A Performance Oriented Design Methodology
for Large-Scale Distributed Data Intensive Information Systems

Daniel A. Menascé
menasce@cs.gmu.edu
Dept. of Computer Science
Center for the New Engineer

Hassan Gomaa
hgomaa@isse.gmu.edu
Dept. of Information and Software Systems Engineering
Center for Information Systems Integration and FEvolution

Larry Kerschberg
kersch@gmu.edu

George Mason University

Fairfaz, VA 22050-4444, USA

Abstract

The Earth Observing System (EOS) Data and In-
formation System (EOSDIS) is perhaps one of the
most important examples of a large-scale, geographically-
distributed, and data-intensive systems. Designing such
systems in a way that ensures that the resulting design
will satisfy all functional and performance requirements
is not a trivial task. This paper presents a performance-
oriented methodology to design large-scale distributed
data intensive information systems. The methodology is
then applied to the design of the EOSDIS Core System
(ECS). Performance results, based on queuing network
models of ECS are also presented.

1 Introduction

One of the most important examples of information
systems that are large-scale, geographically distributed,
and handle very large volumes of data is the Earth Ob-
serving System (EOS) Data and Information System
(EOSDIS). EOS is a NASA program mission to study
the planet Earth. A series of satellites with scientific
instruments aboard will be launched starting in 1997.
They will send an estimated terabyte/day of raw data
about the atmosphere, land, and ocean. George Ma-
son University (GMU) was one of three (the others were
UC Berkeley and North Dakota) selected universities to
develop an independent architecture for EOSDIS Core
System (ECS). GMU put together an interdisciplinary
team composed of Earth scientists, computer, and infor-
mation scientists. The Earth scientists of our team came
from GMU’s Computational Science and Informatics In-
stitute, from the University of Delaware, the University
of New Hampshire, and from the Center for Ocean-Land-
Atmosphere Studies (COLA) in Maryland. The authors

of this paper were involved with the computer and infor-
mation aspects of the architectural design. A methodol-
ogy had to be developed to design such a complex system.
This methodology is performance oriented to ensure that
the final design would satisfy the functional performance
requirements of the system. The methodology is gen-
eral and can be applied to the design of any large-scale
distributed data intensive information system. After pre-
senting the methodology, we discuss how it was applied
to the design of ECS.

2 Large-scale distributed data intensive
information systems

This section characterizes a large-scale distributed
data intensive information system (LSS), provides the
principles to be used when designing an LSS, and gives
the logical architecture of an LSS building block (the LSS
Node).
2.1 Characterization of an LSS

Figure 1 depicts the various components of a LSS.
Such systems can be characterized as follows:

e Large number of users: the number of potential
users of an LSS can range from tens of thousands
to millions of users.

e Diverse user population: users may include re-
searchers studying a particular domain of science
running complex simulation models, policy mak-
ers at governmental agencies, international organiza-
tions, private industries, and K-12 students. More-
over, the users of an LSS are assumed to be spread
over very large geographical areas.

e Diversity in user requirements: as a consequence of
the diversity in user population one may also expect
to have a wide variation in user requirements. While
some users may pose very simple queries to the sys-
tem, other users may submit complex requests that
may involve evaluating very complex scientific mod-
els or correlating several image files. User requests
may also vary widely in terms of the amount of data
requested (from a few bytes to hundreds of giga-
bytes). Different types of users may have different
performance requirements and different categories of
users may be assigned different priorities to ensure
that their performance requirements are met.

e High data intensity: raw data is expected to arrive
at an LSS from one or more sources (e.g., instru-
ments aboard Earth orbiting satellites, particle ac-
celerators) at very high rates (e.g., from terabytes to
petabytes (10%° bytes) per day).

e Diversity in data types stored: the holdings of an
LSS are assumed to include a large variety of data
types, such as raw data, large data sets resulting
from applying complex algorithms to the raw data,
images, metadata (i.e., data describing the data, in-
strument, and calibration), free format text, and
multimedia documents.

o Function distribution: the different functions of an
LSS should be implemented by components (LSS
nodes) that are geographically distributed. These
components are connected through one or more in-
terconnected networks. Distribution is important to
provide modularity, fault tolerance, and scalability
to the design of an LSS.

2.2 Design principles for an LSS

An LSS should adhere to the following principles:

e P1. Location Transparency: users should be able to
access any information object, including data prod-
ucts, metadata, and browse data, without having to
know the physical location of these objects. This
implies that data can migrate to achieve load bal-
ance, cope with failures, and improve performance
without disrupting the users of the system.

e P2. Modularity: the architecture of an LSS should
be composed of elements that can be configured to
serve as nodes of different type, different data pro-
cessing capabilities, and different storage capabili-
ties, with the same underlying architecture.

Outstanding Paper Award in the 1995 IEEE ICECCS Conference 2

Node Node i)
@ ® o~ raw data
ingestion

hlgh volume raw data
datasource ingestion
server

Figure 1: A large scale distributed data intensive infor-
mation system

o P3. Minimization of User Connections: the number

of users that will access an LSS is very large. Thus,
the system should allow for users to do as much local
work as possible before a connection to the LSS is
made.

e P/. Load Balancing: the design should allow for the

system load to be automatically balanced among the
network of LSS nodes or even user computing facil-
ities. An LSS should be capable of registering idle
CPU cycles at user facilities and schedule computa-
tions using these cycles.

e P5. Separation of Functions: the functions provided

by an LSS should be divided into related groups and
implemented by separate types of servers. This way,
servers can be optimized to perform the functions
they are best suited for.

e P6. Scalability: an LSS should be scalable to take

into account different requirements that may exist
at different stages of its lifecycle. Requirements may
change as new data sources are incorporated into
the system (e.g., new data collection satellites being
launched) and as new users learn about the system.
The system should be scalable on a selective basis.
This means that if more I/O capacity at a given site
is required, it should be possible to upgrade the I/O
subsystem without necessarily impacting the pro-
cessing and networking capabilities.

Outstanding Paper Award in the 1995 IEEE ICECCS Conference 3

e P7. Support for Heterogeneity: an LSS should sup-
port different types of processing paradigms to ac-
commodate the diversity of processing needs that
may occur within a given complex application or
in the collection of applications submitted to the
system. Machines of different processing paradigms
as well as heterogeneous architectures should be al-
lowed to coexist at the processing servers. The mo-
tivation for heterogeneity has been demonstrated
in [13]. The scheduler should consider the hetero-
geneity when making its decisions. Significant work
has been done in the area of metacomputing [3] and
on scheduling of parallel applications in heteroge-
neous environments [10, 12].

e P8. Minimization of Data Transmission: Data
transmission should be kept to the minimum possi-
ble level. This implies that data sets should be trans-
mitted from source to destination with the minimum
possible number of intermediate nodes. This prin-
ciple is particularly important in a LSS where huge
volumes of data are transported in and out of the
system. A virtual client protocol was proposed [8]
for minimizing data transfers in nested client/server
interactions.

2.3 Logical architecture of an LSS
The basic building block of an LSS is the LSS node

shown in Fig. 2. The functions of an LSS are provided
by a collection of interconnected LSS nodes.

archival metadata processing query

server server server server

to other
networks

router

scheduling configuration catalog user
server management management management
server server server

LSS Node

Figure 2: Logical architecture of an LSS node

The basic logical architecture of such a node includes
a collection of servers that implement the different func-
tions of an LSS. Servers in an LSS node may act as clients
with respect to other servers in the same or other LSS
node. The main types of servers in an LSS node are:

1. Archival server: handles the storage of all types of
data in an LSS node. This type of server may be
further specialized into archival servers of different
types.

2. Metadata server: manages the collection of meta-
data relative to the data managed by the archival
server.

3. Processing server: handles processing requests to
transform data sets of one type into data sets of
another type.

4. Query server: manages the processing of both ad-
hoc and pre-registered queries.

5. Scheduling server: schedules the processing requests
using both local and remote processing servers. The
set of scheduling servers in all LSS nodes, collectively
implement a global scheduler.

6. Configuration management server: monitors the op-
eration conditions of the LSS node, collects statistics
about the utilization of its various resources, and
reconfigures the node when necessary to cope with
failures and performance degradation.

7. Catalog management server: maintains a directory
of all objects managed by the LSS. The collection of
all catalog managers collectively maintain a global
directory of LSS objects. The catalog managers are
used to locate LSS objects.

8. User management server: maintains information
about registered users, their profiles, accounting and
security information.

3 The design methodology

Performance models play a crucial role in the design of
complex information systems. They are useful to distin-
guish among a variety of alternatives, both good and bad,
assess the impact of architectural choices, predict poten-
tial bottlenecks, size hardware components, and evaluate
if a proposed architecture will meet the performance re-
quirements under the expected workload.

This section describes a performance oriented system
design methodology. The main thrust of this methodol-
ogy is to ensure, by successive refinements, that the archi-
tecture meets performance goals set forth in the require-

Outstanding Paper Award in the 1995 IEEE ICECCS Conference

functional . Domain Model
) Specification
requirements
domain model
user Client/Server Software
- model Architecture Specification
3 ‘ \
i client/server software architecture
| \
| Event Sequence System |
' Scenario Architecture
Generation Specification
event sequence system architecture
! scenarios
) Performance Software/Hardware Architecture
== Annotation of) Performance
i Mapping L
Scenarios Characterization

performance annotated scenarios\slllwhitecture performance characteristics

Performance Performance

performance
requirements

Assessment performance Modeling
metrics

Figure 3: Performance oriented design methodology

Outstanding Paper Award in the 1995 IEEE ICECCS Conference 5

ments analysis and specification phase. The methodology
is better explained with the help of Figure 3.

There are three basic inputs to the methodology: func-
tional requirements, performance requirements, and the
user model. These three elements are shown as shaded
clouds in Fig. 3. The functional requirements specify
the functions to be performed by the system. The per-
formance requirements specify the requirements on per-
formance when executing any of these functions (e.g.,
maximum response time values, minimum throughputs).
The user model describes the typical interactions between
users and the system. The user model also provides quan-
titative information on the frequency with which users
interact with the system, as well as the resource require-
ments per interaction (e.g., an Earth scientists studying
ocean circulation models will typically browse twenty 3
MByte images and then will run an ocean circulation
model that requires an average of 500 MFLOPs).

A domain model [4] is developed that reflects, at the
functional level, the interaction of the main system com-
ponents. The resulting domain model is then used to
derive a client/server software architecture specification
which depicts the message exchanges between clients and
servers in the system. This client/server architecture
is combined with the user model to generate event se-
quence scenarios showing each type of user interaction.
These scenarios are further annotated with performance
parameters such as request arrival rates, data volumes
per request, server processing and I/O requirements per
request. The client/server software architecture drives
a first-cut at the system architecture. The client/server
software architecture and the system architecture gen-
erate a software/hardware mapping that associates log-
ical servers to physical elements such as processors and
network segments. The components of the system ar-
chitecture are assigned performance characteristics (e.g.,
network segment speeds, router latencies, I/O subsys-
tem bandwidth, processor speeds). Then, the perfor-
mance annotated scenarios, the software/hardware map,
and the architecture performance characteristics are com-
bined to generate input parameters to a performance
model. The performance model is based on analytical
methods to solve mixed (i.e., open/closed) queuing net-
works [9]. The outputs of the performance model include
response times and throughputs for each type of request
submitted to the system. An analysis of the results of
the performance model reveals the possible bottlenecks.
If the architecture does not meet the performance objec-
tives, architectural changes at the hardware and/or soft-
ware level have to take place. These changes are guided
by the outputs of the performance model. These changes

are reflected back into the architecture and into the event
sequence scenarios. Successive iterations ensure that the
final design meets the performance objectives. Since the
design process is iterative, one starts with a first cut at
the architecture and goes through successive refinements
to meet the performance goals. These refinements may
imply combining servers into a single physical comput-
ing element, changing the software architecture by creat-
ing additional servers, or changing the underlying hard-
ware characteristics (e.g., internal network bandwidth,
processing element speeds, and I/O subsystem rates).

The methodology just described was used by the au-
thors in the design of an alternative architecture for EOS-
DIS Core System (ECS). The next section briefly de-
scribes EOSDIS and ECS. The remaining sections of the
paper discuss how the methodology was applied to the
specific design.

4 EOSDIS and ECS

Raw data coming from the NASA satellites is first re-
ceived at the White Sands complex in West Virginia. Af-
ter some initial level of calibration, it is sent for archival
and further processing at a collection of eight centers
called Distributed Active Archive Centers (DAACs). The
raw data received by the DAACs is called Level 0 data.
Level 0 data is used to generate Level 1 data, defined as
reconstructed, unprocessed instrument data at full res-
olution, time-referenced, and annotated with ancillary
info. Environmental variables at the same resolution and
location as the Level 1 data are derived to generate Level
2 data. A set of variables mapped onto uniform space-
time grid scales, with some consistency and completeness,
are called Level 3 data. Finally, the model output or re-
sults from analyses of lower level data is referred to as
Level 4.

About 500 NASA selected scientists will determine
which standard data products are to be generated by
ECS. The facilities where these scientists are located are
called SCFs (Science Computing Facilities).

The rest of this paper shows how the methodology
was applied to the design of ECS. Many details had to
be ommitted due to space limitations.

5 ECS node logical architecture

The building block of the ECS architecture is called
an ECS node, which is a collection of servers of different
types. This is ECS’s specialization of an LSS node. ECS
nodes can be configured to serve as DAACs, Auxiliary
Data Centers, or even SCFs. ECS nodes are connected

Outstanding Paper Award in the 1995 IEEE ICECCS Conference 6

to the user community by a User Network (e.g. Inter-
net/NII) and are connected to other ECS nodes by the
ESN network.

An ECS node (see Fig. 4) has three main subsystems:
ECS Object Management Subsystem (EOMS), Product
Processing Subsystem (PPS), and Information Manage-
ment Subsystem (IMS). Each of the main subsystems is
implemented by a collection of servers to be described
below. All servers can communicate with one another
through an ECS Node local high speed network. Through
this network, and ECS node is connected to the Inter-
net and to the Earth Science Network (ESN). Note that
Fig. 4 represents a logical not a physical design. In or-
der to map the logical design into a physical design one
would need to specify the mapping of the various servers
into actual machines, the capabilities of these machines
in terms of processing and I/O characteristics, and the
topology and bandwidth characteristics of the ECS Node
Local high speed network. More details on the specific
functions of each server are given in [8].

An ECS node may have any number of servers of each
type. The actual number of servers is determined by the
workload imposed on a given ECS node. A server may
act as client for a server on the same or on a remote
ECS Node. For example a Product Processing Server,
acting as a client, may request a data product from sev-
eral Archival Servers. Some of them could be local to the
Product Processing Server and others could be remote.
It is important to realize that servers are just logical con-
cepts. The mapping between servers and actual machines
determines the actual physical architecture of the system.

Although it is conceivable for all servers of an ECS
node to be mapped into a single computer, this is not
desirable for various reasons: the need for redundancy,
adequate performance, and the need to accommodate sig-
nificantly different processing, communications, and I/O
requirements.

6 A performance model for ECS

Performance models of computer systems are used to
predict how performance metrics such as throughput, re-
sponse times, queue sizes, and component utilizations,
vary as a function of the workload and system parame-
ters. The analysis discussed in this section is based on
queuing network based analytic models [9]. We present
here a brief overview of the concepts behind queuing net-
work (QN) models as well as the terminology to be used.

A queuing network (QN) is a network of queues
through which customers flow. Customers may have dif-
ferent meanings in different contexts. In the EOSDIS

context, a customer may be a request to retrieve a browse
image from a certain DAAC, or a request to generate a
given standard product. A gqueue is composed of a ser-
vice center and a waiting line of customers waiting to use
the service center. Service centers may be used to repre-
sent a processing element, components of an I/O subsys-
tem, or a communications network. Since customers may
vary significantly in terms of the demands placed on the
different service centers, one should aggregate all simi-
lar customers into groups called customer classes. All
customers of the same class are represented by a set of
values that represent the average demand on each service
center over all customers of the class. In the context of
EOSDIS, each different scenario generated from the user
model may give rise to a different customer class. Some
customer classes may be considered to be open in the
sense that the customers arrive from outside the system,
get served by a subset of the service centers, and leave. In
this case, there is not limit on the number of customers in
the queuing network. An example of an open class could
be “browse image queries from K-12 students”. Other
classes may be considered to be closed in the sense that
there is always a constant number of customers of this
class in the queuing network. This type of class is used
to represent work that is performed on a routinely and
continuous basis. An example of this would be “process-
ing of standard product MOD28”.

Each customer class is specified by the following pa-
rameters:

e type: open or closed.

e intensity parameters: arrival rate of customers in the
case of open classes and number of customers in the
case of closed classes.

e service demands: total time spent per customer re-
ceiving service from each service center. Note that
the time spent waiting to get access to the service
center is not part of the service demand.

The total time spent by a customer in the queuing
network is the response time for the customers’ class.
The response time is composed of two basic components:
queuing time and service time. The queuing time, com-
puted by queuing network based analytic models, is a
function of the contention for access to the several ser-
vice centers. The service time is a function of the total
service demand placed on all resources. Another perfor-
mance measure of interest is the throughput per customer
class. This measures the average number of customer re-
quest completions per unit time. For open classes, the
throughput is simply equal to the arrival rate. For closed

Outstanding Paper Award in the 1995 IEEE ICECCS Conference 7

ECS Node . .

QPS: Quick Look Processing
Server

PPS: Product Processing
Server

PSS: Product Scheduling
Server

HDS: Historical Data Server

OSS: Offline Staging Server

AS: Archival Server

BS: Browse Data Server

MS: Metadata Server

QLS: Quick Look Archival
Server

SDS: Support Data Server

AGS: Algorithm Server

SIMS: Server IMS

GTS: Global Thesaurus
Server

DRS: Directory Server

PMS: Performance
Monitoring Server

CIMS: Client IMS
EOSX: EOSDIS Access
Module

Internet

ESN

Figure 4: ECS node architecture.

classes, the throughput is computed by a queuing net-
work based analytic model.

For each customer class, one must specify the required
service levels, i.e., the upper and lower bounds on per-
formance. Examples of service levels in the context of

EOSDIS are:

e level 1 data must be made available within 48 hours
of observation.

e levels 2 and 3 standard products should be made
available within 96 hours of observation.

e A DAAC should be capable of generating quick-look
products within 1 hour of receipt of necessary input
for 1% of EOS instrument data.

Each user category may exhibit several important pat-
terns of interaction with ECS. Each scenario is assigned
to a class of customers in the queuing network model.
Each scenario is mapped to the ECS architecture so that
service demands can be obtained for the different archi-
tecture components and subsystems. Given that the ar-
chitecture under consideration is a client-server based ar-
chitecture, multiple time-line diagrams such as the one
shown in Fig. 5 were used to map each scenario to the
architecture. In this figure, an external request submit-
ted to the Client IMS implies in three requests sent to
Server IMS, one request sent to the Level 2 Metadata

replyto
el Teue exlernealp ryequest

ClintIMS L T s e

l 1 l
!
i
i ' h |
|
'
! I
| . ! ' '

Server IMS

Level 2
Metadaa i ;
Server !

Levd 2
Browse Daa
Server

Figure 5: Multiple time-Line diagram

Outstanding Paper Award in the 1995 IEEE ICECCS Conference 8

Server, and one request sent to the Level 2 Browse Data
Server. Note that servers may act as clients when re-
questing service from other servers. The dashed arrows
from a server (acting as a client) into a server indicate a
request. These arrows are annotated with performance
related data such as the probability that service is re-
quested from this server, number of bytes involved in
the request, and resource demand parameters related to
the service requested from the server. The dashed ar-
rows from a server to another (acting as a client) indicate
replies from previous requests. These arrows are also an-
notated with the number of bytes sent back to the client.

An analysis of each scenario determines the average
number of requests per server as well as the average ser-
vice demand per server. This analysis also determines
the average load imposed on the various communication
subsystems of ECS.

6.1 Performance model parameters

The service demand parameters per server for each
scenario (customer class in the queuing network model)
are obtained as follows. Let

e b(r): data volume to be retrieved by request r (in
MBytes),

e ¢(r): computational demand associated with request
r (in millions of floating point operations),

e C;: computing speed of server ¢ (in MFLOPS),
e JO;: I/0O bandwidth of server i (in MBytes/sec),

e p; ;(r): probability that request r is addressed to

server j,
e R;: set of requests generated by client i,

. D;’TOC: processing service demand at server j,

e DO: 1/0 service demand at server j.

Then we can write that,

proc _ pij(r) x c(r)
Dt = 3) g
Vi rER; ¢
10 _ bi,j(r) X 0{r) T) x b(r)
D = > 3
Vi T€R;

6.2 The queuing network model

The performance model used for the ECS architecture
is a mixed queuing network: some classes are open and
some are closed. The data product generation classes

are closed classes while queries (e.g., browse and meta-
data) are represented as open classes. Any server (in
the client/server architecture) is represented by two de-
vices in the QN: a computing device and an I/O device.
The various communication networks are represented by
load dependent devices in the QN. Figure 6 contains a
diagram of the queuing network model used to represent
the ECS architecture.

DAACnN

DAAC 2 |

£
e

& %
|
—
| |
ESN
tolfrom ECS
DAAC 1 users
server 1 server 2 server n

)| | fac)| Fac)

local DAAC communications
network

L)

Figure 6: Queuing network model of ECS

6.3 Performance results

Several numerical examples are used in this section to
evaluate the architecture of ECS. A baseline model using
the values derived from the user model generated by the
team of Earth scientists was evaluated first. Modifica-
tions analysis were then carried out to gauge the sensitiv-
ity of the architecture to different changes in the work-
load and architecture components. It should be noted
that the results shown below do not represent actual ECS
performance since, at the time of this study, we did not
have enough data available. Some assumptions had to
be made to compensate for missing values. These as-
sumptions are likely to change. At any rate, the results
presented here indicate the type of analyses that can be
made with the performance models described in the pa-
per.

The following numerical data are considered in the
baseline model:

e Local Area Network Bandwidth: 100 Mbps based on

Outstanding Paper Award in the 1995 IEEE ICECCS Conference 9

a 2-channel FDDI backbone.

e ESN bandwidth: 45 Mbps assuming T3 lines be-
tween the major DAACs.

e Processing capacity: 60 GFLOPS, based on the
achieved performance for a CM-5 running the LA-
PACK benchmark [1].

e I/0 bandwidth: 70 MBytes/sec.

For the purposes of this study we considered the fol-
lowing scenarios:

e El-Nino and Southern Oscillations (ENSO) [5].

o World Ocean Circulation Ezperiment and the Trop-
ical Ocean Global Atmosphere (WOCE/TOGA) [6].

e Global Ocean Observing System (GOOS) [6].
o Terrestrial Scenario (Land_use) [7].

e Push scenario for Level 0 products (L0). This sce-
nario represents the workload imposed on ECS by
the continued arrival, processing, and storage of level
0 products. The numerical data for this workload is
derived from tables available in HAIS documents.

e Push scenario for Level 1 and higher data products
(L1-L4). This scenario represents the workload im-
posed on ECS by the processing and storage of lev-
els 1 through 4 data products. The numerical data
for this workload is derived from tables available in
HAIS documents.

We show here two examples of the results obtained in
our analysis. An extensive set of curves and tables can
be found in [11]. The value of the workload intensity for
the user scenarios which are not varying were chosen so
that they represent a light load. For the open scenarios
(ENSO, WOCE/TOGA, GOOS, and Land_use) the ar-
rival rate was fixed at 0.1 requests/sec except when this
is the varying parameter. For the L0 and L1-L4 scenarios
the number of jobs in the system was fixed at 10 except
when this is the varying parameter.

Figure 7 displays the impact of varying the arrival
rate of ENSO requests on the response time of GOOS,
Land_use, and L1-L4 classes. As it can be seen, response
times smaller than 4 sec for Land_-Use and GOOS are
supported for arrival rates of ENSO requests not exceed-
ing 0.25 req/sec. After 0.4 req/sec for ENSO requests,
the system saturates and the response times increases at
a very fast rate. The L1-L4 workload is rather insensi-
tive to ENSO requests until the onset of saturation. Fig-
ure 8 investigates the impact of consolidating some of the
DAACs. In particular, the loads of DAACs MSFC, JPL,
UAF, and CU are assumed to be assigned to LaRC. This

Effect Of ENSO Arrival Rate on Response Time
10 T T T T T T

[y
(=]
N
T
i

L1-L4 g

//

Response Time (secs)

1
Land_Use. -

N
o
T

P
e

===~ "Goos

0 I I I I I I

L L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Arrival Rate (requests/sec)

10

Figure 7: Impact of ENSO arrival rate on GOOS, L1-L4,
and Land_Use scenarios.

reduces the number of DAACs from 8 to just 5. The ver-
tical axis in the figure is the response time ratio S defined
as

_ Response Time Under the Consolidated Scenario

Response Time Under the Original Scenario

A value of S greater than 1 indicates that consolidating
DAACSs increases the response time. It should be noted
that when DAACs are consolidated, there are two effects
on performance: some servers will become more heavily
utilized as a result of the additional load. This makes
S to be greater than 1. On the other hand, for some
scenarios, the network demand is reduced by the DAAC
consolidation. This reduces the response time under the
consolidated scenario and makes S < 1. Asseen in Fig. 8,
performance for the ENSO workload becomes twice as
bad when the arrival rate of GOOS requests approaches
0.55 req/sec. The LO workload is only slightly sensitive
to DAAC consolidation.

7 Conclusions

A characterization of large-scale, distributed, and data
intensive information systems was given. A general
methodology to design such systems was discussed. The
methodology is performance-oriented. Through the iter-
ative use of performance models to carry out performance
prediction, the system design is refined through succes-
sive steps. This ensures that the final design will satisfy

Outstanding Paper Award in the 1995 IEEE ICECCS Conference 10

Response Time Ratio(S) as a function of GOOS Arrival Rate
5 T T T T T T T T

45- q

w
3l
T
m
P4
73]
(@]
i

Response Time Ratio (S)
o ¢
T
i

/
55l WOCE/TOGA
s - /\
pud L \\
2,) 7z ~ 7 \ -
Ve _ s \
7 ‘ - - - \
154 , il L
R L Lo
1 - 7\ - 7\ L L L Il ,b/\/
0 01 02 03 04 05 06 07 08 09

GOOS Arrival Rate (requests/sec)

Figure 8: Impact of GOOS arrival rate on ENSO, L0,
and WOCE/TOGA scenarios.

the functional and performance requirements. EOSDIS
Core System was used as a case study to illustrate the
application of the methodology. The performance results
are preliminary at this stage.

Acknowledgements

This work was partially supported by Hughes Applied
Information Systems (contract ECS-00010). The authors
would like to acknowledge the many useful discussions
they had with the ECS Independent Architecture Study
Group at GMU led by Menas Kafatos. In particular, they
would like to thank Jim Churgin, Ferris Webster, Berrien
Moore III, and Jim Kinter, for explaining them the dif-
ferent aspects of Earth science and scientist requirements
for EOSDIS. They would also like to thank Sudhanshu
Killedar for writing the programs that implement the an-
alytic model.

References

[1] Dongarra, J., H-W. Meuer, and E. Strohmaier, TOP
500 Report 1993.

[2] NASA, EOS Reference Handbook, Washington, DC,
August 1993.

[3] Freund, R. F. Optimal selection theory for supercon-
currency. Proc. Supercomputing’89, IEEE Computer
Society/ACM Sigarch, Reno, NV. 1989, pp. 699-703.

[4] Gomaa, H., L. Kerschberg, and V. Sugumaran, A
Knowledge-Based Approach for Generating Target
System Specifications from a Domain Model , Proc.
IFIP World Computer Congress, Madrid, Spain,
September 1992.

[5] Kinter, J., B. Doty, and J. Shukla, Meteorological Sce-
narios, The GMU ECS Federated Client-Server Ar-
chitecture, Final Report, Chapter 5, Part I, George
Mason University, August 31, 1994.

[6] Churgin, J. and F. Webster, Oceanographic Scenar-
i0os, The GMU ECS Federated Client-Server Archi-
tecture, Final Report, Chapter 4, Part II, George Ma-
son University, August 31, 1994.

[7] Moore III, Berrien, Terrestrial Scenarios, The GMU
ECS Federated Client-Server Architecture, Final Re-
port, Chapter 3, Part II, George Mason University,
August 31, 1994.

[8] Menascé, D. A., L. Kerschberg, and H. Gomaa, ECS
Client-Server Systems Architecture, The GMU ECS
Federated Client-Server Architecture, Final Report,
Chapter 2, Part I11, George Mason University, August
31, 1994.

[9] Menascé, D. , V. Almeida, and L. Dowdy, Capac-
ity Planning and Performance Modeling: from main-
frames to client-server systems, Prentice Hall, Engle-
wood Cliffs, NJ, 1994.

[10] Menascé, D., S. Porto, and S. Tripathi, Static
Heuristic Processor Assignment in Heterogeneous
Multiprocessors, International Journal of High Speed
Computing, Vol. 6, No. 1 (March 1994).

[11] Menascé, D. and S. Killedar, Performance Modeling
of ECS, The GMU ECS Federated Client-Server Ar-
chitecture, Final Report, Chapter 5, Part III, George
Mason University, August 31, 1994.

[12] Menascé, D.A., D. Saha, S. Porto, V. Almeida, and
S. Tripathi, Static and Dynamic Processor Scheduling
Disciplines in Heterogeneous Parallel Architectures,
J. of Parallel and Distributed Computing, V. 28, No.
1, July 1995.

[13] Menascé, D. and V. Almeida, Cost-Performance
Analysis of Heterogeneity in Supercomputer Archi-
tectures, Proc. of the ACM-IEEE Supercomputing’90
Conference, New York, NY, USA, Nov. 12-16, 1990.

