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Abstract. With more and more electronic information sources becom-
ing widely available, the issue of the quality of these often-competing
sources has become germane. We propose a standard for specifying the
quality of databases, which is based on the dual concepts of data sound-
ness and data completeness. The relational model of data is extended
by associating a quality speci�cation with each relation instance, and
by extending its algebra to calculate the quality speci�cations of derived
relation instances. This provides a method for calculating the quality of
answers to arbitrary queries from the overall quality speci�cation of the
database. We show practical methods for estimating the initial quality
speci�cations of given databases, and we report on experiments that test
the validity of our methods. Finally, we describe how quality estima-
tions are being applied in the Multiplex multidatabase system to resolve
cross-database inconsistencies.

1 Data Quality

What is it? Data quality has several dimensions. The most common dimension
is soundness: whether the data available are the true values. Data soundness is
often referred to as correctness, precision, accuracy, or validity. Another common
dimension of data quality is its completeness: whether all the data are available.
In the terminology of databases, data completeness refers to both the complete-
ness of �les (no records are missing), and to the completeness of records (all
�elds are known for each record). Soundness and completeness are two orthog-
onal dimensions, in the sense that they are concerned with completely sepa-
rate aspects of data quality [6]. Other important dimensions often discussed are
consistency and currency. Consistency (often referred to as integrity) assumes
speci�c constraints that state the proper relationships among di�erent data el-
ements are known, and considers whether these constraints are satis�ed by the
data. Currency considers whether the data are up-to-date, re
ecting the most
recent values. For additional discussion of various quality dimensions, see [3, 12].
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What can be done about it? Concerns about data quality can be addressed
in three ways: Protection, measurement, and improvement. The focus of the �rst
approach is on prevention. It advocates careful handling of data at every phase,
from acquisition to application. In some respects, this approach is modeled af-
ter quality control methods in production processes [12]. The second approach
focuses on the estimation of quality. A data quality measure is adopted, and
the quality of the data is estimated in accordance to this measure. The third
approach is the most ambitious. Data quality may be improved by identifying
obvious errors in the data (\outlying values"), and either removing these val-
ues, or substituting them (as well as values that are missing altogether) with
more probable values. This approach is often referred to as data cleansing or
scrubbing [1].

In this paper we consider only the dimensions of data soundness and data
completeness, and we focus on data quality estimation. The advantages of data
quality estimation are threefold. Clearly, decision-making is improved when the
quality of the data used in the decision process is known. To this end, it is
important to be able to determine the quality of speci�c data within a given
database (see Section 4). In the presence of alternative sources of information,
quality estimates suggest the source that should be preferred (see Section 6).
Finally, information is a commodity, and its value (price) should be based on its
quality.

This paper presents an overview of the issues and the solutions proposed. For
a more complete treatment the reader is referred to [8] and [9]. Our treatment of
the issues is in the context of relational databases, and we assume the standard
de�nitions of the relational model.

In Sections 2 and 3 we propose a standard for specifying the quality of rela-
tional databases, which is based on data soundness and data completeness, and
we explain how such quality speci�cations may be estimated. Quality speci�-
cations are associated with each relation instance of the database, and may be
considered an extension of the relational model. Suitably, the relational algebra
is extended as well, to calculate the quality speci�cations of derived relation
instances. This provides a method for estimating the quality of answers to ar-
bitrary queries (Section 4). In section 5 we report on experiments that were
carried out to test the validity of our methods, and in section 6 we describe
how quality estimations are being applied in the Multiplex multidatabase sys-
tem to resolve cross-database inconsistencies. Additional research directions are
discussed brie
y in Section 7.

2 Simple Quality Estimation

A database and the real world that it models can be formalized as two instances
of the same database scheme. We denote the actual (stored) database instance
D, and we denote the ideal (real-world) database instance W . Of course, W
is a hypothetical instance which is unavailable. The stored instance D is an
approximation of the ideal instance W .
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How good is this approximation? Clearly, the answer to this question would
provide a measure of the quality of the given database.

To determine the goodness of the approximation we must measure the simi-
larity of two database instances. Since each instance is a set (of tuples), we can
use measures that compare two sets of elements. One such measure is based on
two components as follows (X denotes the cardinality of a set X:

{ Soundness (of the database relative to the real world): jD\W j
jDj

{ Completeness (of the database relative to the real world): jD\W j
jW j

Soundness measures the proportion of the stored information that is true, and
completeness measures the proportion of the true information that is stored.
These measures are similar to the precision and recall measures in the �eld
of information retrieval, where they are used to rate the goodness of answers
extracted from an information source in response to queries [10].

Note that each intersection element (a database tuple that is also in the
real world instance) contributes to both soundness and completeness. Similarly,
when a database tuple and a real world tuple di�er (even in a single attribute),
both soundness and completeness are a�ected adversely. Consider, for example,
a relation Employee consisting of 20 attributes, and assume that the stored
instance and the ideal instance each have 100 tuples. Assume further that the two
instances are identical in all values except in the Date of Birth attribute, where
half the values are incorrect. Soundness and completeness will both measure 0.5,
whereas intuitively the quality is much higher.

A simple improvement is to decompose all relations to smaller units of infor-
mation. A relation (A1; : : : ; An), in which A1 is the key attribute, is decomposed
to n relations of two attributes each: (A1; Ai); i = 1; : : : ; n. Comparing decom-
posed instances provides measures that are more re�ned. In the above example,
soundness and completeness will both measure 0.975.

As both D and W may be very large, the estimations of soundness and
completeness should be based on samples of D and W .

Estimating Soundness. To determine the proportion of the stored information
that is true, the following procedure is used:

1. Sample D.
2. For each x 2 Dsample determine if x 2 W .
3. Calculate the soundness estimate as the number of \hits" divided by the

sample size jDsamplej.

Step 1, sampling a database, is simple. But Step 2 is di�cult: we need to deter-
mine the presence of database elements in W without actually constructing it.
This is accomplished by human veri�cation of the sample elements.

Estimating Completeness. To determine the proportion of the true informa-
tion that is stored, the following procedure is used:
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1. Sample W .
2. For each x 2Wsample determine if x 2 D.
3. Calculate the completeness estimate as the number of \hits" divided by the

sample size jWsamplej.

Step 2, verifying the presence of elements in the database, is simple. But Step 1
is di�cult: we need to sample W without actually constructing it. This may
be interpreted as constructing a fair challenge to the database by using various
resources (e.g., by judicious sampling of alternative databases).

The soundness and completeness estimates obtained by these procedures
amount to a simple quality speci�cation for the database.

3 Re�ned Quality Estimation

Information sources are rarely of uniform quality. An information source may
provide information of excellent quality on one topic, and information of poor
quality on another topic. Hence, the overall quality estimations described in the
previous section may prove to be very crude estimates of the quality of speci�c
data.

A substantial improvement over these methods is to partition the database
into areas that are highly homogeneous with respect to their quality: any subarea
of a highly homogeneous area would maintain roughly the same quality as the
initial area. These partitions, and the corresponding quality measurements of
their components, would provide a more re�ned quality speci�cation for the
database. Formal de�nitions for \areas" and \homogeneity" follow.

\Areas" and \subareas" are de�ned with views. Views may involve selection
and projection (projections must retain the key attributes). Homogeneity (with
respect to soundness) of a view v is de�ned as the average soundness di�erence
between the given view and all its possible subviews:

HS(v) = 1=N
NX

i=1

js(v) � s(vi)j

where v1; : : : ; vn are the possible subviews of v, and s(v) is the soundness of v. A
low homogeneity measure indicates that the view is highly homogeneous. It can
be shown that perfect homogeneity, HS(v) = 0, is achieved only when the view
elements are all true or all false. A threshold value of H is used to assure that
all the views of a partition are highly homogeneous. Homogeneity with respect
to completeness is de�ned analogously.

The homogeneity measure H is easy to rationalize, but is expensive to com-
pute. Our overall approach, however, does not depend on a speci�c measure, and
cheaper-to-compute measures could be substituted. The alternative homogene-
ity measure that we use is the Gini Index, known from statistical classi�cation
theory [2, 4]. The Gini index for the soundness of a view v is

2p0 � p1 = 2p1(1� p1) = 2p0(1 � p0)
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where p0 is the proportion of the incorrect elements in v, and p1 is the proportion
of the correct elements in v. The Gini index for the completeness of a view is
de�ned analogously.

A view v would be considered highly homogeneous if all the possible ways of
splitting v into two subviews v1 and v2 will not yield substantial (i.e., above some
threshold) improvement in the homogeneity. The improvement in homogeneity
is measured by the di�erence between the Gini index of the view v and the
combined Gini index of the subviews v1 and v2:

�G = G(v) � �1G(v1) � �2G(v2)

where G(v) is the Gini index of v, and �i = jvij=jvj.
A recursive algorithm for �nding highly homogeneous views is outlined be-

low. Note that the algorithm must be performed separately for soundness and
completeness, and that it is repeated for for each relation. Note also that it is
performed only on samples. The partition views that are discovered by the al-
gorithm are considered to projections (that retain key attributes) and selections.

Algorithm for Finding Quality Speci�cations

{ Input: A sample of the relation; a threshold value.
{ Output: A set of views on the relation that are highly homogeneous with
respect to a quality measure.

{ Step 1: Label the relation as the root node, and place it in a queue Q.
{ Step 2: Retrieve the next node from Q, and make it the current node v.
{ Step 3: Consider all the possible splits of v into two subnodes v1 and v2 and
measure the reduction �G of each split.

{ Step 4: Select a split that maximizes the reduction, and split v.
{ Step 5: If the reduction of this split is greater than the threshold value,
place v1 and v2 in Q. Otherwise, make v a leaf node and go to Step 6.

{ Step 6: If Q is not empty, go to Step 2. Otherwise, stop.

The threshold value is needed to prevent splitting down to individual elements.
Admittedly, Step 3 is computationally expensive and should be re�ned to reduce
search space and make use of heuristic information.

The highly homogeneous partitions obtained with this algorithm and the
soundness or completeness estimates of their views amount to a re�ned quality
speci�cation for the given database.

4 Estimating the Quality of Answers to Queries

An important application of database quality speci�cations is to infer from them
quality speci�cations for answers issued from the database in response to arbi-
trary queries.

To this end we consider each query as a chain of individual relational op-
erations. Each relational operation is extended to produce (in addition to the
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standard result) a quality speci�cation of the result. Consequently, each oper-
ation in the chain receives a quality speci�cation from the previous operation
and uses it to derive a quality speci�cation for the next operation. This allows
us to calculate quality speci�cations of sequences of relational operations (i.e.,
general queries). The relational operations that have been considered so far are
Cartesian product and a combined selection-projection operation.

In other words, the traditional relational model is extended to include quality
speci�cations for each relation instance, and the traditional relational algebra is
extended to derive quality speci�cations of the results of its operations. These
extensions assume that all quality speci�cations use views that are perfectly
homogeneous; i.e., each of their subviews inherits the very same quality.

At the �nal step, the overall quality of the answer is computed from the �nal
quality speci�cation as follows. The views of a quality speci�cation partition the
answer. Hence, each answer is partitioned into views with known (inherited)
quality. The overall quality is then computed as a weighted sum of the quality
of these views. If we have only estimates of quality, then the variance of these
estimates is also calculated. The details of these extensions to the relational
model may be found in [8] and [9].

Quality speci�cations require partitions whose views are highly homogeneous.
(A requirement for perfect homogeneity may result in views that contain very
few tuples, yielding speci�cations that have impractically large number of views.)
On the other hand, the extensions to the relational algebra assumed that the
partition views are perfectly homogeneous. Nonetheless, it can be shown that
these extensions are still acceptable; namely, the result of a projection-selection
on a highly homogeneous view will be (with high probability) also highly homo-
geneous, and the homogeneity of the result of a Cartesian product will be close
to the largest (worst) of the homogeneities of the input views.

5 Experimentation

The viability and performance of the approach and methods described in Sec-
tions 3 and 4 were tested in an experiment. The experiment used synthetic data
and was limited to selection-projection queries (i.e., without Cartesian products).
Only soundness was considered.

For this experiment a simple interactive tooolkit was constructed. The toolkit
leads its users through the following steps:1

1. The user selects a data set, an error pattern, and a sampling rate.
2. The data set is sampled.
3. A quality (soundness) speci�cation is derived.
4. The user submits an arbitrary query.
5. The answer is computed.
6. The quality of the answer is estimated.
7. The estimate is compared with the actual quality.

1 The toolkit can be tried at
http://www.ise.gmu.edu/~irakov/quality/experiment.html.
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The pre-assignment of errors to the selected data set in Step 1 is the only devia-
tion from the actual estimation process proposed in Section 3 and 4. It has two
obvious advantages: it allows skipping the manual veri�cation, and it provides
the actual quality (normally unavailable) for comparison.

The measure of performance used in comparing the estimated quality to the
actual quality is the relative error; i.e., the di�erence between the computed
quality and the actual quality, divided by the actual quality.

Our experimentation lead to several observations. As expected, the error
decreases as the sample size increases. Also, the error decreases as the answer
cardinality increases. Determining the optimal threshold value for the discovery
of the homogeneous views is less straightforward; our experiments indicate that
it is often in the range 0.3{0.5. With sample size of about 15% and answer
cardinality of about 400 tuples, the relative error is in the range of 4%{6%.

6 Application: Harmonization of Inconsistencies

In recent years there has been overwhelming interest in the problem of mul-
tidatabase integration: How to provide integrated access to a collection of au-
tonomous and heterogeneous databases [5, 11]. The usual focus in systems that
address this problem is the resolution of intensional inconsistencies: How to rec-
oncile the schematic di�erences among the participating databases (this issue
is known as semantic heterogeneity). The Multiplex project [7] also addresses
the problem of extensional inconsistencies: How to reconcile the data di�erences
among the participating databases. Speci�cally, Multiplex does not assume that
overlapping information sources are mutually consistent, and it focuses on meth-
ods for harmonizing inconsistent answers into a single authoritative answer.2

The architecture of Multiplex centers on a global database scheme that is
speci�ed in the relational model. Individual information providers may de�ne
any number of views over this global scheme, committing to provide the con-
tents of these views opon request. The participating systems may have vastly
di�erent architectures (i.e., not necessarily relational), but they must deliver
their contributions in the form of tables, which extend the global views that
they agreed to provide. A query over the global relations must then be trans-
lated into an equivalent query over the contributed view de�nitions. Possibly,
some queries might not have a translation, because some of the information
they target has not been provided by any source; such queries would be given
only partial answers. On the other hand, it is possible that some queries would
have multiple answers, because some of the information they target is provided
by more than one source; such answers would require harmonization.

Essentially, the Multiplex approach is to allow a multidatabase designer to
specify a-priori a con
ict resolution strategy whenever the potential for incon-
sistencies exists (i.e., whenever the de�nitions of the contributed views overlap).
One important option in this strategy (among many other options) is to base
the resolution on the quality of the alternatives.

2 The Multiplex server is available at http://www.ise.gmu.edu/~multiplex.
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Assume a query Q has multiple answers A1; : : :An. Assume �rst that there
is no information regarding their quality; i.e., each answer is presented by its
source as if it is sound and complete. This may be formalized as each answer
being presented as both sound and complete: s(Ai) = 1:0 and c(Ai) = 1:0 for
i = 1; : : : ; n. Obviously, unless these answers are identical, these soundness and
completeness claims are mutually inconsistent.

An intuitive heuristic is to let the answer providers vote on the complete
answer space

S
n

i=1Ai as follows:

1. If x 2 Ai then provider i votes \yes" on x (an expression of the claimed
soundness of Ai).

2. If x 62 Ai then provider i votes \no" on x (an expression of the claimed
completeness of Ai).

Where x is an element of the answer space. De�ne:

1. L = fxjx received only 00yes00 votesg
2. U = fxjx received at least one 00yes00 voteg

The true answer A is \sandwiched" between L and U : L � A � U . Hence,
L and U constitute a lower bound and an upper bound for the true answer A.
This \interval" conforms nicely with how unknown values are estimated in other
disciplines. If desired, it is possible to create in-between layers Ei, as well

Ei = fxjx received at least i 00yes00 votesg

thus providing \tiers" within the largest estimate U .
Assume now that each answer Ai has its individual quality speci�cations:

s(Ai) = si and c(Ai) = ci. Using probabilistic arguments, the voting scheme is
extended:

1. If x 2 Ai then provider i votes on x

P (x 2 Ajx 2 Ai) = si

2. If x 62 Ai then provider i votes on x

P (x 2 Ajx 62 Ai) =
(si=ci) � si
(n=jAij)� 1

where n is the size of the entire answer space.

Votes are then combined to provide ranking of the tuples in the answer space.
This is useful for handling queries that pre-specify the desired answer cardinality.
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7 Research Directions

We introduced a new model for data quality in relational databases, which is
based on the dual measures of soundness and completeness. This model extends
the relational model by assigning each relation instance a quality speci�cation,
and by extending the relational algebra to calculate the quality speci�cations
of derived relation instances. The principal purpose of this model is to provide
answers to arbitrary queries with estimations of their quality. We described an
algorithm for deriving initial quality speci�cations for the stored relations from
samples whose quality had been established manually. And we described how
quality estimations are being applied in the Multiplex multidatabase system to
resolve cross-database inconsistencies.

There are many issues that require further investigation, and we mention
here three research directions.

We discussed the advantage of considering the correctness of individual at-
tributes over the correctness of entire tuples. Still, an individual value is either
correct or incorrect, and, when incorrect, we do not consider the amount by
which it deviates from the true value. A possible extension of this work is to
generalize our quality speci�cations and extend our quality estimations so that
they consider the similarity of the stored values to the real values.

Because of the cost of establishing quality estimations, our methods are most
suitable for static information. When the information is dynamic, it would be
advisable to timestamp the estimations at the time that they were obtained and
attach these timestamps to all quality inferences. One may also consider the
automatic attenuation of quality estimations as time progresses.

The cost of establishing quality estimations is due mainly to the human e�ort
that it requires. An attractive alternative is to develop methods that \discover"
the quality \automatically" (or, more accurately, with only limited human guid-
ance). A possible direction is to draw on techniques that have been developed
for data mining and knowledge discovery.
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