’ is a construct for specifying the properties (slots) of a class of objects. A

‘defclass’ consists of four elements: 1) a name, 2) a list of superclasses from which the

new class inherits slots and message-handlers, 3) a specifier saying whether or not the

creation of direct instances of the new class is allowed and 4) a list of slots specific to the

new class. All user-defined classes must inherit from at least one class, and to this end

COOL provides predefined system classes for use as a base in the derivation of new

classes. Any slots explicitly given in the ‘defclass’ override those gotten from inheritance.

COOL applies rules to the list of superclasses to generate a class precedence list for the

new class. Facets further describe slots. Some examples of facets include: default value,

cardinality, and types of access allowed.

The syntax of the ‘defclass’ construct is:

(defclass <name> [<comment>]
(is-a <superclass-name>+)
[<role>]
[<pattern-match-role>]
<slot>*
<handler-documentation>*)

Where
<role> ::= (role concrete | abstract)
<pattern-match-role> ::= (pattern-match reactive | non-reactive)
<slot> ::= (slot <name> <facet>*) |

112

 (single-slot <name> <facet>*) |
 (multislot <name> <facet>*)
<facet> ::= <default-facet> | <storage-facet> |
 <access-facet> | <propagation-facet> |
 <source-facet> | <pattern-match-facet> |
 <visibility-facet> | <create-accessor-facet>
 <override-message-facet> | <constraint-attributes>
<default-facet> ::=
 (default ?DERIVE | ?NONE | <expression>*) |
 (default-dynamic <expression>*)
<storage-facet> ::= (storage local | shared)
<access-facet> ::= (access read-write | read-only | initialize-only)
<propagation-facet> ::= (propagation inherit | no-inherit)
<source-facet> ::= (source exclusive | composite)
<pattern-match-facet> ::= (pattern-match reactive | non-reactive)
<visibility-facet> ::= (visibility private | public)
<create-accessor-facet> ::= (create-accessor ?NONE | read | write | read-write)
<override-message-facet> ::= (override-message ?DEFAULT | <message-name>)
<handler-documentation> ::= (message-handler <name> [<handler-type>])
<handler-type> ::= primary | around | before | after
<constraint-attribute>::=<type-attribute> | <allowed-constant-attribute>|

<range-attribute> |<cardinality-attribute> | <default-attribute>
<type-attribute> ::= (type <type-specification>)
<type-specification> ::= <allowed-type>+ | ?VARIABLE
<allowed-type> ::= SYMBOL | STRING | LEXEME | INTEGER | FLOAT |
NUMBER | INSTANCE | INSTANCE-NAME | INSTANCE-ADDRESS |

EXTERNAL-ADDRESS | FACT-ADDRESS

A.2 High Level Data and Knowledge Structure for Domain Dependent Knowledge

Application domains are classified as a part of Domain Dependent Knowledge.

InfoFED supports multiple application domains. The knowledge specification view for

the application domain object class is defined as follows:

Application-object-class ::=
CLASS <name> HAS

SUPERCLASS (<Superclass-name>+)
SUBCLASS (<Subclass-name>+)
ATTRIBUTE (<value-property-attribute>+)
ATTRIBUTE-UNIT (: <attribute-unit-type :> +)

113

SYNONYM (<name>+)
DESCRIPTION (<description>)

COOL is the programming language that the system prototype is built on. COOL

supports object oriented data representation and provides the Data Definition Language

(DDL) for defining object classes. However, to specify the meta-data of classes, the

metaclass concept is used. The metaclass concept considers classes as instances of classes

called metaclasses. These metaclasses store the meta-data of the class in addition to the

class definition. Therefore the knowledge specification view for the above class

(Application-object-class) is implemented and is defined into two sections: the class

definition and the meta-data definition.

; Section I: The Class Definition
(defclass <class-name> [<comment]

(is-a <superclass-name>+)
[<role>]
<slot>*)

Where the detail is described in section A.1

; Section II: The Meta-Data Definition
(<class-name> of Application

(Superclass <superclass-name>+)
(Subclass <subclass-name>+)
(Attribute <value-property-attribute-name>+)
(Attribute-unit : <attribute-unit-type :> +)
(Key-attribute <attribute-name>)
(Attribute-domain : <attribute-domain :>+)
(Synonym <name>+)
(Description <description>)

)

Where
<attribute-unit-type> ::= <attribute-name> <defined-unit-type>
<defined-unit-type> ::= Unit-type <unit>+
<unit> ::= <unit-type> ±1

114

<unit-type> ∈ Supported-Unit-type set
<attribute-domain> ::= <attribute-name> <allowed-type>
<allowed-type> ::= <class-name> | string | number

A.2.1 Data Definition for the Application Domain ‘AIRLINE’.

The following is the knowledge specification which describes the application

domain ‘Airline’ (Figure 5-2) referring in chapter 5.

Classes Definition Knowledge

The knowledge specification view for the ‘Entity’ object class is:

CLASS Entity HAS
 SUPERCLASS ()
 SUBCLASS (Employee Aircraft)
 ATTRIBUTE ()
 ATTRIBUTE-UNIT ()
 SYNONYM (Begin Thing Individual Existence)
 DESCRIPTION ("Something having concrete existence")

The ‘Entity’ object class is implemented and defined as:

; Section I: The Class Definition
(defclass Entity

(is-a USER)
(role abstract)

)
; Section II: The Meta-Data Definition
(Entity of Application

(Superclass)
(Subclass Employee Aircraft)
(Attribute)
(Attribute-unit)
(Key-attribute)
(Attribute-domain)
(Synonym Begin Thing Individual Existence)
(Description "Something having concrete existence")

)

The knowledge specification view for the ‘Employee’ object class is:

115

CLASS Employee HAS
 SUPERCLASS (Entity)
 SUBCLASS (Pilot Engineer)
 ATTRIBUTE

Ssn.value string
Ssn.prop string
Last-name.value string
Last-name.prop string
First-name.value string
First-name.prop string
Salary.value number
Salary.prop string

ATTRIBUTE-UNIT (: Ssn Unit-type None : Last-name Unit-type None : First-name
Unit-type None : Salary Unit-type Currency 1 Time-range -1 :)

SYNONYM (Worker)
DESCRIPTION ("a person who works for another")

The ‘Employee’ object class is implemented and defined as:

; Section I: The Class Definition
 (defclass Employee

(is-a Entity)
(role concrete)
(multislot Ssn.value (type STRING) (create-accessor read-write))
(multislot Ssn.property (type STRING)(create-accessor read-write))
(multislot F-name.value (type STRING)(create-accessor read-write))
(multislot F-name.property (type STRING)(create-accessor read-write))
(multislot L-name.value (type STRING)(create-accessor read-write))
(multislot L-name.property (type STRING)(create-accessor read-write))
(multislot Salary.value (type NUMBER)(create-accessor read-write))
(multislot Salary.property (type STRING)(create-accessor read-write))

)

; Section II: The Meta-Data Definition
(Employee of Application

(Superclass Entity)
(Subclass Pilot Engineer)
(Attribute Ssn Last-name First-name Salary)
(Attribute-unit : Ssn Unit-type None : Last-name Unit-type None : First-name

Unit-type None : Salary Unit-type Currency 1 Time-range -1 :)
(Key-attribute Ssn)
(Attribute-domain : Ssn Number : Last-name String : First-name String : Salary

Number :)

116

(Synonym Worker)
(Description "a person who works for another")

)

The knowledge specification view for the ‘Pilot’ object class is:

CLASS Pilot HAS
 SUPERCLASS (Employee)
 SUBCLASS ()
 ATTRIBUTE

Ssn.value string
Ssn.prop string
Last-name.value string
Last-name.prop string
First-name.value string
First-name.prop string
Salary.value number
Salary.prop string
Fly.value string
Fly.prop string

 ATTRIBUTE-UNIT (: Ssn Unit-type None : Last-name Unit-type None : First-name
Unit-type None : Salary Unit-type Currency 1 Time-range -1 : Fly Unit-type None
:)

 SYNONYM (Aviator Flier Airman)
 DESCRIPTION ("One who flies or qualified to fly an airplane ")

The ‘Pilot’ object class is implemented and defined as:

; Section I: The Class Definition
 (defclass Pilot

(is-a Employee)
(role concrete)
(multislot Fly.value (type STRING)(create-accessor read-write))
(multislot Fly.property (type STRING)(create-accessor read-write))

)
;Section II: The Meta-Data Definition
(Pilot of Application

(Superclass Employee)
(Subclass)
(Attribute Ssn First-name Last-name Salary Fly)
(Attribute-unit : Ssn Unit-type None : First-name Unit-type None : Last-name

Unit-type None : Salary Unit-type Currency 1 Time-range -1 : Fly Unit-type None :)
(Key-attribute Ssn)

117

(Attribute-domain : Ssn Number : First-name String : Last-name String : Salary
Number : Repair Aircraft :)

(Synonym Aviator Flier Airman)
(Description "One who flies or qualified to fly an airplane")

)

The knowledge specification view for the ‘Engineer’ object class is:

CLASS Engineer HAS
 SUPERCLASS (Employee)
 SUBCLASS ()
 ATTRIBUTE

Ssn.value string
Ssn.prop string
Last-name.value string
Last-name.prop string
First-name.value string
First-name.prop string
Salary.value number
Salary.prop string
Repair.value string
Repair.prop string

 ATTRIBUTE-UNIT (: Ssn Unit-type None : Last-name Unit-type None : First-name
Unit-type None : Salary Unit-type Currency 1 Time-range -1 : Repair Unit-type
None :)

 SYNONYM ()
 DESCRIPTION ("A designer or a builder of engines")

The ‘Engineer’ object class is implemented and defined as:

; Section I: The Class Definition
 (defclass Engineer

(is-a Employee)
(role concrete)
(multislot Repair.value (type STRING)(create-accessor read-write))
(multislot Repair.property (type STRING)(create-accessor read-write))

)
; Section II: The Meta-Data Definition
(Pilot of Application

(Superclass Employee)

118

(Subclass)
(Attribute Ssn First-name Last-name Salary Repair)
(Attribute-unit : Ssn Unit-type None : First-name Unit-type None : Last-name

Unit-type None : Salary Unit-type Currency 1 Time-range -1 : Repair Unit-type None :)
(Key-attribute Ssn)
(Attribute-domain : Ssn Number : First-name String : Last-name String : Salary

Number : Repair Aircraft :)
(Synonym)
(Description "A designer or a builder of engines")

)

The knowledge specification view for the ‘Aircraft’ object class is:

CLASS Aircraft HAS
 SUPERCLASS (Entity)
 SUBCLASS ()
 ATTRIBUTE

Aircraft.value string
Aircraft.prop string
Air-type.value string
Air-type.prop string
Weight.value number
Weight.prop string
Fly-range.value number
Fly-range.prop string

 ATTRIBUTE-UNIT (: Aircraft Unit-type None : Air-type Unit-type None : Weight
Unit-type Weight 1 : Fly-range Unit-type Length 1 :)

 SYNONYM (Plane)
 DESCRIPTION ("A machine that can fly")

The ‘Aircraft’ object class is implemented and defined as:

; Section I: The Class Definition
 (defclass Aircraft

(is-a Entity)
(role concrete)
(multislot Aircraft.value (type STRING)(create-accessor read-write))
(multislot Aircraft.property (type STRING)(create-accessor read-write))
(multislot Air-type.value (type STRING)(create-accessor read-write))
(multislot Air-type.property (type STRING)(create-accessor read-write))
(multislot Weight.value (type NUMBER)(create-accessor read-write))
(multislot Weight.property (type STRING)(create-accessor read-write))
(multislot Fly-range.value (type NUMBER)(create-accessor read-write))

119

(multislot Fly-range.property (type STRING)(create-accessor read-write))
)
; Section II: The Meta-Data Definition
(Aircraft of Application

(Superclass Entity)
(Subclass)
(Attribute Aircraft Air-type Weight Fly-range)
(Attribute-unit : Aircraft Unit-type None : Air-type Unit-type None : Weight Unit-

type Weight 1 : Fly-range Unit-type Length 1 :)
(Key-attribute Aircraft)
(Attribute-domain : Aircraft String : Air-type String : Weight Number : Fly-range

Number :)
(Synonym Plane)
(Description "A machine that can fly")

)

A.3 High Level Data and Knowledge Structure for Domain Independent Knowledge

The Unit Value Mediator requires two types of independent knowledge,

conversion knowledge and reference knowledge, to support its conversion services. The

four unit types which are implemented and supported are ‘Currency’, ‘Length’, Time-

range’, and ‘Weight’.

 Supported-unit-type = {Currency, Length, Time-range, Weight}

The supported unit values for each unit type are:

Currency-supported-unit-value = {usd, cnd, jpy, dem, thb}
Length-supported-unit-value = {millimeter, centimeter, meter, kilometer, inch,

foot, yard, rod, mile}
Time-range-supported-unit-value = {second, minute, hour, day, week, month,

year}
Weight-supported-unit-value = {milligram, gram, kilogram, grain, dram,

ounce, pound, short-ton, long-ton, metric-ton}

Both high level knowledge specification of conversion knowledge and reference

knowledge are presented in this section.

120

A.3.1 Conversion Knowledge

The knowledge specification view of the conversion knowledge object class is

defined as follows:

Conversion Class ::=
CLASS <name> HAS

SUPERCLASS (<Superclass-name>)
SUBCLASS (<Subclass-name>)
DEFAULT-CALL (<Instance Object’s id>)
DESCRIPTION (<description>)
ATTRIBUTE

Program.value string
Program.prop string
Designer.value string
Designer.prop string
Version.value string
Version.prop string

The knowledge specification view for the above class (Conversion-object-class) is

implemented and is defined into two sections: the class definition and the meta-data

definition.

; Section I: The Class Definition
(defclass <class-name> [<comment]

(is-a <superclass-name>+)
[<role>]
<slot>*)

Where the details are described in section A.1

; Section II: The Meta-Data Definition
(<class-name> of Conversion-knowledge

(Superclass <superclass-name>)
(Subclass <subclass-name>+)
(Attribute <value-property-attribute-name>+)
(Attribute-unit : <attribute-unit-type :>+)
(Default-call <object-id>)
(Description <description>)

121

)

Where
<attribute-unit-type> ::= <attribute-name> <defined-unit-type>
<defined-unit-type> ::= Unit-type <unit>+
<unit> ::= <unit-type> ±1
<unit-type> ∈ Supported-Unit-type set
<attribute-domain> ::= <attribute-name> <allowed-type>
<allowed-type> ::= <class-name> | string | number

The knowledge specification view for the ‘Conversion’ object class is:

CLASS Conversion HAS
 SUPERCLASS ()
 SUBCLASS (Currency Length Time-range Weight)
(Default-call C123)
 ATTRIBUTE

Program.value string
Program.prop string
Designer.value string
Designer.prop string
Version.value string
Version.prop string

 ATTRIBUTE-UNIT (: Program Unit-type None : Designer Unit-type None : Version
Unit-type None :)

 SYNONYM ()
 DESCRIPTION ("Conversion knowledge for different types of conversions")

The ‘Conversion’ object class is implemented and defined as:

; Section I: The Class Definition
(defclass Conversion
 (is-a USER)
 (role concrete)
 (multislot Program.value (type STRING)(create-accessor read-write))
 (multislot Program.prop (type STRING)(create-accessor read-write))
 (multislot Designer.value (type STRING)(create-accessor read-write))
 (multislot Designer.prop (type STRING)(create-accessor read-write))
 (multislot Version.value (type STRING)(create-accessor read-write))
 (multislot Version.prop (type STRING)(create-accessor read-write))
)
; Section II: the Meta-Data Definition
(Conversion of Conversion-knowledge

122

 (Superclass None)
 (Subclass Currency Weight Time-range Length)
 (Default-call)
 (Attribute Program Designer Version)
 (Attribute-domain : Program String : Designer String : Version Unit-type None :)
 (Description "Conversion knowledge for different types of conversions")
)

The knowledge specification view for the ‘Currency’ object class is:

CLASS Currency HAS
 SUPERCLASS (Conversion)
 SUBCLASS ()
 DEFAULT-CALL ([C001])
 ATTRIBUTE

Program.value string
Program.prop string
Designer.value string
Designer.prop string
Version.value string
Version.prop string

 ATTRIBUTE-UNIT (: Program Unit-type None : Designer Unit-type None : Version
Unit-type None :)

 SYNONYM ()
 DESCRIPTION ("Conversion knowledge for the currency")

The ‘Currency’ object class is implemented and defined as:

; Section I: The Class Definition
(defclass Currency
 (is-a Conversion)
 (role concrete)
)
; Section II: the Meta-Data Definition
(Currency of Conversion-knowledge
 (Default-call [C001])
 (Superclass Conversion)
 (Subclass None)
 (Attribute Program Designer)
 (Attribute-domain : Program Unit-type String : Designer Unit-type String : Version
Unit-type String :)
 (Description "Conversion knowledge for the currency ")
)

123

The knowledge specification view for the ‘Length’ object class is:

CLASS Length HAS
 SUPERCLASS (Conversion)
 SUBCLASS ()
 DEFAULT-CALL ([D001])
 ATTRIBUTE

Program.value string
Program.prop string
Designer.value string
Designer.prop string
Version.value string
Version.prop string

 ATTRIBUTE-UNIT (: Program Unit-type None : Designer Unit-type None : Version
Unit-type None :)

 SYNONYM ()
 DESCRIPTION ("- the space between two objects or points
 - Conversion knowledge for Length unit")

The ‘Length’ object class is implemented and defined as:

; Section I: The Class Definition
(defclass Length
 (is-a Conversion)
 (role concrete)
)
; Section II: the Meta-Data Definition
(Length of Conversion-knowledge
 (Default-call [D001])
 (Superclass Conversion)
 (Subclass None)
 (Attribute Program Designer)
 (Attribute-domain : Program String : Designer String :)
 (Description "- the space between two objects or points

 - Conversion knowledge for Length unit")
)

The knowledge specification view for the ‘Time-range’ object class is:

CLASS Time-range HAS
 SUPERCLASS (Conversion)
 SUBCLASS ()

124

 DEFAULT-CALL ([T001])
 ATTRIBUTE

Program.value string
Program.prop string
Designer.value string
Designer.prop string
Version.value string
Version.prop string

 ATTRIBUTE-UNIT (: Program Unit-type None : Designer Unit-type None : Version
Unit-type None :)

 SYNONYM ()
 DESCRIPTION ("- Conversion knowledge for time unit ")

The ‘Time-range’ object class is implemented and defined as:

; Section I: The Class Definition
(defclass Time-range
 (is-a Conversion)
 (role concrete)
)
; Section II: the Meta-Data Definition
(Time-range of Conversion-knowledge
 (Default-call [T001])
 (Superclass Conversion)
 (Subclass None)
 (Attribute Program Designer)
 (Attribute-domain : Program String : Designer String :)
 (Description "- Conversion knowledge for time unit ")
)

The knowledge specification view for the ‘Weight’ object class is:

CLASS Weight HAS
 SUPERCLASS (Conversion)
 SUBCLASS ()
 DEFAULT-CALL ([W001])
 ATTRIBUTE

Program.value string
Program.prop string
Designer.value string
Designer.prop string
Version.value string
Version.prop string

125

 ATTRIBUTE-UNIT (: Program Unit-type None : Designer Unit-type None : Version
Unit-type None :)

 SYNONYM ()
 DESCRIPTION ("- a system of units used to express the weight of something
 - Conversion Knowledge for weight ")

The ‘Weight’ object class is implemented and defined as:

; Section I: The Class Definition
(defclass Weight
 (is-a Conversion)
 (role concrete)
)
; Section II: the Meta-Data Definition
(Weight of Conversion-knowledge
 (Default-call [W001])
 (Superclass Conversion)
 (Subclass None)
 (Attribute Program Designer)
 (Attribute-domain : Program String : Designer String : Version String :)
 (Description "- a system of units used to express the weight of something
 - Conversion Knowledge for weight ")
)

Reference Knowledge

The knowledge specification view of the reference knowledge object class is

defined as follows:

Reference Class ::=
CLASS <class-name> HAS

SUPERCLASS (<superclass-name>)
SUBCLASS (<subclass-name>+)
UNIT-TYPE (<unit type>)
SUPPORTED-UNIT (<unit value>+)
DESCRIPTION (<description>)
ATTRIBUTE

From.value string
From.prop string
To.value string
To.prop string

126

Rate.value number
Rate.prop string
Version.value string
Version.prop string
Active.value string
Active.prop string

The knowledge specification view for the above class (Reference-object-class) is

implemented and is defined into two sections: the class definition and the meta-data

definition.

; Section I: The Class Definition
(defclass <class-name> [<comment]

(is-a <superclass-name>+)
[<role>]
<slot>*)

Where the details are described in section A.1

; Section II: The Meta-Data Definition
(<class-name> of Conversion-knowledge

(Superclass <superclass-name>)
(Subclass <subclass-name>+)
(Attribute <value-property-attribute-name>+)
(Attribute-unit : <attribute-unit-type :> +)
(Unit-type <unit-type>)
(Supported-unit <unit-value>+)
(Attribute-domain : <attribute-domain :>+)
(Description <description>)

)

Where
<attribute-unit-type> ::= <attribute-name> <defined-unit-type>
<defined-unit-type> ::= Unit-type <unit>+
<unit> ::= <unit-type> ±1
<unit-type> ∈ Supported-Unit-type set
<attribute-domain> ::= <attribute-name> <allowed-type>
<allowed-type> ::= <class-name> | string | number

The knowledge specification view for the ‘Reference’ object class is:

127

CLASS Reference HAS
 SUPERCLASS ()
 SUBCLASS (Exchange-rate Length-rate Time-range-rate Weight-rate)
 UNIT-TYPE ()
 SUPPORTED-UNIT ()
 ATTRIBUTE

From.value string
From.prop string
To.value string
To.prop string
Rate.value number
Rate.prop string
Valid.value string
Valid.prop string
Version.value string
Version.prop string

 ATTRIBUTE-UNIT (: From Unit-type None : To Unit-type None : Rate Unit-type
None : Valid Unit-type None : Version Unit-type None :)

 SYNONYM ()
 DESCRIPTION ("conversion rate for conversion among conversion unit values")

The ‘Reference’ object class is implemented and defined as:

; Section I: The Class Definition
(defclass Reference
 (is-a USER)
 (role concrete)
 (multislot From.value (type STRING) (create-accessor read-write))
 (multislot From.prop (type STRING)(create-accessor read-write))
 (multislot To.value (type STRING)(create-accessor read-write))
 (multislot To.prop (type STRING)(create-accessor read-write))
 (multislot Rate.value (type NUMBER)(create-accessor read-write))
 (multislot Rate.prop (type STRING)(create-accessor read-write))
 (multislot Valid.value (type STRING)(create-accessor read-write))
 (multislot Valid.prop (type STRING)(create-accessor read-write))
 (multislot Version.value (type STRING)(create-accessor read-write))
 (multislot Version.prop (type STRING)(create-accessor read-write))
)
; Section II: the Meta-Data Definition
(Reference of Reference-knowledge
 (Superclass None)
 (Subclass Exchange-rate Length-rate Time-range-rate Weight-rate)
 (Attribute From To Rate Valid Version)

128

 (Attribute-unit : From Unit-type None : To Unit-type None : Rate Unit-type None :
Valid Unit-type None : Version Unit-type None :)
 (Attribute-domain : From String : To String : Rate Number : Valid String : Version
String :)
 (Description "conversion rate for conversion among conversion unit values")
)

The knowledge specification view for the ‘Exchange-rate’ object class is:

CLASS Exchange-rate HAS
 SUPERCLASS (Reference)
 SUBCLASS ()
 UNIT-TYPE (Currency)
 SUPPORTED-UNIT (usd cnd frf dem jpy mxp thb)
 ATTRIBUTE

From.value string
From.prop string
To.value string
To.prop string
Rate.value number
Rate.prop string
Valid.value string
Valid.prop string
Version.value string
Version.prop string

 ATTRIBUTE-UNIT (: From Unit-type None : To Unit-type None : Rate Unit-type
None : Valid Unit-type None : Version Unit-type None :)

 SYNONYM ()
 DESCRIPTION ("conversion rate for conversion among currency unit values")

The ‘Exchange-rate’ object class is implemented and defined as:

; Section I: The Class Definition
(defclass Exchange-rate
 (is-a Reference)
 (role concrete)
)
; Section II: the Meta-Data Definition
(Exchange-rate of Reference-knowledge
 (Superclass Reference)
 (Subclass None)
 (Attribute From To Rate Valid Version)

129

 (Attribute-unit : From Unit-type None : To Unit-type None : Rate Unit-type None :
Valid Unit-type None : Version Unit-type None :)
 (Attribute-domain : From String : To String : Rate Number : Valid String : Version
String :)
 (Unit-type Currency)
 (Unit-support usd cnd frf dem jpy mxp thb)
 (Description "conversion rate for conversion among currency unit values")
)

The knowledge specification for the ‘Length-rate’ object class is:

CLASS Length-rate HAS
 SUPERCLASS (Reference)
 SUBCLASS ()
 UNIT-TYPE (Length)
 SUPPORTED-UNIT(millimeter centimeter meter kilometer inch foot yard rod mile)
 ATTRIBUTE

From.value string
From.prop string
To.value string
To.prop string
Rate.value number
Rate.prop string
Valid.value string
Valid.prop string
Version.value string
Version.prop string

 ATTRIBUTE-UNIT (: From Unit-type None : To Unit-type None : Rate Unit-type
None : Valid Unit-type None : Version Unit-type None :)

 SYNONYM ()
 DESCRIPTION ("conversion rate for conversion among length unit values")

The ‘Length-rate’ object class is implemented and defined as:

; Section I: The Class Definition
(defclass Length-rate
 (is-a Reference)
 (role concrete)
)
; Section II: the Meta-Data Definition
(Length-rate of Reference-knowledge
 (Superclass Reference)
 (Subclass None)

130

 (Attribute From To Rate Valid Version)
 (Attribute-unit : From Unit-type None : To Unit-type None : Rate Unit-type None :
Valid Unit-type None : Version Unit-type None :)
 (Attribute-domain : From String : To String : Rate Number : Valid String : Version
String :)
 (Unit-type Length)
 (Unit-support millimeter centimeter meter kilometer inch foot yard rod mile)
 (Description "conversion rate for conversion among length unit values")
)

The knowledge specification view for the ‘Time-range-rate’ object class is:

CLASS Time-range-rate HAS
 SUPERCLASS (Reference)
 SUBCLASS ()
 UNIT-TYPE (Time-range)
 SUPPORTED-UNIT (second minute hour day week month year)
 ATTRIBUTE

From.value string
From.prop string
To.value string
To.prop string
Rate.value number
Rate.prop string
Valid.value string
Valid.prop string
Version.value string
Version.prop string

 ATTRIBUTE-UNIT (: From Unit-type None : To Unit-type None : Rate Unit-type
None : Valid Unit-type None : Version Unit-type None :)

 SYNONYM ()
 DESCRIPTION ("conversion rate for conversion among time unit values ")

The ‘Time-range-rate’ object class is implemented and defined as:

; Section I: The Class Definition
(defclass Time-range-rate
 (is-a Reference)
 (role concrete)
)

131

; Section II: the Meta-Data Definition
(Time-range-rate of Reference-knowledge
 (Superclass Reference)
 (Subclass None)
 (Attribute From To Rate Valid Version)
 (Attribute-unit : From Unit-type None : To Unit-type None : Rate Unit-type None :
Valid Unit-type None : Version Unit-type None :)
 (Attribute-domain : From String : To String : Rate Number : Valid String : Version
String :)
 (Unit-type Time-range)
 (Unit-support second minute hour day week month year)
 (Description "conversion rate for conversion among time unit values")

The knowledge specification view for the ‘Weight-rate’ object class is:

CLASS Weight-rate HAS
 SUPERCLASS (Reference)
 SUBCLASS ()
 UNIT-TYPE (Weight)
 SUPPORTED-UNIT (milligram, gram, kilogram, grain, dram, ounce, pound, short-ton,

long-ton, metric-ton)
 ATTRIBUTE

From.value string
From.prop string
To.value string
To.prop string
Rate.value number
Rate.prop string
Valid.value string
Valid.prop string
Version.value string
Version.prop string

 ATTRIBUTE-UNIT (: From Unit-type None : To Unit-type None : Rate Unit-type
None : Valid Unit-type None : Version Unit-type None :)

 SYNONYM ()
 DESCRIPTION ("conversion rate for conversion among weight unit values")

The ‘Weight-rate’ object class is implemented and defined as:

; Section I: The Class Definition
(defclass Weight-rate
 (is-a Reference)
 (role concrete)

132

)
; Section II: the Meta-Data Definition
(Weight-rate of Reference-knowledge
 (Superclass Reference)
 (Subclass None)
 (Attribute From To Rate Valid Version)
 (Attribute-unit : From Unit-type None : To Unit-type None : Rate Unit-type None :
Valid Unit-type None : Version Unit-type None :)
 (Attribute-domain : From String : To String : Rate Number : Valid String : Version
String :)
 (Unit-type Weight)
 (Unit-support milligram, gram, kilogram, grain, dram, ounce, pound, short-ton, long-
ton, metric-ton)
 (Description "conversion rate for conversion among weight unit values")
)

Appendix B: The Extended Query Language Specification

The Mediation Data Model was developed using COOL language. The Mediation

Data Model provides the query language to query data that is stored in the model. A query

is a user-defined Boolean expression that is applied to an instance set to determine if the

instance set meets user-defined restrictions. The query language specification for

retrieving the data is as follows:

SELECT (<attribute>+)
UNIT-AS (<unit-value>+)
FROM (<instance-set>+)
WHERE (<condition>) | TRUE

Where
<attribute>::= attr-name | attr-name.value | attr-name.prop |

attr-name.prop.unit-type | attr-name.prop.source
<unit-value>::= (= attr-name.perop.unit-type <Unit-type DMD>)
<instance-set>::= (?variable <class-name>)
<condition>::= <Boolean-expression>

The Boolean expression is composed of well-formed predicate functions, math

functions, etc. The CLIPS function specifications are fully described in [GR93,

NASA93a]. As object classes’ attributes support the Multiple Unit Value capabilities,

these functions must be extended so that they can handle data with the unit values. Since

the unit type information is associated with the attributes that have domains in numeric

expression, binary functions that deal with variables in the numeric expression must be

extended. By using functions’ name overload concept, when functions are dealing with

133

134

attributes that have no unit type associated with them, only value attributes are used as

parameters in the functions. However, when functions are dealing with attributes that

have unit types associated with them, value attributes are used together with attribute unit

type DMD as parameters in the functions.

Below are some of binary functions that are extended to supported data with unit

value.

Predicate functions

(ϕ <data-value1><data-value2>) (I)
(ϕ <data-value1> <Unit-type DMD1> <data-value2> <Unit-type DMD2>) (II)

Where
ϕ ::= > | >= | < | <= | = | <>
> is a greater than operation.

The function returns TRUE if the first data value argument is greater than the
second data value argument, otherwise FALSE.

>= is a greater than or equal operation.
The function returns TRUE if the first data value argument is greater than or
equal to the second data value argument, otherwise FALSE.

< is a less than operation
The function returns TRUE if the first data value argument is less than the
second data value argument, otherwise FALSE.

<= is a less than or equal operation
The function returns TRUE if the first data value argument is less than or equal
to the second data value argument, otherwise FALSE.

= is an equal operation
The function returns TRUE if the first data value argument is equal to the second
data value argument, otherwise FALSE.

<> is an not equal operation
The function returns TRUE if the first data value argument is not equal to the
second data value argument, otherwise FALSE.

<data-value1> ::= <numeric-expression>
<data-value2> ::= <numeric-expression>
<Unit-type DMD1> ::= Unit-type DMD
<Unit-type DMD2> ::= Unit-type DMD

135

Math functions

(ϕ <data-value1><data-value2>) (I)
(ϕ <data-value1> <Unit-type DMD1> <data-value2> <Unit-type DMD2>) (II)
Where

ϕ ::= + | -
+ is an add operation.

Case I. The function returns the sum of its data value arguments.
Case II. The function returns the sum of its data value arguments with a unit

value of the first data value.
- is a subtraction operation.

Case I. The function returns the result of the first data value argument minus the
second data value argument.

Case II. The function returns the result of the first data value argument minus the
second data value argument with a unit value of the first data value.

<data-value1> ::= <numeric-expression>
<data-value2> ::= <numeric-expression>
<Unit-type DMD1> ::= Unit-type DMD
<Unit-type DMD2> ::= Unit-type DMD

Curriculum Vitae

Wiput Phijaisanit was born on July 20, 1966, in Bangkok, Thailand, and is a Thai
citizen. He graduated from Triam Udom Suksa High School, Bangkok, Thailand in 1984.
He received his Bachelor of Engineering in Electrical Engineering from King Mongkut’s
Institute of Technology Landkrabang, Bangkok, Thailand in 1988. He worked at Asea
Brownboveri in Thailand as a Substation Design Engineer from 1988 to 1990. He
received his Master of Business Administration in Management from Oklahoma City
University, Oklahoma City, Oklahoma in 1991.

136

