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Abstract

The integration of information from multiple databases has been an enduring sub-

ject of research for almost 20 years, and many di�erent solutions have been attempted

or proposed. Missing from this research has been a uniform framework. Usually,
each solution develops its own ad-hoc framework, designed to address the particular

aspects of the problem that are being attacked and the particular methodology that

is being used. To address this situation, in this paper we de�ne a formal model for

multidatabases, which we call Multiplex. Multiplex is a simple extension of the re-

lational model, which may serve as a uniform abstraction for many previous ad-hoc

solutions. Multiplex is based on formal assumptions of integrability, which distinguish

between scheme and instance reconcilability among independent databases. Multiplex

supports database heterogeneity, and it provides several degrees of freedom that allow

it to model actual situations encountered in multidatabase applications. In addition,

in situations in which a single answer is not obtainable (either because the global query

is not answerable, or there are multiple candidate answers), Multiplex de�nes approx-

imative answers. Finally, Multiplex provides a practical platform for implementation.
A prototype of such an implementation is described brie
y.

�This work was supported in part by ARPA grant, administered by the O�ce of Naval Research under
Grants No. N0014-92-J-4038 and N0060-96-D-3202.



1 Introduction

The integration of information from multiple databases has been an enduring subject of
research for almost 20 years. (Surveys of this area include [6, 8, 28, 37]; collections of articles
on this topic include [20, 35, 19, 15]; recent workshops include [36, 14].) Indeed, while
the solutions that have been advanced tended to re
ect the research approaches prevailing
at their time, the overall goal has remained mostly unchanged: to provide 
exible and
e�cient tools for retrieving information from a collection of distributed, heterogeneous and
overlapping databases.1

A standard approach to this problem has been to integrate the independent databases
by means of a comprehensive global scheme that models the information contained in the
entire collection of databases (for example, [23, 38, 7, 30]). This global scheme is �tted
with a mapping that de�nes the elements of the global scheme in terms of elements of the
schemes of the member databases. Algorithms are designed to interpret queries on the
global scheme. Such global queries are translated (using the information captured in the
mapping) to queries on the member databases; the individual answers are then combined
to an answer to the global query. The global scheme and the scheme mapping constitute a
virtual database; the main di�erence between a virtual database and a conventional database
is that whereas a conventional database contains data, a virtual database points to other
databases that contain the data. An important concern is that this query processing method
be transparent; i.e., users need not be aware that the database they are accessing is virtual.

An attractive alternative to this architecture is the federated architecture [18]. Brie
y,
in a federated architecture each database system contains an import scheme which speci�es
the information available to it from external sources (and how it is obtained). In essence,
the import scheme and its mapping correspond to a partial global scheme, and the main
distinguishing feature of the federated architecture is that every database system plays the
role of both global and local database. Other approaches include multidatabase languages
(for example, [27]) and interoperable database systems (for example, [22]).

Much of the work in this area has been on the construction of global schemes (either
comprehensive or partial); the main issue here is the resolution of intensional inconsisten-
cies (semantic heterogeneity) among the member schemes (for example, [5, 16, 22]). Yet
the complementary problem of extensional inconsistencies has received much less attention.
This problem arises when alternative sources with overlapping information provide mutually
inconsistent information, and requires methods for resolving such inconsistencies in global
answers [33, 1].

Inconsistencies result in multiple candidate answers; the dual problem also exists, in
which a global query might have no answer at all. Such situations often occur when a
member database becomes temporarily unavailable. In such cases, rather then reject the
query altogether, it is desirable to approximate the global answer using whatever information
that is available [10, 9].

1More generally, the problem may involve other kinds of information sources as well.
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Often missing from multidatabase research is a uniform framework; each solution formu-
lates its own version of the problem, states its own assumptions, develops its own ad-hoc
model, and proposes its own solutions. Often missing as well is a formal treatment of the
subject, with precise formulation of all assumptions, de�nitions and algorithms.

In this paper we address these and other issues in a model and a system for multi-
databases, which we call Multiplex. Several important features of the Multiplex model are
elaborated below.

(1) Extension of the relational model. Multiplex extends the de�nition of relational
schemes, constraints, queries and answers to an environment of multiple databases, and it
provides a common ground for other de�nitions as they become necessary. The extension also
retains the attractive simplicity of the relational model, with relatively few new concepts.

(2) Formal assumptions of integrability. Most integration methods have operated
under tacit assumptions regarding the mutual consistency of the schemes and/or the in-
stances of the underlying databases. Multiplex de�nes two kinds of inconsistency (intensional
and extensional) and formulates two assumptions of integrability: the Model Consistency
Assumption and the Instance Consistency Assumption. These explicit assumptions, which
have been absent from previous work, provide an unambiguous framework, and help to
classify other integration approaches.

(3) Abstraction of various ad-hoc solutions. The Multiplex model can serve as an
abstract model behind most of the approaches that rely on a comprehensive global scheme.
In addition, the Multiplex model can capture the essential features of federated architectures.

(4) Full support for heterogeneity. The simplicity and popularity of the relational
model makes it an ideal integration model, and the integrated view that Multiplex provides
is indeed relational. Yet, there is no restriction on the underlying data models; the only
requirement is that they communicate their results in tabular form. Consequently, the
member databases in a Multiplex multidatabase may be relational, object-oriented, or, in
general, stored in any software system that can respond to requests with tabulated answers.

(5) Flexibility to model real-world situations. The Multiplex model is distinguished
by several degrees of freedom that allow it to model actual situations encountered in multi-
database applications. Speci�cally,

1. Source unavailability. Multiplex re
ects the dynamics of multidatabase environ-
ments where some member databases may become temporarily unavailable, and some
global queries might therefore be unanswerable in their entirety.

2. Source inconsistency. Multiplex accepts that requested information may be found
in more than one database, and admits the possibility of inconsistency among these
multiple versions.

3. Ad-hoc integration. Multiplex permits ad-hoc global schemes of limited scope, that
cull from existing databases only the information relevant to a given application.
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Intuitively, these degrees of freedom correspond to mappings (from the global scheme to
the member schemes) that are neither total, nor single-valued, nor surjective. We note that
earlier approaches to global scheme integration were based on often unrealistic assumptions
that existing database schemes could be integrated completely and perfectly in a single global
scheme (i.e., mappings that are total, surjective, and single-valued; sometimes even one-to-
one). The complexity of existing databases quite often renders this approach unrealistic. The
abovementioned degrees of freedom are therefore important, as they represent a signi�cant
departure from earlier approaches.

(6) Approximative answers. Because Multiplex mappings are not total, global queries
may be unanswerable; because the mappings are not single-valued and because there is
no assumption of mutual consistency among the member databases, global queries may
have several candidate answers. In both these situations, Multiplex de�nes approximative
answers. The overall concern is that when a single authoritative answer is unavailable, a
multidatabase system should approximate the request as best as possible. For example,
the best approximation in response to a query on the names, salaries, departments and
locations of all employees, could be the names and departments of all employees, the salaries
of some employees, and the locations for none of the employees. As another example, the
best approximation in response to a query on the employees who earn over 50, could be the
employees who earn over 40. Note that the former approximative answer was \less" than
what was requested, whereas the latter was \more" than what was requested, corresponding
to \below" and \above" approximations.

(7)Quick adaptation to evolving environments. Present data environments may be
highly dynamic; for example, newly discovered data sources may need to be incorporated,
the structure of existing data sources may change, or existing data sources may need to
be deleted altogether. In Multiplex such changes are easy to e�ect. As we shall see, the
integration consists of providing pairs of equivalent views: a view on the global database
(\the information needed"), and a view on a member database (\how it is materialized").
The complexity of these views can vary greatly: they could range from a complex calculation,
to a statement that simply denotes the equivalence of two attribute names.

(8) A practical platform for implementation. Finally and most importantly, the
Multiplex model is a practical platform for implementation. Hence , Multiplex is not only
a formal model, but a practical system as well. A fairly stable prototype is available at
http://www.isse.gmu.edu/~multiplex. We note that the software architecture to implement
Multiplex is a relatively simple generalization of a relational database system.

With respect to limitations, we note that Multiplex queries and mappings are based on
conjunctive views (queries may also use aggregate functions). Although a language based
on conjunctive views and aggregate functions does not have the full power of the relational
algebra or calculus, it is a powerful language nonetheless. The Multiplex model involves
several major computations: the translation of a global query to a set of queries on the
member databases, the reduction of a set of database constraints to constraints that are
applicable to a given query, and the calculation of lower and upper approximations of the
requested answer either when this answer is not available or when multiple candidate answers
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are available. Most of these problems were investigated and algorithms are known; e�cient
algorithms for the other problems still need to be developed.

The recent explosion of on-line information sources on the Internet has increased the
interest in this area signi�cantly, with several systems that are roughly in the same class
as Multiplex. These include SIMS [4], TSIMMIS [17], Pegasus [2], UniSQL [21], and the
Information Manifold [3]. These systems are discussed later in this paper.

Section 2 de�nes the database concepts that will be used later. Section 3 discusses
integrability, and de�nes multidatabases and multidatabase queries and answers. Section 4
extends the model to approximative answers. Section 5 describes the Multiplex prototype,
Section 6 compares Multiplex to several other systems that share similar goals, and Section 7
concludes this paper with a brief summary and a discussion of further research issues.

2 Relational Databases

In this section we de�ne the database concepts that will be used throughout this work. Our
formalization of relational databases is mostly conventional, where it might di�er from the
standard de�nitions (e.g., the various view relationships and the treatment of constraints as
views) the new de�nitions are nevertheless strictly within the conventional axiomatization
of the relational model.

2.1 Schemes and Instances

Assume a �nite set of attributes T , and for each attribute A 2 T assume a �nite domain
dom(A), and assume a special value called null and denoted �, which is not in any of the
domains. A relation scheme R is a sequence of attributes from T . A tuple t of a relation
scheme R = (A1; : : : ; Am) is an element of dom(A1)[f�g�� � ��dom(Am)[f�g. A relation
instance (or, simply, a relation) r of a relation scheme R is a �nite set of tuples of R. A
database scheme D is a set of relation schemes fR1; : : : ; Rng. A database instance d of the
database scheme D is a set of relations fr1; : : : ; rng, where ri is a relation on the relation
scheme Ri (i = 1; : : : ; n).

As an example, consider the attribute set T = (Name; Level; Salary) and the domains
dom(Name) = fsmith; jones; browng, dom(Level) = fjunior; seniorg, and dom(Salary) =
f20; 30; 40g. Example of tuples of the relation scheme Emp = (Name; Level; Salary) are
(smith; junior; 20), (brown; senior; 40), and (jones; senior;�). A relation instance is usu-
ally written in tabular form; for example,
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Emp
Name Level Salary
smith junior 20
brown senior 40
jones senior �

is the relation instance that consists of the three aforementioned tuples,

Although the de�nition of a relation scheme maintains an order among its attributes, and
the de�nition of a tuple maintains an order among its values, we shall consider a relation
scheme R with m attributes and an instance r of R interchangeable with a relation scheme
R0 and an instance r0 of R0, if there exists a permutation of the numbers 1; : : : ; m that maps
R to R0 and the tuples of r to the tuples of r0.

2.2 Views and Queries

Let D be a database scheme. A view V of D is an expression of the form:

V = f(a1; : : : ; ak) j (9b1; : : : ; bp)  1 ^ : : : ^  qg

Where the  's may be of two kinds:

1. membership: (c1; : : : ; cl) 2 R, where R is a relation scheme in D (of arity l), and the
c's are either a's or b's or constants,

2. comparative: d1 � d2, where d1 is either an a or a b, d2 is either an a or a b or a
constant, and � is a comparator (e.g., <;�; >;�;=; 6=),

and each a must appear exactly once among the cs, and each b must appear at least once
among the cs.

Since each a appears in exactly one membership formula, it is associated with a unique
attribute. Consider the membership formula (c1; : : : ; cl) 2 R, where R = (A1; : : : ; Al). If
cj = ai, then ai is associated with the attribute Aj. The tuple of the attributes associated
with (a1; : : : ; ak) is the scheme of the view V .2

Given a database instance d of the database scheme D, the view V de�nes the following
relation v:

v = f(a1; : : : ; ak) j (9b1; : : : ; bp)  1 ^ : : : ^  qg

where each occurrence of a relation scheme R in a formula  is replaced by the corresponding
relation instance r. v is also called the extension of the view V in the database instance d.

A query Q on a database scheme D is a view of D. The extension of Q in a database
instance d of scheme D is called the answer to Q in the database instance d.

2We shall use V to denote both the name of a view and its scheme.
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The views and queries de�ned in this way are known as conjunctive views [39]. Although
conjunctive views are a strict subset of the relational tuple calculus, they are a powerful sub-
set, corresponding to the set of relational algebra expressions with the operations Cartesian
product, selection and projection (where the selection predicates are conjunctive). We shall
also use the relational algebra notation in de�nitions of views.

As an example, assume the relation schemes Emp = (Name; Salary;Dname) andDept =
(Dname; Supervisor), and consider the view

Emp sup = f(a1; a2) j (9b1; b2) (a1; b1; b2) 2 Emp ^ (b2; a2) 2 Deptg

The scheme of Emp sup is (Name; Supervisor). Alternatively, this view can be expressed
with this relational algebra expression:

projectName;SupervisorselectEmp:Dname=Dept:DnameEmp�Dept

Assume a view V of a database scheme D. It is possible to add V to the database scheme
D, and to add to every database instance d of D the corresponding relation instance v (the
extension of V in d). It is then possible to de�ne views of the new database scheme. In
particular, it is possible to de�ne views of the view V , and to compute the extensions of
these views in every database instance.

Given views V 0 and V of a database scheme D, V 0 is a subview of V , denoted V 0 v V ,
if there exists a selection-projection view W of V , such that the schemes of V 0 and W are
identical, and in every database instance d of D, the extensions of V 0 and W are identical.
V is then a superview of V 0

Note the di�erence between this de�nition of subview and the common de�nition of
contained view, denoted V 0 � V , which is based on the containment of two sets of tuples.
By restricting W to selection only, the concept of subview is reduced to contained view. As
an example, assuming the same relation schemes, consider these views:

V = projectName;Salaryselect(Emp:Dname=Dept:Dname)^(Supervisor=jones)Emp�Dept

V 0 = projectNameselect(Emp:Dname=Dept:Dname)^(Supervisor=jones)^(Salary<30)Emp�Dept

W = projectNameselectSalary<30V

The view V' (names of employees who are supervised by Jones and who earn less than 30)
is a subview of the view V (names and salaries of employees who are supervised by Jones).
The view W establishes this relationship.

Assume that V 0 is a subview of V and now let W denote a relation scheme consisting
of the attributes that are in V but not in V 0. Without loss of generality, we may assume
that W is the \su�x" of V (i.e., V 0 concatenated with W yields V ). Let w be the instance
of W which has a single tuple composed entirely of null values. The enlargement of V 0 to
V is a view whose scheme is V , and for every database instance d of D, its extension is
v0 �w, where v0 is the extension of V 0 in d. Intuitively, the enlargement of V 0 to V involves
extending the tuples of every instance of V 0 with null values.

6



Assume that V1 and V2 are subviews of V . The subview union of V1 and V2 over V , denoted
V1 t V2, is the union of their enlargements to V . Assume that V1 and V2 are superviews of
V . The superview intersection of V1 and V2 over V , denoted V1 u V2, is the intersection of
their projections on V .3

When the de�nition of V may be assumed from the context, we shall call these operations
simply the subview union and superview intersection of V1 and V2. Note that these operations
generalize the union and intersection operations on views, which are commonly de�ned only
for views that have the same scheme, because when V1, V2 and V all have the same scheme,
these new operations are reduced to the common view operations. As we shall see, the
subview union and the superview intersection will be used to provide lower and upper bounds
of the view V .

Views V1 and V2 of a database scheme D are overlapping, if there exists a view V of D,
such that V v V1 and V v V2, and there exists some instance d of D in which the extension
of V is non-empty.

As an example, assuming the same relation schemes, consider these views:

V1 = projectName;Salaryselect(Emp:Dname=Dept:Dname)^(Supervisor=jones)Emp�Dept

V2 = projectName;DepartEmp

V = projectNameselect(Emp:Dname=Dept:Dname)^(Supervisor=jones)Emp�Dept

The views V1 (names and salaries of employees who are supervised by Jones) and V2 (names
and departments of employees) are overlapping. The view V (names of employees who are
supervised by Jones) establishes this relationship.

2.3 Integrity Constraints

Quite often the information stored in a database must satisfy speci�c relationships. These
relationships, called integrity constraints, restrict the allowable instances of a database. Our
de�nition of integrity constraints follows the one in [31].

An integrity constraint I on a database scheme D is a view of D. A database instance d
of D satis�es an integrity constraint I, if the extension of I in d is the empty set.

As an example, consider the relation scheme Emp = (Name,Level,Title,Salary,Supervisor)
and the integrity constraints

I1 = projectNameselect(Level=junior)^(T itle=manager)Emp

I2 = projectName:1;Name:2select(Level:1=Level:2)^(Salary:16=Salary:2)Emp� Emp

The �rst integrity constraint is satis�ed in any database instance that does not have a tuple
in which Level = junior and T itle = manager. Intuitively, it models a real world restriction

3Note that it may be possible to identify separate tuples by using additional information that may be
available, such as functional dependencies [29].
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that junior employees may not be managers. The second integrity constraint4 is satis�ed
in any database instance that does not have two tuples with the same Level but di�erent
Salary. It models the real world restriction that employees at the same level earn the same
salary; i.e., the functional dependency Level �! Salary.

Of course, the expressive power of integrity constraints corresponds to the expressive
power of queries. For example, if a query can be formulated to retrieve the employees
who are paid more than their supervisors, then the constraint could be formulated that all
employees may not earn more than their supervisors.

Assume a constraint I and a view V of a database scheme D. I is applicable to V , if
I v V .

For example, with the previous relation scheme consider the view

V1 = projectName;LevelselectT itle=managerEmp

The constraint I1 (there are no junior managers) is applicable to the view V1 (the names and
levels of managers).

Assume a constraint I and a query Q on a database scheme D, and assume that I and
Q are overlapping views. Let I 0 = I u Q. I 0, called the reduction of I to Q, is a constraint
applicable to Q.

Given a database scheme D, a set C of integrity constraints on D, and a query Q on D,
the answer q to Q in every instance d of D satis�es the reduction to Q of every constraint
in C.

For example, with the previous scheme consider the view

V2 = projectNameselectSupervisor=jones(Emp)

The reduction of the constraint I1 to the view V2 is given by

I3 = projectNameselect(Level=junior)^(T itle=manager)^(Supervisor=jones)(Emp)

The constraint I2 (there are no junior managers working for Jones) is applicable to the
view V2 (the employees supervised by Jones). The transformation of database constraints
to constraints that are applicable to a given view is similar to constraints residues [12] or
intensional answers [32].

2.4 Database

Finally, a database (D;C; d) is a combination of a database scheme D, a set C of integrity
constraints on the scheme D, and a database instance d of the scheme D that satis�es all the

4The de�nition uses a simple notational device to distinguish between multiple occurrences of an attribute
in the same view.
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integrity constraints in C. A database (D;C; d) acts as a function from queries to answers:
given a query Q on scheme D, it computes its answer q in the instance d. We shall use the
term database model to refer collectively to the scheme and the constraints.

3 Multidatabases

We begin by de�ning derivative databases; i.e., databases derived from other databases.
This notion is necessary to de�ne equivalence between views and constraints from di�er-
ent databases, which in turn provides a method for expressing the commonality of two
database models using model mappings. Model mappings are the basis for our de�nition
of multidatabases. We then formulate the Model Consistency Assumption and the Instance
Consistency Assumption. These assumptions lead to fundamental observations concerning
the integrability of independent databases. We complete the description of the Multiplex
multidatabase model by de�ning multidatabase queries.

3.1 Derivative Databases

Consider a database (D;C; d). Let D0 be a database scheme whose relation schemes are
views of the relation schemes of D.5 Intuitively, the views that transform D to D0 also
imply a set of integrity constraints C 0 and a database instance d0. Altogether, these views
determine a derivative database (D0; C 0; d0). Formal de�nitions follow.

Consider a database scheme (D;C; d). Let D0 be a database scheme whose relations
schemes are views of the relation schemes of D. The database scheme D0 is said to be
derived from the database scheme D. Let d0 be the database instance of D0 which is the
extension of the views D0 in the database instance d. The database instance d0 is said to be
derived from the database instance d. Let C 0 be a set of integrity constraints on the scheme
D0. The integrity constraints C 0 are derived from the integrity constraints C, if for every
database instance d of the scheme D that satis�es the integrity constraints C, the derived
database instance d0 satis�es the integrity constraints C 0.

Altogether, a database (D0; C 0; d0) is a derivative of a database (D;C; d), if its scheme D0

is derived from the scheme D; its constraints C 0 are derived from the constraints C, and its
instance d0 is derived from the instance d. When extensions are ignored, we shall also refer
to the database model (D0; C 0) as a derivative of the database model (D;C).

In this paper we are not concerned with an e�ective procedure for determining whether
one database is a derivative of another, a question that depends on the language for express-
ing views. For our purpose here, it is su�cient to note that a database may or may not be
a derivative of another database.

5Our present de�nition of views permits Cartesian products, selections, and projections, but could be
extended to views that involve additional operations, such as aggregations or attribute renaming.
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3.2 View Equivalence

Let (D1; C1; d1) and (D2; C2; d2) be two derivatives of a database (D;C; d). The derivative
databases are mutually \consistent" in the sense that \equivalent" views are extended iden-
tically in the databases in which they apply, and \equivalent" constraints are satis�ed (or
unsatis�ed) simultaneously in the databases in which they apply. These notions of view and
constraint equivalence are de�ned formally as follows.

A view V1 of D1 and a view V2 of D2 are equivalent, if for every instance d of D the
extension of V1 in d1 and the extension of V2 in d2 are identical. Intuitively, view equivalence
allows us to substitute the answer to one query for an answer to another query, although
these are di�erent queries on di�erent schemes.

A constraint I1 on D1 and a constraint I2 on D2 are equivalent, if for every instance d
of D I1 is satis�ed in d1 if and only if I2 is satis�ed in d2. Intuitively, two constraints are
equivalent if they model the same real world restriction.

Assume that views V1 of D1 and V2 of D2 are equivalent, and denote their view schemes
(A1; : : : ; Ak) and (B1; : : : ; Bk), respectively. Let U1 be a subview of V1 and let U2 be a
subview of V2, and assume that the de�nition of U2 is identical to the de�nition of U1, except
for consistent replacement of every attribute Ai in U1 with the corresponding attribute Bi

in U2. It is easy to verify that U1 and U2 are equivalent as well.

Recalling that constraints are views, a similar result can be stated for two equivalent
constraints I1 and I2 and two identical (up to variable renaming) constraints J1 and J2
which are subviews of I1 and I2.

3.3 Model Mapping

Given two di�erent database models, which are both derivatives of the same data model (the
\reference model"), we express their commonality by means of model mappings.

Assume two database models (D1; C1) and (D2; C2), which are both derivatives of a
database model (D;C). A scheme mapping (D1; D2) is a collection of view pairs (Vi;1; Vi;2) (i =
1; : : : ; m), where each Vi;1 is a view of D1, each Vi;2 is a view of D2, and Vi;1 is equivalent to
Vi;2. A constraint mapping (C1; C2) is a collection of constraint pairs (Ii;1; Ii;2) (i = 1; : : : ; k),
where each Ii;1 is derived from C1, each Ii;2 is derived from C2, and Ii;1 is equivalent to Ii;2.

As an example, the equivalence of attribute Salary of relation scheme Emp in database
schemeD1 and attribute Sal of relation scheme Employee in database scheme D2 is indicated
by the view pair

( projectSalaryEmp; projectSalEmployee )

As another example, given the relation schemes Emp = (Name,Title,Salary,Supervisor) in
database scheme D1, and Manager = (Ename, Level, Sal, Sup) in database scheme D2, the

10



retrieval of the salaries of managers is performed di�erently in each database, as indicated
by the view pair

( projectName;SalaryselectT itle=managerEmp; projectEname;SalManager )

To illustrate a constraint mapping, assume that C1 includes the constraint Bonus � 0:2 �
Y ear Sal, whereas C2 includes the constraint Bonus � 200 �Hour Wage. The commonality
of these constraints is possibly expressed with the pair (for simplicity, we express these
constraints in logic formulas instead of views):

( 0:1 �Y ear Sal � Bonus � 0:2 �Y ear Sal; 200 �Hour Wage � Bonus � 400 �Hour Wage )

As with view equivalences, the statement of constraint equivalences re
ects additional knowl-
edge; in this case, that a work year is equivalent to 2,000 hours.

3.4 Multidatabase

A multidatabase is

1. A scheme D and a set C of integrity constraints on scheme D.

2. A collection (D1; C1; d1); : : : ; (Dn; Cn; dn) of databases.

3. A collection (D;D1); : : : ; (D;Dn) of scheme mappings.

4. A collection (C;C1); : : : ; (C;Cn) of constraint mappings.

The �rst item de�nes the model of a multidatabase, and the second item de�nes the
member databases in the multidatabase environment. The third item de�nes a mapping
from the global scheme to the schemes of the member databases. The fourth item de�nes a
mapping from the global constraints to the constraints of the member databases.

The \instance" of a multidatabase consists of a collection of global view extensions that
are available from the member databases. Speci�cally, the views in the �rst position of the
scheme mappings specify the \contributed information" at the global level, and the views in
the second position describe how these contributions are materialized.

As de�ned in Section 3.3, models (scheme and constraints) mappings allow to substitute
certain views (or satisfaction of certain constraints) in one database with equivalent views (or
satisfaction of equivalent constraints) in another database. In a multidatabase, the former
database is the global database, and the latter is a member database.

This de�nition may be considered a formalization of virtual databases de�ned in [30].
Scheme mapping may be considered an abstraction of di�erent solutions that have been
advanced to the task of relating global schemes to schemes of member databases (e.g., [23,
38, 7, 30]).
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3.5 Integrability Assumptions

The purpose of multidatabases is to integrate information from several, independent databases.
Of course, the problem of integration is trivial, unless the information sources are inconsis-
tent: i.e., a portion of the real world is described di�erently by more than one source. It has
been observed recently [33] that such inconsistencies fall into two categories: (1) intensional
inconsistencies, and (2) extensional inconsistencies.

Intensional inconsistencies, often referred to as semantic heterogeneity, are de�ned as
di�erences in modeling. For example, di�erences in relation schemes, or in the semantics
of individual attributes (e.g., measurement units). Extensional inconsistencies surface only
after all intensional inconsistencies have been resolved, at a point where the systems partici-
pating in a speci�c transaction may be assumed to have identical intensional representation
for all overlapping information. At that point it is possible that two information sources
would provide di�erent answers to the same query.

We shall assume that there exists a single (hypothetical) database that represents the
real world. This ideal database includes the usual components of scheme, constraints, and
instance. Its scheme and constraints constitute the perfect model, and its instance constitutes
the perfect data. We now formulate two assumptions. These assumptions are similar to the
Universal Scheme Assumption and the Universal Instance Assumption [29], although their
purpose here is quite di�erent. These two assumptions are statements of the integrability of
the given databases. They use the de�nition of derived databases in Section 3.1.

The Model Consistency Assumption (MCA). All database models (schemes and
constraints) are derivatives of the real world model. That is, in each database model, every
relation scheme is a view of the real world scheme, and every integrity constraint is implied
by the real world constraints. The meaning of this assumption is that the di�erent ways
in which reality is modeled are all correct; i.e., there are no modeling errors, only model-
ing di�erences. To put it in yet a di�erent way, all intensional inconsistencies among the
independent database models are reconcilable.

The Instance Consistency Assumption (ICA). All database instances are deriva-
tives of the real world instance. That is, in each database instance, every relation instance is
derived from the real world instance. The meaning of this assumption is that the information
stored in databases is always correct; i.e., there are no factual errors, only di�erent represen-
tations of the facts. In other words, all extensional inconsistencies among the independent
database instances are reconcilable.

Although these assumptions have not been articulated before in the context of database
integration, tacit assumptions have often been made. Most previous work on scheme in-
tegration has tacitly subscribed to the Model Consistency Assumption, and the di�erent
approaches to scheme integration are therefore implementations of speci�c techniques for
reconciling modeling inconsistencies. With few exceptions in the areas of logic databases
and data fusion [1], most previous work on database integration has tacitly subscribed to
the Instance Consistency Assumption as well, thus avoiding any possibility of data inconsis-
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tency.

The Multiplex model assumes that the Model Consistency Assumption holds, meaning
that all di�erences among database models (schemes and constraints) are reconcilable, and
that the Instance Consistency Assumption does not hold, allowing the possibility of irrecon-
cilable di�erences among database instances.

In other words, the member databases are all assumed to have models (schemes and
constraints) that are derivatives of a hypothetical real world database model; these models
are related through the multidatabase model, which is yet another derivative of this perfect
database model. But the member database instances are not assumed to be derivatives of
the real world instance.

Clearly, without subscribing to the MCA, it is not possible to integrate a given set of
databases. On the other hand, subscribing to the ICA would not re
ect the reality of
independently maintained databases.

3.6 Discussion

Our de�nition of multidatabases provides four important \degrees of freedom", which re
ect
the realities of multidatabase environments.

First, the mapping from D to the member schemes is not necessarily total; i.e., not all
views of D are expressible in one of the member databases (and even if they are expressible,
there is no guarantee that they are mapped). This models the dynamic situation of a
multidatabase system, where some member databases might become temporarily unavailable.
In such cases the corresponding mappings are \suspended", and some global queries might
not be answerable in their entirety. Similarly, if an authorization mechanism is enforced, a
user may not have permission to some views.

Second, the mapping is not necessarily surjective; i.e., the member databases may include
views that are not expressible in D (and even if they are expressible, there is no guarantee
that they are mapped). This models the pragmatism of multidatabases, which usually cull
from existing databases only the information which is relevant to a speci�c set of applications.
For example, a large database may share only one or two views with the multidatabase.

Third, the mapping is not necessarily single-valued; i.e., a view of D may be found
in several member databases. This models the realistic situation, in which information is
found in several overlapping databases, and provides a formal framework for dealing with
multidatabase inconsistency. Recall that if we do not assume that the Instance Consistency
Assumption holds, then we do not assume that the member instances are all derived from a
single instance. Thus, the inclusion of view pairs (V; V1) and (V; V2) in two scheme mappings
of a multidatabase does not imply that the extensions of V in the member databases are
identical. Rather, it implies that they should be identical.
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Fourth, while the de�nition assumes that the member databases adhere to the relational
model de�ned here, they need not be relational, or even of the same data model. Recall that
the only purpose of the views in the second position of the scheme mappings is to describe
how the views in the �rst position are materialized. Therefore, the member databases need
not be relational, and the views in the second position need not be relational expressions.
The only requirement is that they compute tabular answers.

The results stated at the end of Section 3.2 reduce substantially the number of view pairs
that need to be speci�ed in scheme mappings. For example, when the following view pair is
part of a mapping

( projectName;SalaryselectT itle=managerEmp; projectEname;SalManager )

many other view pairs are implied as well. For example, the equivalence of the attributes
Name and Ename, the equivalence of the views that describe in each database the names
of employees who earn less than 30, and so on. Hence, it is more economical to use the
\largest" views possible in mappings. A similar conclusion holds for constraints mappings.

3.7 Multidatabase Queries

An essential part of the de�nition of a database model is its query language. The de�nition
of a language must provide for syntax, as well as semantics; that is, one must de�ne not only
how queries are written, but also their extension in any database instance. In this section
we consider multidatabase queries.

Syntactically, a multidatabase query is simply a query Q of the scheme D. Intuitively, the
answer to a multidatabase query Q should be obtained by transforming it to an equivalent
query of the views in the �rst position of the scheme mappings (the available information).
These views would then be materialized (using the view de�nitions in the second position of
the scheme mappings), and the translated query would be processed on these materialized
views. Formally, the required transformation of Q is stated as follows.

Let D = fR1; : : : ; Rng denote a database scheme, and let M = fV1; : : : ; Vmg denote a set
of views of D. Translate a given query QD of the database scheme to an equivalent query
QM of the view schemes.

However, a solution to this translation problem may not exist, or there could be multiple
solutions. To observe that multiple solutions may exist, consider a database with a relation
R = (A;B;C) and views V1 = projectA;BR and V2 = projectA;CR, and consider the query
Q = projectAR. Q can be answered from either V1 or V2. To observe that a solution may
not exist, consider a database with two relations R = (A;B) and S = (B;C), and one view
V = R ./ S, and consider the query Q = selectA=aR. Clearly, Q cannot be answered from
the view V , because the join would not necessarily include all of R's tuples.

This translation problem (for conjunctive queries and views) has been addressed by Lar-
son and Yang [24, 25], by Levy et al. [26] and by Brodsky and Motro [9]. We shall assume
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that a translation algorithm exists which is sound and complete; i.e., it computes all the
correct translations that exist.

3.8 Multidatabase Constraints

Recall that a multidatabase query is simply a query Q of the scheme D. To answer this query
it must be translated to a query of the mapped views M (i.e., the views in the �rst position
of the view mappings; the views that can be materialized). In analogy, a multidatabase
constraint is simply a constraint I on the scheme D. This constraint is satis�ed if it can
be translated to a constraint derivable from the mapped constraints (i.e., the constraints in
the �rst position of the constraint mappings; the constraints that are known to be satis�ed).
Formally, the required transformation of the constraints is stated as follows.

Let D denote a database scheme, and let C denote a set of constraints on this scheme.
Let P denote another set of constraints on D. Given a constraint I in C, transform it to an
equivalent constraint expressible in the constraints P .

However, such a transformation might not exist, or there could be multiple transforma-
tions. Hence, in general, it might not be possible to check whether a global constraint is
satis�ed in the multidatabase environment.

Note that under the model Consistency Assumption, the multidatabase and the member
database constraints are all implied by the real world constraints and are therefore mutually
consistent. If the Instance Consistency Assumption holds as well, then every multidatabase
query would have at most one answer, and that answer would satisfy the global constraints.
However, if the ICA does not hold, then it is possible that a multidatabase query would
have several candidate answers. Each of these answers was put together from \answer com-
ponents" that were retrieved from member databases, where they satis�ed the constraints.
Yet it is possible that some of the answers would fail the global constraints.

As an example, consider this simple multidatabase. The database scheme includes the
relation scheme Emp = (Name,Salary,Bonus), and the constraint that bonus is smaller
than salary. The two member databases include, respectively, the relation schemes Sal =
(Name,Salary) and Bon = (Name,Bonus), without any constraints. The view mapping
simply matches projectName;SalaryEmp with Sal, and projectName;Bonus with Bon. Consider
now a multidatabase query to list the Emp relation. Its answer will be formed by joining
the two views in the mapping. While each view is consistent with the member constraints
(there are none), the result may not be consistent with the global constraint.

Hence, the global integrity constraints should be used to prune the set of candidate
answers. Indeed, other than stating the semantics of the database, this is their sole purpose.
To test whether an answer satis�es the global constraints, it is necessary �rst to reduce the
global constraints to constraints that apply to the query (Section 2.3). We are now ready to
de�ne multidatabase answers.
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3.9 Multidatabase Answers

Assume a multidatabase with scheme D, constraints C, and mapped views M . The answer
to a query Q on this multidatabase is the set of answers produced by a sound and complete
translation algorithm, that satisfy the constraints C.

There are two possible cases:

1. When the translation algorithm produces more than one solution, these solutions may
evaluate to di�erent answers. Each such answer is a candidate answer. The answer to
Q is the set of all candidate answers.6

2. When a solution to the translation problem does not exist, the answer to Q is the
empty set of answers. This empty set of answers should be interpreted as answer
unavailable.7

Of course, if we were to subscribe to the Instance Consistency Assumption, then all the
solutions generated in the �rst case would be guaranteed to evaluate to the same answer, and
the answer to Q would be this unique answer. In theory, this answer may be evaluated from
an arbitrary solution to the translation problem. In practice, however, some realistic model
of cost should be adopted, and the cheapest solution should be chosen. Note that under the
Instance Consistency Assumption, it is possible that the translation algorithm will have no
solutions. Hence, the possibilities under the ICA are one answer or no answer.

4 Approximative Answers

From a user perspective, each legitimate database query should evaluate to a single answer.
The multidatabase answers de�ned in the previous section deviate from this ideal in two
cases: when no answer is available, and when several di�erent answers are available. In
either case, it is clear that a single perfect answer (i.e., an answer identical to the real world
answer) cannot be determined from the multidatabase environment. At best, the system can
provide an approximation of this elusive perfect answer. In this section, we discuss important
extensions to the formal Multiplex model presented in Section 3, to handle these situations.

Intuitively, a global query cannot be translated to an equivalent query of the available
views, because the mapping of the global scheme to the member schemes is not total; i.e.,
some information \promised" in the global scheme cannot be \delivered". The most common
reason for this is that some member databases are not responding. But a similar situation
would occur if some of the requested information cannot be delivered due to insu�cient
permissions, or due to some resource having been exhausted before the entire answer could

6Note that possibly none of the candidate answers is consistent with the real world answer.
7Note the di�erence between an empty set of answers and an empty answer.
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be obtained (e.g., time, or some other cost measure). In situations where a query Q cannot
be rewritten as an equivalent query of the available views, an issue of great importance is how
well can Q be approximated using the available views; i.e., what is the best approximation
of Q that can be evaluated from the views?

Intuitively, a global query is translatable to di�erent equivalent queries over the available
views, because the mapping of the global scheme to the member schemes is not single-valued;
i.e., there exists a view of the global scheme that can be materialized in more than one way.
This happens when two view pairs of the mapping have the same view in their �rst position.
Obviously, for every translation that uses one view, there is an equivalent translation that
uses the other view. More generally, it happens when two pairs have overlapping views in
their �rst position, as this implies that the intersection view can be mapped in two di�erent
ways. The most common reason for such multivalued mappings is that the information
resources have overlapping information. Unless the ICA holds, these di�erent translations
could evaluate to di�erent answers. In situations where there are di�erent ways to rewrite
Q as an equivalent query of the available views, and they evaluate to di�erent answers, an
issue of great importance is whether any one speci�c answer should be preferred over the
others, or how the answers could be combined into a single answer.

Our discussion of approximative answers is divided into two. First we assume that the
ICA holds. Next we assume that the ICA does not hold. We begin with concepts that will
be used in both situations.

4.1 Sound and Complete Answers

Recall our assumption of a (hypothetical) database that represents the real world perfectly.
Under the Model Consistency Assumption (which is adopted in Multiplex) all database mod-
els (schemes and constraints) are derivatives of this database, and without loss of generality
we assume now that the model of the available database is identical to the real world model.
Let (D;C; d0) denote the real world database, and let (D;C; d) denote the actual database.
Therefore, the database instance d is an estimate of the real database instance d0.

Consider a query Q on the database scheme D. Let q denote its answer in the database
instance d, and let q0 denote its answer in the database instance d0; i.e., q0 is the perfect
answer, and q is its estimate from the actual database instance. Following [31], we say that
q is a sound answer if q � q0, and q is a complete answer if q � q0. If q is both sound and
complete then q has integrity.

Clearly, the perfect answer q0 lies \between" any sound answer qs and any complete
answer qc: qs � q0 � qc. When the perfect answer cannot be computed from the avail-
able database, sound and complete answers serve as \below" and \above" approximations.
Clearly, it is desirable to obtain the \largest" sound answer and the \smallest" complete
answer. Together, these provide the tightest approximation for the perfect answer.

Consider a subanswer of Q (a subview enlarged with nulls to the scheme of Q). The
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elements of the subanswer are elements of q0; hence the subanswer is a sound answer.8

Consider a superanswer of Q (a superview projected on the scheme of Q). The elements of
q0 are elements of the supernaswer; hence the superanswer is a complete answer. Intuitively,
combining subanswers and superanswers (through union and intersection) will provide us
with the aforementioned \largest' sound answer and \smallest" complete answer.

However, when the ICA does not hold, inconsistencies among subanswers and superan-
swers are possible. For example, we may encounter a subanswer and a superanswer where
the former is not contained in the latter (i.e., some elements of the subanswer are not in the
superanswer).

It is possible to de�ne models where such inconsistencies are resolved by preferring certain
answers over others (based on known external properties of the answers). Multiplex assumes
that no such additional information is available, in e�ect accepting all answers, subanswers
and superanswers as \equally good". Inconsistencies are then resolved on the basis of voting.

Sound answers establish that certain data are included in q0; complete answers establish
that certain data are excluded from q0. Therefore, the soundness or completeness of an
answer may be interpreted as a claim (a vote) on each element of the domain of the answer:
a sound answer is a yes vote for its members, and a maybe vote for all its non-members. A
complete answer is a maybe vote for its members and a no vote for all its non-members.

The assumption that all information is \equally good" is interpreted that each subanswer
claims to be sound, each superanswer claims to be complete, and each answer claims to be
both sound and complete. Our assumption that no additional information is available implies
that all claims have the same likelihood of being correct; i.e., their individual votes have equal
weights.

We now propose the following three-valued operation to combine con
icting votes:

yes no maybe

yes yes maybe maybe
no maybe no maybe
maybe maybe maybe maybe

Brie
y, this operation re
ects the attitude that the �nal verdict should be de�nite if and
only if all votes are consistent. It is easy to verify that this operation is associative.9

Consider an example with two answers q1 and q2. There are four subsets of the answer
space that are treated homogeneously: q1 \ q2, q1 � q2, q2 � q1, and q1 [ q2, . The subsets
for which the vote is yes suggest a sound answer; the subsets for which the vote is not no
suggest a complete answer. It is easy to verify that the elements in q1 \ q2 have a yes vote,
elements in q1 � q2 and in q2 � q1 have a maybe vote, and all other elements have a no vote.
Hence, q1 \ q2 is voted as a sound answer, and q1 [ q2 is voted as a complete answer.

8We consider a tuple with null values to be sound if its non-null values match those of a tuple of q0.
9Associativity assures that the order in which the candidate answers are considered is immaterial.
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4.2 Approximation under the ICA

If we assume that the Instance Consistency Assumption holds, then the only possible anomaly
are queries for which \full answers" (answers that respond to the entire query) are unavailable.10

We de�ne \partial answers" (which the ICA would guarantee to be mutually consistent), and
we show how they should be combined into approximative answers, consisting of the largest
sound and the smallest complete answers.

Because the ICA holds, then every subview of Q that can be expressed with the available
views would evaluate to a sound approximation of the answer to Q, and any superview of Q
that can be expressed with the available views would evaluate to a complete approximation
of the answer to Q.

As an example, assume the global scheme Emp = (Ename; Salary;Department; Location)
and the views

V1 = projectEname;SalaryEmp

V2 = projectEname;SalaryselectDepartment=designEmp

V3 = projectEname;DepartmentEmp

V4 = projectEname;DepartmentselectSalary>40Emp

V5 = projectDepartment;LocationEmp

and consider these two queries:

Q1 = projectEname;Salary;Department;LocationEmp

Q2 = projectEname;DepartmentselectSalary>50^Location=midtownEmp

Consider �rst Q1. Normally, it would be answered by joining V1, V3 and V5. Suppose that V1
and V5 are not available. By substituting V2 for V1, the system can provide the names and
departments of all the employees, and the salaries of some of the employees, but locations
for none of the employees. In e�ect, this information is the union of two subviews of Q1.

Consider now Q2. Normally, it would be answered by joining V1, V3 and V5 and selecting
Location = midtown and Salary > 50. Suppose that V1 is not available. By joining V3 and
V5 and selecting location = midtown the system can provide the names and departments of
the midtown employees. By itself, V4 provides the names and departments of the employees
who earn over 40. Each of these answers contains the requested answer. The intersection of
these two superviews of Q2 provides the requested information for the midtown employees
who earn over 40, a set which is \close" to the answer.

Let D = fR1; : : : ; Rng denote a database scheme, let M = fV1; : : : ; Vmg denote a set of
views of D, and let Q be a query of D. A view V of M is a maximal sound approximation
of Q using M , if V v Q, and for every view V 0 of M : V 0 v Q ) V 0 v V . A view V of M
is a minimal complete approximation of Q using M , if V w Q, and for every view V 0 of M :
V 0 w Q) V 0 w V .

10If one or more full answers are available, then because they are mutually consistent, any answer may be
chosen at random.
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The following results follow from mathematical set theory. The maximal sound approx-
imation of Q using M is the union of all the subviews of Q that are expressible with views
of M :

S
fWM jWM v Qg. The minimal complete approximation of Q using M is the inter-

section of all the superviews of Q that are expressible with views of M :
T
fWM jWM w Qg.

Assume a multidatabase with scheme D, constraints C, and mapped views M . When a
query Q on this multidatabase has no answer, the approximate answer to Q is the pair of
maximal sound approximation and minimal complete approximation:

<
[
fWM jWM v Qg;

\
fWM jWM w Qg > (1)

Observe that, because the ICA holds, when Q is answerable in its entirety, this approx-
imation converges to a single answer, as described in Section 3.9. Note that a minimal
complete approximation is not guaranteed, because a query might have no superviews that
can be expressed with the available views. Assume a database scheme with two relations
R1 and R2 and one view V1 = R1, and consider the query Q = R2. Clearly, Q cannot be
expressed with the available views; moreover, there is no view of the available views that is a
superview of Q. On the other hand, a maximal sound approximation is guaranteed because
a subview (possibly empty) of a query always exists.

4.3 Approximation when the ICA Does Not Hold

Assume now that the Instance Consistency Assumption does not hold. In constructing an
approximation for a query, we must consider both full answers and partial answers (subviews
and superviews of the answer).

Let D = fR1; : : : ; Rng denote a database scheme, let M = fV1; : : : ; Vmg denote a set of
views of D, and let Q be a query of D. The result of the query translation algorithm is three
sets of views:

1. q1; : : : ; qk are the available answers,

2. s1; : : : ; sm are the available subviews of the answer, and

3. c1; : : : ; cn are the available superviews of the answer.

We assume that all these answers are independent of each other; that is, none of the trans-
lations are subviews of each other.

After the appropriate enlargements and projections, we have a total of k+m+n answers
that vote on the entire answer space. Every qi votes yes on its members and no on all other
elements; every si votes yes on its members, and maybe on all other elements; and every ci
votes maybe on its members and no on all other elements. Observe, however, that tuples
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may now be only partially speci�ed (i.e., with null values). The question whether a tuple is
a member of an answer is indeed whether a tuple could be a member of an answer.

The set of tuples for which the vote was unanimously yes is adopted as a sound estimate.
The tuples the vote was not unanimously no is a adopted as a complete estimate:

< ft j t has only yes votesg; ft j t does not have all no votesg > (2)

Observe that these are now estimates of a sound lower bound and a complete upper bound:
since the candidate answers and partial answers are not assumed to be sound or complete,
the lower approximation is not guaranteed to be sound, and the upper approximation is not
guaranteed to be complete.

Our assumption here is the most general: that the ICA does not necessarily hold, and
that the translation algorithm delivers both full answers and partial answers (i.e., subviews
and superviews). When more speci�c assumptions are made, this solution is simpli�ed.
First, if only full answers are considered, then these estimates are reduced, respectively, to
the intersection and union of the full answers: <

Tk
i=1 qi;

Sk
i=1 qi >. Second, if the ICA

holds, but only partial answers are available, then these estimates are reduced, respectively,
to the subview union and the superview intersection (Equation 1). Finally, if the ICA holds,
and a full answer is available, then these estimates converge to the simple answer de�ned at
the end of Section 3.9.

The above estimates are aimed at maximizing soundness (the lower estimate) and com-
pleteness (the upper estimate). It is also possible to de�ne answers \in between" these two.
For example, the set of tuples for which at most one vote was not yes, the set of tuples for
which at most two votes were not yes, and so on. This creates a sequence of containing an-
swers that increase overall completeness while reducing overall soundness. It is then possible
to provide the most sound answer which meets a user requirement on minimal answer size,
or the largest answer which meets a user requirement on minimal soundness, and so on.

As mentioned earlier, when additional assumptions on the candidate answers can be
made, more elaborate consolidation techniques may be developed. Elsewhere, we describe
how the quality of databases can be measured using the dual measures of soundness and
completeness, which estimate the discrepancy between the given database and the perfect
database [34]. For example, a bibliographic source might estimate its collection of citations
on Italian Renaissance to be 85% sound 65% complete, an airline guide might estimate its
listings of transatlantic 
ights on non-American carriers to be 98% sound and 80% complete,
and so on. An essential part of that work is to accurately infer the quality (soundness and
completeness ratios) of the answers to arbitrary queries. In the context of Multiplex, this
means that candidate answers could have di�erent quality ratings. The aforementioned
voting schemes could then be adapted to consider this information.

21



5 Implementation

As explained in the introduction, the Multiplex model is intended to provide both a formal
foundation for research in multidatabases, and a practical architecture for a multidatabase
system. Of course, actual implementations must consider additional details; yet the general
principles of the multiplex model would be upheld. In this respect it is similar to the rela-
tional model itself, whose formal de�nitions must be augmented with practical considerations
in any implementation (e.g., optimization).

A prototype of the multidatabase model described in this paper has been implemented.
This software system is still evolving, and presently it does not yet include integrity con-
straints. A simple diagram of the system is shown in Figure 1.

Figure 1: A diagrammatic view of the Multiplex system.

The architecture and features of the Multiplex DBMS has six functional components:
(1) user interface, (2) query parser, (3) query translator, (4) view retriever, (5) query opti-
mizer, and (6) query processor, and it uses two sources of metadata: (1) a database scheme
�le, and (2) a database mapping �le.

The user interface, the query parser, the query optimizer, the query processor, and the
database scheme �le are functionally similar to those of generic DBMS. There are two signif-
icant di�erences between a generic DBMS and Multiplex: (1) Multiplex does not have any
relations; \instead" it has a scheme mapping �le that matches views of the global scheme with
views of the member databases. (2) Between the parsing and optimizing phases, which in a
generic DBMS follow each other, the Multiplex query translator translates the global query
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to a query of the \available views", and the Multiplex view retriever obtains the necessary
views from the member databases. The translated query is then optimized and processed
in the retrieved views in very much the same way as in a generic DBMS. Indeed, Multiplex
retrieves views into a commercial DBMS (Orcale), and then submits the translated query to
be optimized and processed by this DBMS.

The software architecture of Multiplex is described in a separate document. Here we
mention brie
y several notable aspects of the system:

1. Multiplex uses the HTTP protocol for communicating with the member databases. In
other words, it is a World Wide Web application. The user interface is accessible via
WWW browsers, and client databases are invoked by so-called \cgi scripts".11

2. For its query translation, Multiplex uses the DRP software package [13], which has been
enhanced with many modi�cations and improvements. For example, the translated
query is modi�ed further in an attempt to reduce transmission costs, using techniques
known from distributed query optimization [11].

3. With respect to heterogeneity, presently, Multiplex can retrieve information from six
kinds of sources: (1) relational (using Oracle), (2) object-oriented (using Ode), (3) sim-
ple �les (using Unix shell scripts), and (4) Wide-area information services (WAIS, using
SWISH 1.1 and WWWAIS 2.5) (5) spreadsheets (Microsoft Excell, HTML output), and
(6) menu-based (the XLibris library retrieval system).

4. Multiplex answers (refer to Equation 2) are presented, using color, as two relations:
one contains the sound estimate, the other contains the tuples that augment the sound
estimate to a complete estimate (i.e., the union of both relations is the complete es-
timate), and users are advised that the answer to their query is estimated to contain
the �rst relation plus a subset of the second relation.

5. Multiplex extends the query language of conjunctive queries with aggregate functions.
A language based on conjunctive queries with aggregation provides a fairly powerful
querying tool.

Overall, the linkage between the global database and the contributing sources is rather
quick, requiring only entering pairs of equivalent queries in the mapping �le. The result is
that new information sources may be \plugged-in" very quickly.

6 Comparison with Other Approaches

As mentioned in the introduction, there has been considerable work in the area of multi-
databases. A comprehensive discussion of every project or product is beyond the scope of

11The Multiplex multidatabase system (Version 1.1) is available on the World Wide Web at this location:
http://www.isse.gmu.edu/ multiplex.
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this paper. In this section we compare our model and system to 5 di�ernt works, representing
fairly di�erent approaches.

The TSIMMIS project [17] is an example of a system that is based on mediators and
wrappers. Mediators are software modules designed to deal with representation and abstrac-
tion problems that occur when trying to use data and knowledge resources. Mediators are
understood to be active and knowledge-driven. Wrappers are simpler software interfaces that
allow a heterogeneous information sources to appear as if they conform to a uniform design
or protocol. For example, a wrapper could be built to make a legacy database respond to a
subset of SQL queries, as if it were a relational database. Multiplex makes fairly standard
use of wrappers. With respect to mediators, a Multiplex query (a global view) may be
considered a new \object". Its translation produces an ad-hoc \mediator", describing how
the global object is to be constructed from the presently available sources. The advantage
of such \dynamic mediation" are two: (1) Whereas with \static" mediators all integrated
\objects' must be anticipated and prede�ned, in Multiplex an unlimited number of global
objects may be de�ned spontaneously. (2) Static mediators need to be rede�ned whenever
the available information sources change, whereas Multiplex only needs to have its mapping
updated.

7 Conclusion

The Multiplex model that was described in this paper is both formal and pragmatic. It is
a formal extension of the relational database model to multidatabases. This formalization
re
ects the important pragmatic issues encountered in actual multidatabase environments,
and it can serve as the formal model behind many previous ad-hoc integration models that
have already been designed.

The Multiplex model is also simple to implement, and when various pragmatic issues are
addressed properly, it should prove to be highly practical. Towards this goal, we review here
its present limitations and discuss several open issues.

Multiplex assumes that both the multidatabase queries and the available views are con-
junctive (with aggregate functions). Queries to the member databases (to materialize the
available views) may be arbitrary. The assumption of conjunctive queries and views follows
from current translation algorithms. Multiplex also assumes that the multidatabase con-
straints are conjunctive. Again, the constraints on the member databases may be arbitrary.
The assumption on conjunctive constraints follows from current algorithms for inferring the
constraints that apply to a speci�c query from the global constraints. In addition to the
algorithms just mentioned, we note the still open problem of providing minimal complete
estimations to unavailable answers.

Recall that the only role of multidatabase constraints in Multiplex is to possibly invalidate
candidate answers. A possible direction for research is to use multidatabase constraints also
to \clean-up" global answers that do not satisfy the constraints.
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Multidatabase design may be described as a mediation between the information needed
(as expressed in the global database scheme) and the information available. The media-
tion process generates mappings that match information available (a view of some member
database) with information needed (a view of the global scheme). An interesting issue that
was not addressed in this paper is the design of the mapping. For example, a problem
that might concern the designer is whether a present set of mapped views \covers" the
global scheme. Formally, given a database scheme D = fR1; : : : ; Rng, does a set of views
M = fV1; : : : ; Vmg guarantee that every query of D is expressible with M . Moreover, is
it possible to characterize the queries that are not expressible, thus suggesting a view that
would complement M?

One of the unique features of Multiplex is that it resolves cross-source inconsistencies,
essentially using the approximations in Equation 2. In this approach, every candidate tuple
t is voted upon by each of the candidate answers. Because there are no assumptions on tuple
identi�ers (keys), there is no attempt to coalesce tuples. For example, when two employee-
salary tuples (Jones, 33,000) and (Jones, 35,000) are contributed by two di�erent sources,
each would get only a single \yes" vote, implying that both would only be included in the
upper bound. The present direction in the development of Multiplex is to use information
about keys to coalesce tuples that share the same key. In this process, users would be given
complete control over the resolution of non-key con
icts. In the above example, assuming
that the �rst attribute is a key, the two tuples would be coalesced: the user could resolve
the con
ict in the second attribute in variety of ways; e.g., by designating one source as
preferred, by using the median value (the value most cited), or by averaging the di�erent
values. The strategies for resolving con
icts would be stated as part of the multidatabase
design.
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To do:

1. Comparison with other work.
Discuss Buneman's approximations.
Add references to fusion/inconsistency

2. Architectural diagram(s)

3. When ICA does not hold: the partial answers could be better than the answer.

4. Subview union: do tuples (a; b;�), (a;�; c) merge? No!
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