
1

Composition of Software Architectures from Reusable
Architecture Patterns

Proceedings ACM International Software Architecture Workshop, Orlando, November, 1998

H. Gomaa
Department of Information and Software Engineering

George Mason University
Fairfax, VA 22030-4444

E-mail: hgomaa@gmu.edu

G.A. Farrukh
Technology Research Group

Science Applications International Corporation
Sterling, VA 20164

E-mail: farrukh@saic1.com

ABSTRACT
In this paper a software architecture perspective is taken to designing reusable software
applications. An application domain is defined as a family of systems that have some features in
common and others that differentiate them. During domain engineering, reusable specifications,
architectural design patterns, and component types are developed, which capture the similarities
and variations of the family of systems that compose the application domain. This paper describes
the composition of software architectures from reusable feature based domain specific
architectural design patterns.

Keywords
Software architectures, domain models, software reuse, design patterns

1. Introduction
At George Mason University, a project is underway to investigate software engineering life cycles, methods, and
environments that provide software reuse at the requirements and design phases of the software life cycle in addition to the
coding phase. The reuse-oriented Evolutionary Domain Life Cycle (EDLC) [2] is a highly iterative life cycle that takes an
application domain perspective allowing the development of families of systems. Earlier research addressed the analysis and
specification phases of the EDLC [2,3] and a domain modeling environment to support generating target system specifications
from a domain model [4,5]. More recent research is investigating the design and implementation phases of the EDLC, with
the goal of configuring executable target systems from the reusable software architecture and a library of predefined
component types [6,7]. This paper describes the composition of software architectures from reusable feature based domain
specific architecture patterns.

2. Domain Models, Domain Specific Software Architectures, Features, and Architecture Patterns
The terms used in this paper are defined as follows:
A domain model is an object-oriented analysis model for a family of systems, which explicitly models the similarities and
variations in a family of systems [3]. A domain specific software architecture is an architecture for a family of systems that
describes the composition of the family in terms of components and their interconnections. The architecture is described
using an Architecture Description Language (ADL). Components are kernel, optional, or variant. A domain model is
mapped to a domain specific software architecture.

A feature is an end-user requirement [3,5,9] that is supported in the domain model and domain specific software architecture.
In a family of systems, features may be kernel, i.e., required by all members of the family, or optional, i.e., required by only
some members of the family. Optional features may also be mutually exclusive. A feature may require another feature as a
prerequisite.

A design pattern describes a problem to be solved, a solution, and the context in which that solution works [1,8]. The
description is in terms of communicating objects and classes that are customized to solve a general design problem in a
particular context. An architecture pattern is defined in this paper to be a set of interconnected components specified in
terms of their interfaces and interconnections.

2

In this paper, an approach is described for developing reusable architectures using domain specific architecture patterns in
conjunction with features. The architecture is composed of domain specific architecture patterns. A feature describes the
problem that an architecture pattern solves. The solution given by the architecture pattern is a set of interconnected
components, with a description of the components, their interconnections and their pattern of communication. The context in
which the pattern solution works is described in terms of the feature / feature dependencies, which are the constraints to be
applied when combining features and hence architecture patterns to compose the architecture of a target system (one of the
members of the family). Thus one feature may be a prerequisite for another or one feature may be mutually exclusive with
another.

3. Domain Architectural Design
During domain architectural design, a reusable architecture is developed for the family of systems. Each object type in the
domain model is mapped to a component type and each feature is mapped to a domain specific architecture pattern, showing
the composition of interconnected components required to satisfy the feature.

Architectural description languages (ADLs) [13] separate the description of the overall system structure in terms of
components and their interconnections from the description of the internal details of the individual components. In this paper,
components types and architecture patterns are specified using an ADL, Darwin [11], which is part of the Regis configuration
environment for parallel and distributed programming developed at Imperial College, London [12]. The Regis environment
uses the Darwin ADL for the external specification of each component type, while the internals of component types are
programmed in C++.

A Darwin component specification describes the external specification of the component type. For every simple kernel,
optional, and variant object type in the domain model, an equivalent Darwin component type is developed. The component
interfaces correspond to the object interfaces in the OCDs. Every Darwin component type is defined in terms of the interfaces
it provides and requires from other Darwin component types. An example of a Darwin component type is:
component Line_Assembly_Workstation_Controller (char* wkst_name)
{
 provide Part_Requested <port Part_Request_Type>;
 provide Part_Coming <port Part_Type>;

 require Workstation_Data <port Part_Type>;
 require Part_Sent <port Part_Type>;
 require Part_Request <port Part_Request_Type>;
 require Operation_Request <entry OpReq_Type, OpRes_Type>;
 require Alarms <port Alarm_Type>;
}
For every feature in the domain model, there exists an architecture pattern in the domain architectural design, which is
specified using the Darwin ADL. There is also one architecture pattern supporting the kernel of the domain. The non-variant
components and the interconnections between them are defined in the kernel architecture pattern. For each optional feature,
an architecture pattern is developed, in which the optional and variant components needed to support it are defined as well as
the interconnection between these components. In addition, interconnections are defined between the components in the
architecture pattern and any kernel components used by these components. Interconnections are also defined to any optional
or variant components defined in prerequisite architecture patterns. Specifically, an architecture pattern contains the
following information:
• declaration of component types contained in this architecture pattern
• declaration of architecture patterns required by this pattern, including the kernel architecture pattern
• instantiation of components contained in this architecture pattern
• definition of component interconnections among components contained in this architecture pattern
• definition of component interconnections among components of this architecture pattern and components declared in

required architecture patterns (i.e., prerequisite architecture patterns that this component depends on), including the
kernel architecture pattern.

3

 Receiving
Workstation
 Controller

 Line Assembly
 Workstation
 Controller

 Shipping
Workstation
 Controller

Part_Coming

Part_Request

Part_Sent

Part_Requested

Alarms Workstation_Data

Part_Complete

Alarms

Start_Part

Alarms

Operation_Request

 An example of a Darwin architectural description of an architecture pattern is given above. The High Volume architecture
pattern has three component types: Receiving Workstation Controller, Line Assembly Workstation Controller, and Shipping
Workstation Controller. The instantiation statements are used to create one or more instances of a component type:
 inst
 Receiving_Wkst: Receiving_Workstation_Controller;
 Shipping_Wkst: Shipping_Workstation_Controller;
 Line_Wkst: Line_Assembly_Workstation_Controller(wkst_name);

 Communication between two components in the pattern involves connecting the require interface of the sending component to
the provide interface of the receiving component using the Darwin bind statement. For example, the Line Assembly
Workstation Controller sends the Part Sent message to the Shipping Workstation Controller:
 bind Line_Wkst.Part_Sent -- Shipping_Wkst.Part_Sent;
This pattern depends on two other architecture patterns: the kernel pattern, which contains the kernel components, and the
Factory Production pattern, which contains two other components. Dependencies on components in required patterns must be
explicitly defined. Communication between the Line Assembly Workstation Controller component in this pattern and the
kernel Alarm Handling Server component contained in the kernel architecture pattern is also specified using a bind statement:
bind Line_Wkst.Alarms -- Alarm_Handler.Alarms;
Similarly, a bind statement is needed between the Line Assembly Workstation Controller component in the High Volume
Manufacturing pattern and the Process Planning Server component in the prerequisite Factory Production pattern:
bind Line_Wkst.Operation_Request - Process_Planner.Operation_Request;

 Production
Management

 Process
Planning
 Server

 Receiving
Workstation
 Controller

 Line
 Assembly
Workstation
 Controller

 Shipping
Workstation
 Controller

 Alarm
Handling
 Server

Workstation
 Status
 Server

Operator
Interface

Process_Plan_Request

Operation_Request

Start_
Part

Part_Complete

Part_Coming Part_Sent

Part_Request Part_Requested

Alarms Alarms Alarms Workstation_Data

Alarm_Request Workstation_Request

Factory
Production
Pattern

 High
 Volume
Pattern

 Kernel
Pattern

4

 4. Target System Architecture Composition
 To compose a target system architecture, the user selects the optional features desired for the target system, subject to the
feature/feature constraints. Automated support is provided for this process [5]. Once all the features have been selected for a
target system, the target system architecture is composed from the corresponding architecture patterns. For a High Volume
Manufacturing system, the High Volume, Factory Production, and kernel architecture patterns are needed, as shown below.
The High Volume target system architecture consists of the composition of these three patterns involving the instantiation and
interconnection among the components of the patterns as given below. In particular, note the interconnection between the
components in the High Volume pattern with the components in the prerequisite patterns, as described above. For a Flexible
Manufacturing target system, two of the three architecture patterns, the Factory Production and kernel architecture patterns,
are reused.

 Target system architectures are composed from domain specific architecture patterns, where the constraints for
interconnecting architecture patterns are given by the feature/feature dependencies. Thus the relationship among domain
features, which is defined during domain analysis, is preserved as constraints among architecture patterns. For example, the
High Volume feature requires the kernel and Factory Production features, and correspondingly the High Volume architecture
pattern requires the kernel and Factory Production architecture patterns. As both High Volume and Flexible Manufacturing
systems require the kernel and Factory Production architecture patterns, components in these architecture patterns are reused
in different target systems. Furthermore, the High Volume and Flexible Manufacturing architecture patterns are constrained
to be mutually exclusive by the feature/feature dependencies.

5. Conclusions
This paper has described an approach for composing reusable software architectures from feature based domain specific
architecture patterns. The architecture is composed of domain specific black-box architecture patterns. A feature describes
the problem that an architecture pattern solves. The solution given by the architecture pattern is a set of interconnected
components, with a description of the components, their interconnections and their pattern of communication. The context in
which the pattern solution works is described in terms of the feature / feature dependencies, which are the constraints to be
applied when combining architecture patterns to compose the architecture of a target system.

As part of this research, a software engineering environment has also been developed [7], which integrates the domain
modeling environment [4,5] with the Regis distributed configuration and programming environment [11,12]. Using this
environment, an executable target system can be composed from a reusable software architecture and a library of predefined
component types.

6. Acknowledgments
The authors gratefully acknowledge several valuable discussions with J. Kramer and J. Magee on using Regis for this
research. This research was supported in part by NASA Goddard Space Flight Center, the Virginia Center of Innovative
Technology and DARPA.

7. References
[1] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software,
Addison Wesley, 1995.
[2] H. Gomaa, "A Reuse-oriented Approach for Structuring and Configuring Distributed Applications", Software
Engineering Journal, March 1993.
[3] H. Gomaa, "Reusable Software Requirements and Architectures for Families of Systems", Journal of Systems and
Software, April 1995.
[4] H. Gomaa and L. Kerschberg, “Domain Modeling for Software Reuse and Evolution,” Proc. IEEE CASE ‘95, Toronto,
Canada, July 1995.
[5] H. Gomaa, et. al. "A Knowledge-Based Software Engineering Environment for Reusable Software Requirements and
Architectures," J. Automated Software Engineering, Vol. 3, Nos. 3/4, August 1996.
[6] H. Gomaa and G.A. Farrukh, “An Approach for Configuring Distributed Applications from Reusable Architectures,
Proc. IEEE International Conference on Engineering of Complex Computer Systems, Montreal, Canada, Oct. 1996, pp. 442-
449.
[7] H. Gomaa and G. Farrukh, “Automated Configuration of Distributed Applications from Reusable Software
Architectures”, Proceedings IEEE International Conference on Automated Software Engineering, Lake Tahoe, November
1997.

5

[8] R.E. Johnson, “Frameworks = (Components+Patterns)”, CACM, Vol. 40, No. 10, October 1997, pp. 39-42.
[9] Kang K.C. et. al., "Feature-Oriented Domain Analysis", Technical Report No. CMU/SEI-90-TR-21, Software
Engineering Institute, November 1990.
[10] J. Kramer, J Magee, M Sloman & N. Dulay, "Configuring Object-based Distributed Programs in REX", Software
Engineering Journal, March 1992.
[11] J. Magee, N. Dulay, and J. Kramer, “Structuring parallel and distributed programs,” Software Engineering Journal,
March 1993, pp. 73-82.
[12] J. Magee, N. Dulay and J. Kramer, "Regis: A Constructive Development Environment for Parallel and Distributed
Programs", J. Distributed Systems Engineering, 1994, pp. 304-312.
[13] M. Shaw and D. Garlan, Software Architecture: Perspectives on an Emerging Discipline, Prentice Hall, 1996.

