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Uncertainty in timing properties (e.g., detection time of external events) is a common occurrence in embedded

software systems, since these systems interact with complex physical environments.

Such time uncertainty leads to non-determinism. For example, time-triggered operations may either gener-

ate different valid outputs across different executions or experience failures (e.g., results not being generated

in the expected time window) that occur only occasionally over many executions. For these reasons, time

uncertainty makes the generation of effective test oracles for timing requirements a challenging task.

To address the above challenge, we propose Stochastic Testing with Unique Input Output Sequences, an

approach for the automated generation of stochastic oracles that verify the capability of a software system

to fulfill timing constraints in the presence of time uncertainty. Such stochastic oracles entail the statistical

analysis of repeated test case executions based on test output probabilities predicted by means of statistical

model checking. Results from two industrial case studies in the automotive domain demonstrate that this

approach improves the fault detection effectiveness of tests suites derived from timed automata compared to

traditional approaches.
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1 INTRODUCTION

Software timeliness, i.e., the capability to fulfill timing constraints, plays a crucial role in embedded
software systems. Timing constraints are used either to specify the period of system operations, a
typical requirement of real-time systems or to specify the system response time, a necessity when
an embedded system provides safety critical functionalities.

Although embedded systems are designed to ensure that their operations work within pre-
specified timing constraints, most of the timing specifications provided by software engineers
are characterized by uncertainty [12]. An example of uncertainty is given by timing constraints
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expressed as ranges (e.g., the detection time of external events takes anywhere between 3,400 and
5,100ms).

Time uncertainty in software specifications can be due to multiple reasons, including design
choices. A common example of such design choice is the polling of sensors at a certain frequency.
This case is very common in embedded systems, because many real-world events can only be de-
tected by polling the environment in a control loop, and, therefore, one cannot precisely determine
when the system will be able to observe and process them. Example cases are the sensing systems
developed by our industrial partner IEE [23], an automotive company located in Luxembourg,
which provides the case study systems considered in this article. The systems developed by IEE
detect events such as overheating or the presence of hands on the steering wheel of a car. Time
uncertainty may, in turn, lead to non-deterministic system behaviors that make the definition of
test oracles challenging (e.g., determining whether it is acceptable for the system not to detect an
error condition after a certain time delay).

The automated generation of oracles for non-deterministic systems where the source of non-
determinism is time uncertainty has only been partially targeted by existing research. Indeed, most
of the existing work on verifying the timing properties of software systems focuses on schedulabil-
ity analysis for real-time systems [14]. These approaches address a different problem than ours, i.e.,
the development of techniques to test or verify that software tasks are able to meet their deadlines.

The few approaches that address the problem of testing software timeliness, in the presence
of non-deterministic behaviors caused by time uncertainty, rely on feedback-driven model-based
test input generation [12, 19, 25]. These approaches generate test inputs during test case execution
based on the feedback from system execution. Models of the expected software behavior (e.g.,
timed automata) are used to identify system inputs and to validate system outputs. Unfortunately,
feedback-driven approaches are often inappropriate for testing real-time systems because of the
latency introduced by runtime processing of outputs and generation of test inputs, which comes
in addition to the latency of test drivers and stubs.

An additional limitation of most existing timeliness testing approaches, including feedback-
driven approaches, is that they do not fully address the problems related to time uncertainty. More
specifically, they verify neither whether the frequency of appearance of the expected outputs com-
plies with the specifications, nor whether the observed results can provide statistical guarantees
for the validity of the test outcome. To the best of our knowledge, the only approach that deals
with the effects of time uncertainty [20] focuses on the generation of complete test suites built to
uncover specific types of faults and cannot be adopted to generate oracles for arbitrary test suites.

In this work, we assume that the timing constraints of the system are specified by means of
timed automata, since this is one of the most common formalisms adopted for this purpose [38].
Timed automata are a type of extended finite-state machines (EFSM) enabling the specification
of guard conditions on clock variables and thus are adequate to define timing constraints. The
type of uncertainty that we consider in this article is common in industrial settings and relates
to time-triggered state transitions (i.e., internal transitions that are enabled when an inequality
constraint on clock variables evaluates to true), which are a typical cause of uncertainty [12]. For
example this is the case when the arrival time of events is unknown or the duration of operations
is uncertain.

Traditional approaches that derive test cases from finite-state machine (FSM) specifications rely
on Unique Input-Output (UIO) sequences to derive effective test oracles [15, 26]. Unfortunately,
existing approaches for deriving UIO sequences from FSM and EFSM [31] do not work with timed
automata and, more specifically, cannot deal with time-triggered state transitions. Furthermore,
they verify neither whether the frequency of appearance of the expected output over multiple
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executions of a same test case complies with the specifications, nor whether the observed results
can give statistical guarantees for the validity of the test outcome.

In this article, we propose Stochastic Testing with Unique Input-Output Sequences (STUIOS), an
approach for the automated generation of effective oracles for timeliness test cases derived from
timed automata in the presence of time uncertainty. As main components of the approach, we
introduce the concepts of stochastic test cases and probabilistic UIO sequences (PUIO sequences). A
PUIO sequence is a unique input-output sequence with an associated probability of observing the
given output sequence in response to the inputs. The underlying idea is that PUIO sequences en-
able fault detection by determining if the output sequences observed through testing are unlikely,
based on multiple executions of the same test cases. Stochastic test cases extend the same idea to
the entire test case. A stochastic test case specifies the expected probability of observing a specific
output sequence given a test input sequence and, in addition, includes a PUIO sequence that is
used to check if the test execution has brought the system to the expected state.

STUIOS receives as input the timing specifications of the system expressed as a network of
timed automata and a set of test cases derived from these specifications, either manually by the
software engineers or automatically. STUIOS generates stochastic test cases that include the input-
output sequences from the test cases provided by software engineers and automatically derives
corresponding expected probabilities of observing the test output and PUIO sequences.

One significant contribution and innovation is that STUIOS combines the principles of UIO tech-
niques and statistical model checking to address the challenges stated above. STUIOS automatically
identifies UIO sequences from timed automata by relying on the simulation and verification capa-
bilities of the UPPAAL model checker. Furthermore, it derives probabilities for both the identified
UIO sequences and the provided test cases by exploiting the features of statistical model checking
software (the statistical extension of UPPAAL). Finally, STUIOS identifies failures by repeatedly
executing test cases with the associated PUIO sequences and making use of statistical hypothesis
testing to determine the test verdicts (pass or fail).

The article proceeds as follows. Section 2 introduces the context and motivations of our work.
Section 3 provides background information about the modeling and testing of timing specifica-
tions. Section 4 discusses the issues to expect when generating oracles from timed automata with
uncertainty. Section 5 presents the STUIOS approach and its steps. Section 6 discusses the effec-
tiveness of the approach when time uncertainty is not explicitly modeled in timed automata. Sec-
tion 7 reports on the empirical results obtained from two industrial case studies in the automotive
domain. Section 8 discusses related work. Section 9 concludes the article.

2 MOTIVATION AND CONTEXT

The context of our research is that of embedded safety-critical systems (e.g., automotive con-
trollers). An example is Hands Off Detector (HOD [22]), an embedded system developed by our
industrial partner IEE, which we use as running example in the article. HOD is an embedded sys-
tem that detects whether the car driver has both hands on the steering wheel; this device is used
to enable and disable automatic braking in cars with driver-assist features to ensure safety (a car
should not automatically brake if the driver does not have both his hands on the steering wheel).
Another example case is BodySense [21], the other case study system used in our empirical eval-
uation, which is a seat occupancy detection system; BodySense is described in Section 7.

Embedded systems are typically implemented by means of a main control loop triggered with a
constant frequency (e.g., every 1,700ms in the case of HOD). At the beginning of the control loop,
the system executes the main system task, which performs all the safety critical operations of the
system (e.g., error detection). Other functionalities (e.g., message handling) are implemented by
lower-priority tasks executed after the end of the main system task. The beginning of the main
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Fig. 1. Effects of cyclic sampling on time uncertainty.

task is guaranteed to be triggered with a constant frequency by the underlying real-time operating
system.

Embedded safety-critical systems are typically required to identify error conditions in a timely
manner. Error conditions may alter the proper functioning of the system and, for this reason, com-
panies developing embedded systems put particular attention to ensure that the system complies
with the requirements specifications regarding the detection of error conditions (including detec-
tion time). As running example for this article, we use timing properties concerning the qualifica-
tion (i.e., confirmation) of temperature errors (e.g., overheating) in HOD. For example, the accuracy
of HOD might be altered by overheating caused by a malfunctioning steering wheel heater. In the
case of HOD, temperature error conditions are detected by polling data from a temperature sen-
sor. More precisely, at every execution of the main task, HOD processes the value recorded by
the temperature sensor to detect the presence of high or low temperature. A temperature error is
qualified if it remains present in the system for at least two executions of the main control loop
(i.e., 3,400ms), and it is similarly disqualified if it remains absent for at least two executions of the
main control loop.

What complicates the testing of timing requirements in embedded systems is time uncertainty,
which introduces non-deterministic software behavior. Time uncertainty may depend on multiple
factors including polling operations, delays on the communication bus and multithreading. In the
case of HOD, time uncertainty is due to the fact that polling operations are repeated according
to a specified frequency (i.e., the duration of the main control loop) while error conditions (e.g.,
temperature errors in HOD) occur at unpredictable times during the loop execution. The effect of
this uncertainty in HOD is that the time required to qualify temperature errors can be specified
only in terms of a time range. More precisely, the timing requirements for HOD indicate that
temperature errors should be qualified between 3,400ms and 5,100ms after they arise in the system
while, ideally, one would like errors to be qualified in two cycles (i.e., 3,400ms after they arise).

Figure 1 shows an example of non-deterministic outputs during the execution of a test case that
simulates overheating. Case 1 in Figure 1 shows that a temperature error is qualified in 3,400ms
if the error condition (e.g., overheating) appears when the system executes the instructions that
detect the error condition. Case 2 in Figure 1 shows that when the error condition appears just
after error detection instructions, then the temperature error is only detected after 5,100ms. This
happens because the error will be detected only in the next execution of the main control loop
(i.e., after 1,700ms), and then it will be qualified after two executions of the main control loop (i.e.,
after 3,400ms). Case 3 in Figure 1, instead, shows that if the error condition appears 850ms after
error detection (i.e., in the middle point between two consecutive error detection operations), then
a temperature error will be qualified in 4,250ms. This happens because the error will be detected
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only in the next execution of the main control loop (i.e, after 850ms), and then it will be qualified
after two executions of the main control loop.

In the presence of time uncertainty, software engineers need automated test oracles capable of
determining if the non-deterministic outputs produced by test case executions are the result of time
uncertainty or rather due to other factors such as software and hardware faults. For example, in the
case of a test case that simulates overheating (Figure 1), engineers are interested in automatically
determining if the non-deterministic outputs observed during multiple executions of a same test
case follow the expected time distribution. Since time uncertainty depends on polling operations
repeated with a constant frequency, the uncertainty is characterized by a uniform distribution
(i.e., in Figure 1, Case 1 should occur as frequently as Case 2); if the observed HOD outputs are not
uniformly distributed, then the system does not behave as expected. In the context of embedded
systems, variations in the frequency of the expected outputs might be triggered, for example, by
configuration errors (e.g., number of execution cycles required to qualify a temperature error in
HOD), unstable clocks, bus faults, or programming errors. The testing process should be capable
of detecting these problems to ensure safety.

In this article, we address the problem of generating test oracles that are robust to time un-
certainty. The proposed solution works in contexts where timing requirements (including time
uncertainty) are modelled by means of timed automata.

3 BACKGROUND

This section provides background information about the modeling of timing specifications with
timed automata (TAs) and the modeling of test cases derived from such TAs.

3.1 Modelling of Timing Specifications

The timing properties of a system are typically modelled using networks of TAs or UML state-
charts. In this article, we make use of the former and adopt the formalization from UPPAAL [8].

A timed automaton (TA) is a tuple (L, l0,C,A,V ,E, I ), where L is a set of locations, l0 ∈ L is the
initial location, C is a set of clocks, A is a set of actions, V is a set of state variables, E is a set of
edges between locations, and I is a set of invariants assigned to locations. Each edge may have an
action, a guard and a set of updates. Updates are expressed in form of assignments that can reset
clocks or state variables. Each location might be associated with a state invariant that constrains
clocks or state variables.

With a network of TAs, the state of the system is captured by the values of state variables and
the set of active locations across all the TAs.

Actions are used to synchronize different TAs. Each action is expressed with the notation event!

or event?. The notation event! indicates that the event is sent when the edge is fired, while the
notation event? indicates that the edge is fired only if this event has been received from another
automaton.

Figure 2 shows a simplified TA for HOD. The TA in Figure 2 captures the timing properties
concerning the qualification (i.e., confirmation) of temperature errors (e.g., overheating). In the TA
in Figure 2, the variable x is a clock variable, while isQualified and qc are two state variables.
The former indicates if a temperature error is qualified while the latter counts the number of times
temperature errors have qualified so far.

In Figure 2, the edge that connects locations Absent and Present can be fired only on the
reception of the event tempOutOfRange, which indicates that the temperature is out of the valid
range (e.g., because of overheating). The event tempOutOfRange is an abstraction used to capture
the fact that an error condition is present in the system.

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 1, Article 1. Pub. date: November 2018.



1:6 C. Wang et al.

Fig. 2. Automaton that captures the timing requirements for the qualification of temperature errors in HOD.

The location Present has an invariant that indicates that the clock variable x must be below
5,100ms when the location is active. The guard condition on the edge between the location Present
and PresentQualified indicates that this edge cannot be fired if the clock x is below 3,400. In
effect, the edge between locations Present and PresentQualified can be fired anytime when
x has a value between 3,400 and 5,100. In other words, this edge models a time-triggered state

transition whose time range is captured by the location invariant and the guard condition on the
edge.

TAs are usually modeled by including time ranges to allow for time uncertainty. As mentioned
before, in the case of HOD, time uncertainty is driven by the polling of the environment for data.

When time uncertainty depends on polling operations repeated with a constant frequency, then
the uncertainty is characterized by a uniform distribution. This is the case of HOD, where polling
operations are guaranteed to be performed every 1,700ms, since they are executed within the main
task (see Section 2). Uncertainty regarding functionalities that are not executed with a constant
frequency might not be characterized by a uniform distribution. For simplicity, though in the rest
of the article we focus on the former case, the proposed approach can be applied to systems charac-
terized by different types of distributions, which can be modelled in TAs as indicated in Section 5.2.

3.2 Modelling of Test Cases

In the presence of software specifications elicited by using TAs or FSMs, software engineers derive
test cases according to criteria whose objective is to ensure the compliance of the software with
its specifications. A commonly adopted criterion, for example, is edge coverage, which consists in
generating test cases so that all the edges of the timed automata are covered, at least once, during
test execution.

We model test cases derived from TAs as sequences of input/output pairs. Each pair indicates the
output expected to be generated by the system after a given input. In embedded systems, inputs
and outputs typically correspond to system events (e.g., messages and interrupts). However, since
TAs include state variables, the expected output indicated in a test case also includes the expected
value of observable state variables. In addition, since edges in TAs might be triggered after specific
time delays, inputs might be expressed as wait operations.

An example test case is shown in Figure 3. This test case is derived from the TA in Figure 2 and
checks if temperature errors are qualified on time. This test case covers the edges of the shortest
path from location Absent to location PresentQualified and checks if state variables and outputs
contain the expected result after each input or time delay. The first line of the test case indicates
that the event tempOutOfRange has no visible effect on the system, because this event simply
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Fig. 3. A Test Case that checks if TemperatureErrors are qualified on time. We use the symbol “/” to separate
inputs from the expected outputs.

indicates that an error condition is present (i.e, the temperature is out of the valid range), but we
cannot know in advance when the system will detect it. As a consequence, the observable state
variables isQualified and qc should remain set to false and zero, respectively. The second line
of the test case indicates that after 5,100ms, the values of these two variables should be set to true
and one, respectively. This line of the test case checks if the system is capable of qualifying an
error in at most 5,100ms (which corresponds to the maximum allowed error qualification time).

3.3 Testing with UIO Sequences

The state of the actual software system that implements the timing specifications expressed in TAs
is partially observable. More specifically, not all the state variables used to implement the actual
system can be inspected during testing. Unobservable variables capture state information that in
the TAs is modelled thanks to the use of locations. This limited observability makes oracles that
simply check if the expected output sequence has been generated by test inputs ineffective. More
precisely, these oracles may not detect transition faults [29, 39], which manifest themselves when
the active location of a TA following a state transition is incorrect but the system updates its state
variables and generates outputs as expected.

In the case of HOD, a transition fault may keep the system in location Present for more than
the allowed time (5,100ms). In the presence of this transition fault, HOD would behave as if the
edge between locations Present and PresentQualified was turned into a self-loop that begins
and ends in location Present. This fault cannot be detected with the test case in Figure 3, which
simply checks the values of the observable state variables isQualified and qc after waiting for
5,100ms, since these two variables are updated as expected.

When specifications are given in the form of FSMs, common approaches for testing in the pres-
ence of partial observability are based on the identification of UIO sequences [15, 26]. A UIO se-
quence is composed of a sequence of inputs and corresponding outputs generated by the system.
It provides the guarantee that the expected output sequence is observed only when the system is
in a specific known state. An oracle, derived from a UIO sequence, is executed after a test case
by checking if the system is in the expected state. To do so, inputs specified by the UIO sequence
are sent and the system response is compared to the expected output sequence that contains the
values assigned to the observable state variables. We model UIO sequences in the same way as test
cases, i.e., by using sequences of IO pairs that include time delays and observable state variables.
Details about the generation of UIO sequences for TAs are provided in Section 4.

4 TESTING TIMED AUTOMATA WITH TIME UNCERTAINTY: OPEN ISSUES

We now discuss the challenges to consider to derive reliable oracles from TAs in presence of time
uncertainty.

4.1 Generation of UIO Sequences from TAs

Since TAs include state variables, the output generated by a TA while processing a certain input
sequence depends on both the active location and on the values assigned to state variables.
UIO sequences derived from TAs are thus context dependent, i.e., they characterize a state of the
system, not just a location, and their output depends on the test inputs already processed [30].
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Fig. 4. UIO sequence derived for the test case in Figure 3.

Table 1. Output Generated by the UIO Sequence in Figure 4 When the Location Reached
after the Execution of the Test Case in Figure 3 Differs from PresentQualified

Input Absent Present AbsentQualified

<wait for 5100ms> isQualified == true, qc == 1 isQualified == true, qc == 2 isQualified == false, qc == 1

<tempInRange> isQualified == true, qc == 1 - -

<wait for 5100ms> isQualified == true, qc == 1 - -

Bold red values highlight the differences with the expected output; the symbol “-” is used when a previous input in the

sequence leads to an output different than the one expected by the UIO (i.e., to detect a transition fault).

This characteristic is shared with UIO sequences derived from FSMs including state variables
(e.g., EFSM). As a result, we generate a different UIO sequence for each test case of the test suite.

Figure 4 shows a UIO sequence derived for the test case of Figure 3 that checks if the system
has reached location PresentQualified after test execution. The first line of the UIO sequence
indicates to wait for 5,100ms, after which the system should keep location PresentQualified
active (this cannot be observed by a tester) and keep the variables isQualified and qc set to true
and one, respectively. The second line of the UIO sequence indicates to remove the error condition
from the system (e.g., by resetting the temperature of the test environment within the valid range).
Since, after this operation, the system should not make any change to any observable state variable,
the values of the variables isQualified and qc are expected to remain set to true and one. The
third line of the UIO sequence indicates to wait for 5,100ms, after which the system should make
location Absent active (this cannot be observed by a tester), set the variables isQualified to
false while variable qc should remain set to one.

The UIO sequence in Figure 4 ensures that the execution of the test case terminates in location
PresentQualified. To clarify this better, we show in Table 1 the output generated by the system
when the inputs of the UIO sequence are processed in locations different than PresentQualified.
The input on the first line of the UIO sequence in Figure 4 leads to an output different than the
expected one when the active location is Present or AbsentQualified (see first row of Table 1).
The input on the third line of the UIO sequence, instead, helps determine if the test erroneously
terminated in location Absent (the generated output is different from the expected one, as shown
in the last row of Table 1).

Unfortunately, there are no approaches focused on deriving UIO sequences from TAs charac-
terised by time uncertainty. In the case of TAs without uncertainty (e.g., TAs that do not include any
time-triggered transition), existing approaches for generating UIO sequences from EFSMs could
be applied because of the similarity between EFSM and TA formalisms. For example, the approach
proposed by Robinson et al. [31] requires deterministic EFSMs with transitions that are always
triggered by some input event.

4.2 Soundness and Effectiveness of Test Oracles

One of the effects of time uncertainty is non-determinism, which might lead to ineffective and
unsound test oracles.

Test oracles are ineffective when they are not capable of discovering the presence of a failure.
Consider, for example, a faulty implementation of HOD that may take up to 6,000ms to qualify
an error. In this case, the test case and the UIO sequence in Figures 3 and 4 will be able to detect
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Fig. 5. Test case that verifies the qualification of a temperature error that appears for a short time. The bold
line matches the UIO sequence that checks if the test case brings the system to location AbsentQualified.

the fault only when HOD takes more than 5,100ms to qualify an error during test execution. If
the fault manifests itself in a non-deterministic way, then a single test case execution may not be
able to detect its presence. To address this problem, when testing timing requirements, multiple
test case executions might thus be needed, and test oracles should therefore provide a verdict (i.e.,
pass or fail) only when there are statistical guarantees about the accuracy of results.

Software testing is unsound if test oracles can flag valid software as faulty. In the presence of
non-determinism caused by time uncertainty, a same test input sequence may lead to multiple
valid output sequences and bring the system to multiple valid locations. For example, in the case
of HOD, this happens with the test case shown in Figure 5, which checks if the system behaves
properly when a temperature error appears just for a short time. More precisely, this test case
checks if the system can qualify a temperature error that remains active just for 4,250ms. If HOD
does not qualify the temperature error between 3,400ms and 4,250ms, then the test case in Figure 5
will fail when checking the condition isQualified==true, qc==1. A single failure of this test
case does not indicate the presence of a fault in HOD, since the specifications indicate that HOD
can take more than 4,250ms to qualify an error.

To correctly evaluate test results, we thus need to know the expected probability for the system
to respond with a specific output sequence. In the presence of time uncertainty, an implementation
is faulty if and only if, over multiple executions, the various possible outputs are not observed with
their expected frequency. In the context of embedded systems, slight variations in the frequency
of the expected outputs should be detected (see Section 2). This observation shows the need for
oracles to take into consideration the probability of observing a given output to determine if a test
case passes or fails. We will refer to such test cases as stochastic test cases in this work.

To compute the expected frequency of a test case output, additional information about the dis-
tribution of time-triggered transitions might be needed. In the case of HOD, for example, time-
triggered transitions are fired following a uniform distribution, because temperature events can
happen at any time during the polling loop execution, with equal probability. For this reason, we
expect that the test case in Figure 5 should pass in almost 50% of the executions, since 4,250 is the
middle point between 3,400 and 5,100.

4.3 Scalability of Testing

Verifying that the system generates all possible, valid outputs and has reached all the expected
states after processing the same test inputs, might easily lead to scalability issues. This may be the
case if each test case needs to be executed multiple times, until every possible location is reached,
including the least probable ones.

To deal with this problem, and thus balance testing cost and test effectiveness, we assume that
engineers are interested in verifying if the system has been able to reach a single specific location,
with the expected frequency, which we refer to as desired final test location, which is the location
that one would ideally like to reach all the time but cannot because of non-determinism. Neverthe-
less, it is the location that is reached with the highest probability, according to the specifications.

In the case of the test case in Figure 5, for example, location AbsentQualified is the location
that is most likely reached based on the sequence of outputs specified by the test case. Location
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Fig. 6. An overview of the STUIOS approach. The values in the figure are based on the running example
presented in the article.

AbsentQualified is thus the location to be verified by means of an UIO sequence (in bold in
Figure 5).

5 THE STUIOS APPROACH

5.1 An Overview

Figure 6 shows an overview of the STUIOS approach. STUIOS works in two phases: (1) it generates

stochastic test cases by extending the test cases provided by software engineers, and (2) it executes

the stochastic test cases and attempts to determine whether they pass or fail.
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STUIOS receives as input a test suite, which we assume to be derived from specifications elicited
as a network of TAs. Any test criterion can be used to generate the test suite. We simply expect
that each test case of the test suite is defined as an IO sequence (i.e., a sequence of pairs <input> /

<expected output>), which matches a feasible path of the automata, as described in Section 3.2. An
example test case is shown in Figure 3. For each test case, we also expect that software engineers
specify the desired final test location.

STUIOS wraps the given test cases into stochastic test cases that handle time uncertainty. We
define a stochastic test case as a test case that includes an IO sequence that covers a specific test
scenario, followed by a probabilistic UIO sequence (PUIO sequence) that checks if the desired final
test location has been reached. A stochastic test case specifies both the probability of observing
the test scenario output and the probability of observing the output of the PUIO sequence. The
former is necessary to deal with the effects of time uncertainty on the test case execution. Indeed,
in the presence of non-determinism caused by time uncertainty, a same input sequence may lead
to multiple, valid, output sequences. The probability of observing the output of the PUIO sequence
addresses the effects of time uncertainty on the output generated by the UIO sequence.

To generate stochastic test cases, STUIOS performs four steps (shown in Figure 6). In Step 1.1,
STUIOS identifies a UIO sequence for each desired final test location of each test case provided
by software engineers. In Step 1.2, STUIOS builds corresponding PUIO sequences, which means
that it calculates, for each UIO sequence, the probability of observing its output when the UIO se-
quence is executed after the corresponding test case. In Step 1.3, STUIOS calculates the probability
of observing the output expected for each test case. Steps 1.1 to 1.3 rely on the simulation and
verification capabilities of the UPPAAL model checker [8]. We use confidence intervals to capture
the probability of observing the test case output and the UIO output, since this is how UPPAAL
calculates them (see Section 5.2 for details). For example, the probability of observing the output
of the test case T1 in Figure 6 is between 0.46 and 0.56 with 95% confidence level.

In Step 1.4, STUIOS builds stochastic test cases. Each generated test case specifies the probability
of observing the output sequence and includes the PUIO sequence that checks if the desired final
test location has been reached.

In the second phase (Execute Stochastic Test Cases in Figure 6), STUIOS executes each stochastic
test case against the software implementation multiple times (until we have sufficient statistical
guarantees about the test outcome, as discussed below) and collects test results. STUIOS relies on
statistical hypothesis testing to decide when an accurate test result can be obtained from multiple
executions of the same test case. Test execution is stopped when we have sufficient statistical
guarantees that the test case either passes or fails. More specifically, a test case fails if its output
or the PUIO output is not as frequent as expected, considering a confidence interval, or otherwise
passes.

After a brief overview of the capabilities of UPPAAL exploited by STUIOS, the following sections
provide additional details about the activities performed by STUIOS.

5.2 Probability Estimation with UPPAAL

To generate PUIO sequences (Steps 1.1 and 1.2 in Figure 6) and calculate test case probabilities
(Steps 1.3), STUIOS relies on UPPAAL [8], which is a model checker for networks of TAs that
provides model checking and statistical model checking capabilities. More specifically, STUIOS
makes use of the verification of reachability properties, the simulation of the model execution,
and the estimation of the true probability of a model property (i.e., the probability that a property
holds).

We briefly describe the probability estimation feature of UPPAAL, as some readers may not be
familiar with it. UPPAAL can estimate the probability that a given property of the system holds
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within a certain time frame. More precisely, UPPAAL returns a confidence interval; for example,
UPPAAL can estimate that the probability that a specific location of a network of TAs be reached
in 4,250 clock ticks is between 0.46 and 0.56.

A confidence interval indicates that the estimated parameter (e.g., the frequency of reaching
a given location) has a probability pc of lying in it (pc is known as the confidence level). We
used pc = 95% in our experiments. To estimate such intervals, UPPAAL relies on an algorithm
that resembles Monte Carlo simulation [11]. More precisely, given a time frame specified by
the end-user, UPPAAL simulates the triggering of the TA transitions and then determines if the
property holds (e.g., by checking that a location has been reached within the given time frame).
UPPAAL performs multiple simulation runs sequentially and, after each run, computes the
confidence interval using the Clopper-Pearson “exact” method [10]. The simulation terminates
when the interval reaches a length specified by the engineer (in our experiments, we used 0.1 by
following common practice [11]).

UPPAAL assumes that the values of the clock variables that control time triggered transitions
follow a uniform distribution within the range specified in the TA (e.g., 3,400 and 5,100 in the
case of location Present in Figure 2). This assumption holds for HOD and in general for systems
with similar characteristics, i.e., embedded controllers that poll the environment for inputs, where
we have no information about the arrival time of inputs. However, TAs produced with UPPAAL
can be modeled in such a way that time triggered transitions might follow any distribution; this
is achieved by defining custom functions to control the delay in transitioning to locations with
invariants including clock variables (see Reference [11] for more details).

5.3 Generating Stochastic Test Cases

We now describe the steps followed by STUIOS to generate stochastic test cases (Steps 1.1, 1.2, 1.3,
and 1.4 in Figure 6). Figure 7 shows these activities in an algorithmic form.

5.3.1 Identify UIO Sequences (Step 1.1). To generate UIO sequences, STUIOS performs three
activities: (1) It determines the context (active locations and values of state variables) of each UIO
sequence, (2) it identifies all the potential UIO sequences for a given final test execution state, and
(3) it identifies a valid UIO sequence among these potential UIO sequences (i.e., it ensures that the
UIO sequence generates a unique output to detect transition faults).

Activity 1 of Step 1.1-Determining the Context of a UIO Sequence. UIO sequences for TAs are
context dependent (Section 4.1). Since STUIOS uses UIO sequences to determine if the execution
of a test case has brought the system into a given location, the context of a UIO sequence consists
of the state of the system after the execution of the corresponding test case (hereafter final test
state). In TAs, the state of the system is represented by both the active locations and the values of
the state variables. Though the final test state can be deduced by simulating test case executions
against the TA network, STUIOS relies on reachability analysis to speed up the process.

STUIOS first translates the IO sequence into a sequential timed automaton (hereafter test au-
tomaton, see Line 9 in Figure 7). In the test automaton, each edge either sends a test input or
checks if the output corresponds to expectations. If the output does not match expectations, then
an error location is reached; otherwise, the computation continues. Figure 8 shows a test automa-
ton derived from the test case in Figure 3. The edge between locations L1 and L2 captures the
sending of the event tempOutOfRange, the edge between locations L2 and L3 simulates a delay of
5,100ms, while the other edge checks for the expected values of observable variables and activates
the location Error in case the values are not the expected ones.

STUIOS then exploits the reachability analysis feature of UPPAAL to identify a trace that shows
the outputs of the test case execution (Line 25 in Figure 7). This is done thanks to a reachability
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Fig. 7. The algorithm to generate stochastic test cases.

formula that specifies that the desired final test location (PresentQualified in Figure 2) should be
reached once the test case execution is complete (i.e., we have reached TestCompleted in Figure 8).

The trace generated by UPPAAL shows the value of all the state variables and the list of ac-
tive locations after the execution of the test case, such information being extracted by function
extractContext in Figure 7, Line 26.
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Fig. 8. Test Automaton derived from the test case in Figure 3.

Activity 2 of Step 1.1-Identifying All the Potential UIO Sequences. To identify all the potential UIO
sequences of a specific length, STUIOS explores all the feasible paths of the timed automata by tak-
ing advantage of the UPPAAL simulator. To guarantee termination, the exploration is performed
up to a path length L provided by the software engineer.

The exploration is performed in a breadth-first manner starting from the final test state and is
implemented by function findPUIOS invoked in Line 30 in Figure 7. The paths traversed during
the visit are potential UIO sequences, since they capture the output sequence expected following
additional inputs being sent to the system after test case execution but do not give any guarantee
about uniqueness.

To determine the maximum length L of UIO sequences, engineers can rely on the average UIO
length reported in related work [15]. For example, considering that the average length for models
with at most 20 locations is reported to be three [15], and that every TA for HOD includes fewer
than 20 locations, we assumed a maximum length L of 10 to increase our chances to discover all
required UIO sequences.

The process for finding potential UIO sequences starts with a path length equal to one (Line 27
in Figure 7), and then the process iterates by incrementing the path length by one (Line 38) if none
of the recorded sequences is recognized as a valid UIO sequence, as explained in the following
section.

Activity 3 of Step 1.1-Identification of Valid UIO Sequences. A valid UIO sequence guarantees that
the expected output sequence is observed if and only if the test case has terminated in the desired
final test location.

STUIOS identifies a valid UIO sequence by iteratively processing all the potential UIO sequences
to find a potential UIO sequence whose inputs never lead to the expected output sequence when
the active location is different from the desired final test location.

First, STUIOS translates each potential UIO sequence into a sequential automaton (hereafter UIO
automaton) by following the same process adopted to derive test automata (Line 34 in Figure 7).

Then, STUIOS relies on the reachability analysis feature of UPPAAL to determine if the UIO
sequence can generate the expected output even when the test case terminates in a location differ-
ent than the desired final test location. This is done by function isValidUIO, used in Line 35, which
starts reachability analysis from the same active locations and variable values as those of the test
termination state, except for the desired final test location. STUIOS iterates the process multiple
times so that all the locations other than the final test location are considered (see lines 46 to 53).

STUIOS identifies a UIO sequence when the final location of the test automaton is never reached
(Line 54). STUIOS repeats the process for all the potential UIO sequences until a valid UIO sequence
is found (see the return instruction in Line 36). Although the proposed algorithm may process a
vast number of potentially long UIO sequences, which may affect the scalability of the approach, in
practice, STUIOS scales well, since UIO sequences are usually short [15], and thus the identification
of UIO sequences usually terminates after a few iterations.

5.3.2 Building PUIO Sequences (Step 1.2). In the next step (Step 1.2 in Figure 6), STUIOS asso-
ciates to each UIO sequence a confidence interval that captures the probability that the system re-
sponds with the expected output of the UIO sequence if the desired final test location was reached
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Fig. 9. Portion of a faulty output sequence generated after the execution of the test case in Figure 5.

(Lines 14 to 15 in Figure 7). As discussed earlier, to calculate this probability, STUIOS uses the
probability estimation feature of UPPAAL.

To compute the probability of a UIO sequence, STUIOS first builds a test automaton that joins
the sequence of inputs produced by the test case and by the UIO sequence (Line 13) and then
estimates the probability of reaching the final location of the test automaton (Line 15). The time
bound considered to compute the probability should match the test case execution time. In our
context this is given by the sum of all the delays appearing in the combined automaton, i.e., variable
maxTime in Line 14.

5.3.3 Identifying Test Case Probabilities (Step 1.3). STUIOS computes the probability of observ-
ing the output expected by the test case (Step 1.3 in Figure 6) by following the same approach
described in Section 5.3.2 (i.e., by computing the probability of reaching the final location of the
test automaton, which does not include the PUIO sequence, see Lines 18 to 19 in Figure 7).

5.3.4 Building Stochastic Test Cases (Step 1.4). A stochastic test case is then built (Step 1.4 in
Figure 6) using the PUIO sequences and the probability of observing the expected test output
(Line 21).

5.4 Test Execution

STUIOS executes each stochastic test case in a loop until a stopping condition is met (Step 2 in
Figure 6). We have identified three different stopping conditions: (1) the actual output is illegal (in
this case, the test case fails), (2) the expected output occurs with the expected frequency (in this
case, the test case passes), and (3) the expected output does not occur with the expected frequency
(in this case too, the test case fails). Below, we describe the three cases in more detail.

Case 1: The Output Is Illegal. The output of a test case is illegal if the observed output sequence
cannot be generated by the network of TAs that capture the software specifications. In other
terms, there is no path in the TAs that leads to the observed output sequence after the given input
sequence.

The output sequence in Figure 9 shows an example of an illegal output for the TA in Figure 2.
This output sequence is illegal if it is generated in response to the test inputs of the test case in
Figure 5. The specifications for HOD indicate that the system, after waiting for 4,250ms (second
line of the test case), is allowed to either stay in location Present, thus keeping the variables
isQualified and qc set to false and zero, respectively, or move to location PresentQualified,
and set the values of the two variables to true and one, respectively (these are the values expected
by the test case Figure 5). The faulty output in Figure 9 shows that the system sets the value of
variable isQualified to true but keeps variable qc set to zero after waiting for 4,250ms. This
combination of values is not a legal output for the TA in Figure 2.

STUIOS thus stops executing a test case if it leads to an invalid output sequence, because this
clearly indicates that the software does not meet its specifications. The test case is considered to
have failed.

Cases 2 and 3: The Output Is Valid. If the system produces legal outputs (i.e., an output that can be
generated according to the software specifications), then we need to determine if, across multiple
executions of the stochastic test case, the system generates, among all the legal output sequences
generated, the desired output sequence with the expected frequency.
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Since stochastic test cases include both test cases provided by software engineers and PUIO
sequences, we need to observe that both the following output sequences occur with the expected
frequency: (1) the sequence of output values (hereafter outputT EST ) generated after the inputs
belonging to the original test case and (2) the output sequence (hereafter outputPU IO ) generated
after the inputs of the PUIO sequence.

We assume that each execution of a test case is independent; this assumption generally holds
for stateless systems and for systems that provide means to reset the system state between the
executions of different test cases. The latter is true for HOD and usually for embedded systems in
general. Since each execution of a test case is independent and since the result is either pass or
fail, we can assume that test results follow a binomial distribution.

Given that the expected frequencies of outputT EST and outputPU IO are captured by means of
confidence intervals returned by UPPAAL, we perform hypothesis testing based on confidence
interval comparison [28].

To compute a confidence interval that captures the frequency of occurrence of the expected
test output, we rely on the Wilson score interval [41], which is known to be reliable even in the
presence of a small sample (i.e., executions of a test case in our context), when it follows a binomial
distribution. The Wilson score interval is computed according to the formula:
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where z is known as standard score and depends on the confidence level pc (if pc = 95% then z =
1.96), n is the total number of runs considered, nS is the number of successes (in our context, the
output of the test case is the expected one), and nF is the number of failures (the output of the
test case is not the expected one). The value of pc is chosen by the experimenter (e.g., the software
engineer) and captures the desired likelihood of avoiding a Type I error (i.e., erroneously rejecting
the null hypothesis). We set pc to 95%.

A test case fails if the null hypothesis “the expected output occurs with the expected frequency”
is rejected. Since we estimate the expected frequency of an output using the confidence interval
returned by UPPAAL and we estimate the frequency of the output generated by the actual sys-
tem using also a confidence interval, we can rely on interval comparison to perform hypothesis
testing. The two intervals consist in a range indicating that the estimated parameter should lie
in it at a level of confidence pc . Thus, if two intervals do not overlap, then there is convincing
evidence of a difference (i.e., the implemented system differs from the model) [28]. Following this
principle, we reject the null hypothesis if the interval computed by UPPAAL and the Wilson score
interval computed during testing do not overlap. Confidence interval comparison is known to be
more conservative (i.e., rejects the null hypothesis less often) than other methods when the null
hypothesis is true, which in our case means fewer false alarms [33].

To provide trustable results we would like to collect a large enough sample to be confident
about the outcome. Generally speaking, the more observations, the higher the confidence about
the absence of faults. We rely on the length of the confidence interval. With a small interval, when
the null hypothesis is not rejected, we can conclude that the estimated parameter is close to the
value derived from specifications with a given degree of confidence (pc = 95% in our example).
Based on this observation, we stop testing when the confidence interval is small enough; more
specifically, we have chosen to adopt the same criterion adopted by UPPAAL, which means that the
length of the confidence interval generated by STUIOS is at most 2 ∗ (1 − pc ), 0.1 in our example.
This way the two compared intervals have approximately the same length.

STUIOS applies hypothesis testing twice for each test case execution, considering both
outputT EST and outputPU IO . When the confidence interval is smaller than 0.1 and the null
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hypothesis is supported for both outputT EST and outputPU IO , then STUIOS indicates that the
test case has passed. When the confidence interval is smaller than 0.1 and the null hypothesis
is rejected in the case of either outputT EST or outputPU IO , then STUIOS indicates that the test
case has failed. Otherwise, if the confidence interval is not smaller than 0.1, then the execution
of the test case continues. According to the Wilson score formula, the size of the confidence

interval depends on the formula
z

√
1
n
∗nS ∗nF+

1
4 z2

n+z2 , which identifies the lower and upper bounds of
the interval; thus, the maximum number of executions (maxE ) required to obtain a confidence
interval below a given value has an upper limit for a specific value of z. For example, this upper
limit is equal to 381 when we compute a confidence interval of length 0.1 with pc = 95%.

To speed up testing, STUIOS enables engineers to specify a value for maxE based on their
test budget (we used maxE = 100 in our experiment). When the maximum number of executions
(maxE ) is reached, STUIOS reports that the test case passes if the null hypothesis is confirmed
for both outputT EST and outputPU IO . Otherwise, the test case fails. When the confidence inter-
val length is still above 0.1, STUIOS also reports that the test case outcome might not be reli-
able. An in-depth analysis of the effects of maxE on the effectiveness of oracles is reported in
Section 7.

For example, test case T1 in Figure 6 passes, because (1) the Wilson score interval calculated for
outputT EST after multiple runs of T1 is [0.49, 0.58], which is smaller than 0.1 and overlaps with
the confidence interval provided by UPPAAL ([0.46, 0.56]), and (2) the Wilson score interval cal-
culated for outputPU IO overlaps with the expected interval. In contrast, test case T2 fails, because
the Wilson score intervals calculated for both outputT EST and outputPU IO do not overlap with
the intervals associated to the stochastic test case. Finally, test case T3 fails, because the Wilson
score interval calculated for outputPU IO ([0.75, 0.85]) does not overlap with the expected interval
([0.9, 1.0]).

6 IMPLICIT TIME UNCERTAINTY, NON-DETERMINISTIC TRANSITIONS,

AND UIO SEQUENCES AVAILABILITY

In this section, we discuss how implicit time uncertainty, non-deterministic transitions, and avail-
ability of UIO sequences impact STUIOS effectiveness.

6.1 Implicit Modelling of Time Uncertainty

In this section, we write that time uncertainty is modeled explicitly when it is captured by means
of time ranges in the TAs; this is the case of the model in Figure 2 where a time range is used to
indicate when the transition between locations Present and PresentQualified can be triggered.
We refer to time uncertainty being modeled implicitly when the system is characterized by time
uncertainty but time ranges are not used in the TAs.

A modeling solution for HOD where time uncertainty is modeled implicitly is shown in
Figure 10. In Figure 10, the TA labeled with (a) models the main control loop; this TA indicates
that the main control loop is triggered every 1,700ms and that, after being started, the control
loop first detects if an error is present (see the event detect) and then determines if an error
can be qualified (see the event qualify). The safety-related operations performed by the main
control loop are executed in 1,400ms and, after this time, the system goes into the idle state.
The automaton labeled with (b) models the detection of temperature errors (the initial location
is NotDetectedNotQualified) and shows that the location DetectedNotQualified becomes ac-
tive when the main control loop sends the event detect and a temperature error is present in the
system (i.e., the equality “TE == true” holds). Location DetectedQualified becomes active if
the variable q is equal to two when the event qualify is triggered (this happens if the temperature
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Fig. 10. Network of TAs that captures the frequency of the main control loop and the procedure for qualifying
temperature errors in HOD. The TA labelled with (a) models the main control loop, the TA labelled with
(b) captures the detection and qualification of temperature errors, the TA labelled with (c) is a simplified
environment automata that captures the fact that temperature errors might be present or absent. The label
“C” within a location is used to indicate that the location is “committed”; edges departing from committed
locations have priority over other edges in a network of TAs [11]. Committed locations are used, for example,
to model atomic operations (e.g., an activity triggered immediately after an interrupt is received).

error remains present for two consecutive executions of the main control loop). If the error condi-
tion disappears (i.e., if “TE == false”) while the location DetectedNotQualified is active, then
the location NotDetectedNotQualified becomes active. The disqualification of errors is mod-
elled in a similar manner. The automaton labeled with c is a simplified environment model that
indicates that a temperature error condition (i.e., temperature out of valid range) might be present
(i.e., “TE = true”) or absent (i.e., “TE = false,” which is set when the temperature is within the
valid range).

The purpose of the model in Figure 10 is different than the one in Figure 2; however, both
models can be used to derive test cases and oracles. The TA in Figure 2 aims to capture the timing
requirements of the system regardless of its internal design and implementation, while the network
of TAs in Figure 10 is a design specification for HOD. The TA in Figure 2 describes the expected
behaviour of HOD from the perspective of an actor (e.g., a human tester) interacting with the
system. The network of TAs in Figure 10 explicitly captures the presence of a main control loop
and specifies the constraints that regulate error qualification in terms of the number of execution
cycles during which the error remains present in the system (i.e., what happens in the actual
implementation).

The explicit modeling of the main control loop in Figure 10 makes the explicit modeling of time
uncertainty redundant, because the time range in which an error can be qualified (or disqualified)
can be derived from the model. In practice, the system is still characterized by time uncertainty
although the network of TAs in Figure 10 does not explicitly model time uncertainty. Time un-
certainty can be observed by focussing on the delay between the moment in which a temperature
error becomes present in the system (i.e., TE is set to true by the environment automaton) and the
moment in which the temperature error is qualified (i.e., location DetectedQualified becomes
active), which varies between 3,400ms and 5,100ms. This is due to the fact that error detection

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 1, Article 1. Pub. date: November 2018.



Oracles for Testing Software Timeliness with Uncertainty 1:19

Fig. 11. Test case that verifies the qualification of a temperature error that appears for a short time. Test
inputs match the network of TAs in Figure 10. The bold lines match the UIO sequence that checks if the test
case brings the system to location DetectedQualified.

Table 2. Output Generated by the UIO Sequence in Figure 11
for All the Locations of the TA (b) in Figure 10

Input DetectedQualified NotDetectedNotQualified DetectedNotQualified NotDetectedQualified

<wait for 1700ms> true, 1 true, 1 true, 1 true, 1

<wait for 1700ms> true, 1 true, 1 true, 1 false, 1

<wait for 1700ms> false, 1 true, 1 true, 1 -

For each location we report the value of the state variables isQualified and qc. Bold red values highlight the

differences with the expected output in case of transition faults.

occurs every 1,700ms (i.e., the event detect is fired every 1,700ms), while the transitions of the
environment automaton, including the one that sets TE to true, might be fired anytime.

STUIOS can generate effective stochastic test cases even in the presence of networks of TAs
that do not explicitly model time uncertainty. Indeed, the four activities performed by STUIOS to
build stochastic test cases (i.e., determine the context of a UIO, identify potential UIO sequences,
determine valid UIO sequences, and calculate output probabilities) are based on UPPAAL features
whose results do not depend on the explicit or implicit modelling of time uncertainty. Regarding
context determination, STUIOS relies on UPPAAL reachability analysis. The reachability analysis
implemented by UPPAAL is based on state traversal with difference bounded matrices and clock
difference diagrams [7, 9, 40], which produce correct results independently from the number and
type of constraints appearing in the TAs. The identification of potential UIO sequences is based
on the simulation feature of UPPAAL, which correctly returns all the transitions that are enabled
in a given time range, independently of whether time uncertainty is explicit. To determine if a
potential UIO sequence is valid, STUIOS relies on the reachability analysis feature of UPPAAL,
which is guaranteed to provide correct results, as mentioned above. Finally, to calculate output
probabilities, STUIOS relies on the probability estimation feature of UPPAAL. This feature is based
on Monte Carlo simulation, and, as such, is not affected by how time ranges are modeled but simply
reflects the behaviors captured by the model. Figure 11 shows an example test case generated by
STUIOS from the TAs in Figure 10; Table 2 shows the output of the UIO sequence in Figure 11 in
the presence of transition faults.

6.2 Non-Deterministic Transitions

The SMC features of UPPAAL require that TAs be input-deterministic, which means that for every
location l all possible inputs (event or delay) may trigger only one outgoing edge of the location
l at a given instant. Input-deterministic TAs may include time-triggered transitions if these are
controlled by guard conditions that are disjoint from the other guard conditions appearing in the
other edges departing from the same locations. The TA in Figure 10 is input-deterministic, because,
for every possible clock value, only a single edge can be taken. Recall from Section 3.1, however,
that time-triggered transitions introduce time uncertainty in (input-deterministic) TAs and thus
lead to non-deterministic behaviours.
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Since the implementation of STUIOS relies on UPPAAL, it also requires input-deterministic TAs.
In the context of embedded systems, this is unlikely to constitute a practical limitation, since such
systems are often reactive systems that perform a single specific action in response to a certain
event.

6.3 Availability of UIO Sequences

UIO sequences are not guaranteed to exist for all the locations of a TA. However, like FSMs [2],
TAs are often characterized by the presence of UIO sequences.

In this Section we characterize a class of input-deterministic TAs that always present a UIO

sequence for every location, which is the class of minimal, connected, and deterministic TAs. A de-
terministic TA is an input-deterministic TA that does not include time-triggered transitions. A TA
is connected when each location can be reached from any other location, which is usually true
for software systems modeled using TAs and FSMs (for example, TAs that model a control loop
are connected) [29]. A TA is minimal when for every pair of locations, it is possible to identify an
input sequence that distinguishes one location from the other by generating different outputs, de-
pending on the location on which it is applied. In the software testing literature, an input sequence
that distinguishes two locations is known as signature sequence [32]. When a deterministic TA is
connected, for every pair of locations < la , lb >, it is possible to identify a sequence of inputs that
transitions the system from la to lb . As a consequence, when a deterministic TA is both connected
and minimal, for every location l , it is then possible to derive a UIO sequence that has the following
characteristics. The UIO sequence traverses the location l multiple times and is characterized by
an input sequence that can be represented as < SS1, FS1, SS2, FS2, . . . , SSx , FSx >, where SSi is a
signature sequence that distinguishes location l from location li , and FSi is an input sequence that
transitions the system from the location reached by SSi to l . The UIO sequence thus contains one
signature sequence SSi for each location li to be distinguished from l . The number of signature se-

quences included in the UIO sequence is at most equal to the number of locations in the TA minus
one.

Based on the observation above, we can additionally conclude that any TA that is determiniz-
able,1 minimal, and connected will thus include UIO sequences. This is the case, for example, of
event-clock automata, which is a class of determinizable TAs where each clock is associated to a
specific event and is reset after the occurrence of the event [4]. The TA in Figure 10, for example,
is an event-clock automaton where the clock is reset after every event.

Finally, despite having identified a class of TAs that present a UIO for all the locations, it is worth
mentioning that even in the presence of TAs that are not deterministic, all the desired final test
locations of a test suite might present UIO sequences. In addition, when a UIO sequence cannot
be generated for a desired final test location, STUIOS remains useful, since it enables engineers to
verify the frequency of the test output sequence.

7 EMPIRICAL EVALUATION

To evaluate the effectiveness of the STUIOS approach, we conducted an empirical evaluation, based
on two industrial case studies, addressing the following four research questions:

• (RQ1) Does STUIOS generate oracles that are effective in the presence of time uncertainty?

This research question aims to evaluate the effectiveness of STUIOS in terms of fault de-
tection capability of the generated test suite when faults affecting timing requirements are
characterized by time uncertainty.

1A TA is determinizable when it is possible to derive an equivalent, deterministic TA [6, 27].
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Table 3. Purpose and Size of the TAs Belonging to the Case Study Systems

Modeled Specification (number of TAs) Total Total Size

Error qualification/ Control Message number

disqualification Loop Handling Environment of TAs Locations Edges

HOD 33 - 1 - 34 223 107

BodySense 22 2 2 2 28 238 110

• (RQ2) How does STUIOS compare with a simpler and less expensive alternative?

This research question aims to determine whether STUIOS performs significantly better
than a much simpler and less expensive alternative that derives test cases that do not include
UIO sequences and whose oracles rely solely on analyzing output sequences.

• (RQ3) Is the test execution overhead introduced by STUIOS acceptable in an industrial context?

This question aims to evaluate whether STUIOS can be successfully adopted in an industrial
context and what are the costs associated with its adoption.

• (RQ4) How does the maximum number of execution per test case (maxE) affect the accuracy of

STUIOS oracles? This question aims to evaluate to what extent the choice of the maximum
number of test case executions (maxE) affects the accuracy of STUIOS oracles in terms of
failing and passing executions being correctly classified.

7.1 Subject of the Study

The subjects of our case study are HOD [22] and BodySense [21], two embedded systems already
on the market and developed by our industrial partner, IEE [23]. HOD has been introduced in
Section 2 and is an embedded system that detects if a car driver has both hands on the steering
wheel. HOD is a sensing system that measures the capacitance between a conductive layer in the
steering wheel and the electrical ground in the car body and the seat frame. HOD provides the
input for autonomous driving assistance systems, notifying them whether or not the driver has
his hands on the steering wheel.

BodySense is a car seat occupant classification system that enables smart airbag deployment.
BodySense relies on a capacitive sensor in the vehicle’s passenger seat to determine whether the
seat is occupied, as well as classifying the occupant. If the passenger seat has a child in a child
seat or is unoccupied, then the system disables the airbag. For seats occupied by adult passengers,
BodySense ensures the airbag is deployed in the event of an accident. BodySense is integrated
with multiple car sensors (e.g., capacitive sensors and temperature sensors) and communicates
with other car controllers by means of a LIN bus. For example, BodySense communicates the
car occupancy status to the airbag controller to automatically enable or disable airbags; also, it
communicates with the seat belt controller to support seat belt reminder functions.

BodySense targets occupant classification in compliance with the U.S. National Highway & Traf-
fic Safety Administration and also covers the Euro NCAP requirements for automatic airbag dis-
abling, required for any rearward-facing child seat.

The two systems run on a real-time operating system and present several critical timing re-
quirements that are currently verified by developers with an automated test suite, in compliance
with the ISO-26262 safety standard [24].

HOD and BodySense are two embedded systems that are required to timely identify error con-
ditions to guarantee the safety of car passengers and drivers. In our experiments, we focus on test
cases that verify the conformance of these two systems with the timing requirements related to the
qualification of error conditions. Table 3 provides an overview of the TAs for the two case studies.
The timing specification of HOD are captured by means of 34 TAs: Thirty-three TAs capture the

ACM Transactions on Software Engineering and Methodology, Vol. 28, No. 1, Article 1. Pub. date: November 2018.



1:22 C. Wang et al.

Fig. 12. Additonal templates for TAs modeling timing requirements for HOD. Panel (a) models the timing
requirements for errors that are immediatly qualified (or disqualified) when they are recognized as present
(or absent). Panel (b) models the timing requirements for (critical) errors that cannot be disqualified after
being (immediatly) qualified.

timing requirements for the qualification and disqualification of different error conditions, while
one TA models message handling. Of the 33 TAs capturing error qualification, 20 TAs share the
template of temperature errors shown in Figure 2, while the remaining 13 TAs match the tem-
plates in Figure 12(a) and (b). In total, the timing specifications of HOD include 223 edges and
107 locations. The specifications of HOD model high-level timing requirements regarding error
qualification, not their implementation, thus they do not explicitly model the control loop and the
environment (see Section 6.1). The timing specification of BodySense are captured by means of
28 TAs: Twenty-two TAs capture the qualification and disqualification of error conditions, two
TAs model the main control loop, two TAs model interrupts and message handling, and two TAs
model the environment. The TAs of BodySense resemble the ones in Figure 10. In total, the timing
specifications of BodySense include 238 edges and 110 locations.

7.2 Experiment Setup

In our experiments, we deal with the evaluation of the effectiveness of test suites in detecting
faults in a program. To generate faulty versions of HOD and BodySense, we relied on mutation
analysis. More specifically, we derived the faulty versions of HOD and BodySense by means of
specification mutation (i.e., by using mutation operators to derive software specifications that
characterize the behaviour of a faulty program). In the literature, different mutation operators for
TAs have been described (e.g., References [1, 3]). For our experiments, we considered mutation
operators that directly affect timing properties, which are as follows: Restricting Clock Con-
ditions [1], Widening Clock Conditions [1], Shifting Clock Conditions [1], and Change Target
Location [3]. Applying the above mutation operators led to a total of 651 mutated specifications,
328 for HOD and 323 for BodySense.

Manually modifying the implementation of HOD and BodySense to create 651 faulty versions
would require unacceptable engineering effort. This would also be the case for deploying the faulty
versions on dedicated hardware for purely experimental purposes. For this reason, we generated
651 programs that implement the mutated specifications of the two systems. Since these programs
are generated for experimental purposes, they only implement the behavior under test related to
timeliness and are therefore much simpler to implement and modify.

Because of the large number of test suite runs,2 we used a high-performance computing cluster
(HPC) to run our experiments [37]. The experiments were run on a Bullx B500 blade system [5]

2To respond to RQ1, we executed one test suite against three versions of the system; to respond to RQ2, we executed 10

test suites against 651 faulty programs. Details are provided in the following subsections.
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with each node having two processors (Intel Xeon L5640, 2.26 GHz). In our experiments, since
each test suite has been executed on a dedicated node, test cases belonging to the same test suite
have been executed in sequence, while different test suites have been executed in parallel.

The artifacts required to replicate the empirical results presented in the article (case study sys-
tems and test suites) are available for download from the following URL: https://sntsvv.github.io/
STUIOS/.

7.3 Results

7.3.1 RQ1. RQ1 aims to evaluate the effectiveness of STUIOS, that is, the capability to detect
failures. To respond to RQ1, we evaluated the effectiveness of the oracles generated by STU-
IOS when failures are related to software timeliness, and the executed test cases lead to non-
deterministic behaviour because of time uncertainty. For our experiments, we focused on failures
that may affect the capability of HOD and BodySense to qualify error conditions (e.g., overheating)
within the given time ranges.

We considered both a valid implementation of the specifications of the two systems and a subset
of the 651 faulty versions described above. Since we aim to evaluate the effectiveness of STUIOS
in the presence of failures related to software timeliness, we considered mutated specifications
that lead to error conditions being qualified with an erroneous timing. This is the case of the mu-
tated specifications derived by applying the mutation operators Restricting Clock Conditions and
Widening Clock Conditions on the TA edges that capture the qualification time of each different
error condition. Applying the two mutation operators on the HOD and BodySense specifications
leads to two different faulty versions for each TA regarding the detection of error conditions, each
containing a single fault. HOD specifications include 33 TAs modeling error conditions, which
leads to 66 faulty versions of HOD. BodySense specifications include 22 TAs modeling error con-
ditions, which leads to 44 faulty versions of BodySense.

Since the injected faults affect the qualification of error conditions, to perform our experiments,
we considered a set of test cases verifying if an error condition is qualified according to its timing
specifications. To assess the worst-case performance of STUIOS, we have considered test cases
for which STUIOS requires a high number of executions before determining the test outcome. To
identify these test cases, we have considered the fact that the Wilson score formula requires the
largest sample to generate a confidence interval of length 0.1 when the probability of observing
the expected output is 0.5. In the case of HOD, for example, this occurs with test cases that check if
HOD is able to qualify a specific error condition within 4,250ms (i.e., the middle point in the allowed
range). In total we considered 55 test cases, each one focussing on one of the error conditions
detected by HOD (33 error conditions) and BodySense (22 error conditions).

We executed each test case against both the valid version and the two faulty versions for a
total of 165 (i.e., 55 × 3) test case runs (recall that each run may imply repeated executions of the
test case because of the probabilistic nature of STUIOS). Test cases executed against the correct
implementation are expected to pass while test cases executed against faulty versions are expected
to fail.

To answer RQ1, we computed the precision and recall according to standard formulas. In our
context, true positives correspond to test cases correctly failing against the faulty version, whereas
false positives correspond to test cases unexpectedly failing against the correct version. True neg-
atives match test cases not failing when executed against a faulty version.

Empirical results show that STUIOS provides perfect precision and recall (1.0) in both case study
systems. Please note that test cases with simple oracles, i.e., test cases that do not include UIO
sequences but only analyze output sequences, cannot be executed in this context. For example,
in the case of HOD, simple oracles would fail every time the system does not qualify errors in
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4,250ms, which happens in 50% of the passing executions, since the qualification time follows a
uniform distribution.

7.3.2 RQ2. RQ2 aims to determine whether STUIOS performs significantly better than a much
simpler and less expensive alternative that derives test cases that rely on simple oracles. No exist-
ing approach focuses on deriving UIO sequences from specifications provided as TAs with time
uncertainty.

To perform the experiment, and avoid bias in the selection of the test cases, for the case
of BodySense we considered 10 test suites of 122 test cases each, which were automatically
generated in previous work for the same software under test [39]. The test suites were generated
using the TAUC test generation technique (detailed in Reference [39]), which is a model-based
testing technique that relies on meta-heuristic search to generate test suites that (1) cover all the
transitions in a network of TAs and (2) stress timing requirements by sending multiple, diverse
inputs to the system. TAUC maximizes the diversity among the sequences of inputs being sent to
the system by the different test cases in a test suite. In previous work, TAUC has shown to be able
to generate test suites that discover faults not detected by the test suite manually produced by
software engineers [39]. For the case of HOD, we considered 100 test cases generated according
to the same criterion adopted for the BodySense test suites.

The test suites generated with TAUC (hereafter standard test suites) include only simple oracles.
For each standard test suite we used STUIOS to generate a test suite containing stochastic test
cases.

Although the case study systems process multiple types of inputs (not just error conditions) and
all the test cases considered in the evaluation send multiple inputs to the system, we expect that
system outputs always adhere to the distribution calculated by STUIOS. This happens because
of the two reasons discussed in Section 3.1: (1) Time uncertainty depends on the polling of the
environment repeated at a given frequency, and (2) inputs are not expected to interfere with the
polling frequency (inputs are processed at the end of the control loop).

We executed each test suite on each of the 328 faulty software versions (mutants) for HOD and
on each of the 323 mutants for BodySense, and we kept track of passing and failing test cases. We
measured fault detection effectiveness at the test suite level and report the percentage of faults
discovered by both the stochastic and standard test suites.

The empirical results show that all the test suites are sound, i.e., they never report failures
when executed against the valid version of the software. Furthermore, the test suites generated by
STUIOS are more effective than the standard test suites, since they are able to uncover on average,
across the 10 generated test suites, 96.95% of the faults in the case of HOD (96.95% min, 96.95%
max) and 99.26% of the faults (98.76% min, 100% max) in the case of BodySense, while the test suites
integrating simple oracles detect on average 89.16% of the faults in the case of HOD (89.16% min,
89.16% max) and 88.76% of the faults in the case of BodySense (86.38% min, 90.71% max). In the case
of BodySense, STUIOS does not detect faults when their effect is masked by additional inputs (e.g.,
when inputs overwrite the incorrect values). In the case of HOD, the faults not being discovered
are due to not being able to distinguish invalid final states from valid final states when exclusively
relying on I/O sequences. This happens when the fault consists of turning into a self loop the edge
that connects the locations Present and PresentQualified in Figure 12(b); this fault affects 10
faulty versions. The number of faults being discovered by STUIOS in HOD is constant, since none
of the test suites can discover these 10 faults.

The results show that the test suites generated by STUIOS significantly improve the effective-
ness of the standard test suites from which they have been derived, even in the presence of very
effective test suites (the standard test suites detect 89% of the faults). STUIOS test suites uncover
at least 7% more faults.
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7.3.3 RQ3. RQ3 aims to evaluate the costs associated with the adoption of STUIOS in an in-
dustrial context. STUIOS requires multiple executions of the same test case to determine the test
outcome. In our context, like in many other embedded development environments, the repeated
execution of test cases is not a problem. Software engineers are expected to set up the physi-
cal environment only once, at the beginning of the testing process, and as in many other indus-
trial contexts, the execution of test suites is usually conducted automatically by test automation
frameworks. The repeated execution of a same test case thus does not impact on the human effort
required to perform testing but may introduce delays in the testing process. For this reason, to
respond to RQ3, we discuss the impact on the time required to perform automated testing.

We compared the number of test executions required to generate test results with STUIOS
against those required by the standard test suite used to respond to RQ2, i.e., 222 executions, one
for each of the 222 test cases. In our empirical study, we determined that STUIOS requires 57 ex-
ecutions, on average, for each test case, with a minimum and maximum of 35 and 100 executions.
Although the number of test case executions is high, the execution time is acceptable in practice.
In our experiments, the execution of a test suite took on average 34 hours in the case of HOD
and 32 hours in the case of BodySense.3 The difference between the two case studies is caused by
differing characteristics of the two systems, which lead to test cases with longer execution times
for HOD. For example, BodySense is characterized by a shorter qualification time for all the error
conditions, which in turn leads to quicker test cases.

Given that these test cases can be concurrently executed on several test environments and that
acceptance testing usually lasts days, the reported increase in number of test cases executions has
limited practical consequences.

7.3.4 RQ4. RQ4 aims to evaluate the accuracy of STUIOS oracles (i.e., the capability of correctly
classifying test case executions as passing or failing), in the presence of different thresholds for
the maximum number of test case executions (maxE). In general, the accuracy of STUIOS oracles
may vary across different execution scenarios; for example, a fault that leads to a frequency of the
expected output that is very different from the expected one is easier to detect than a fault that
leads to an output frequency that is close to the expected one. Hereafter, for brevity, we refer to
the expected frequency of the expected output computed by UPPAAL as expected output frequency,
and we refer to the frequency of the expected output observed when executing the implemented
system as observed output frequency. To evaluate the accuracy of STUIOS, ideally, one would like
to consider multiple systems, correct and faulty, to cover different combinations of expected and
observed output frequency. Since it is unrealistic to consider as many real systems as needed to per-
form such an experiment, we simulated STUIOS by considering 420 fictitious scenarios resulting
from the combination of 20 different expected output frequencies and 21 different observed output
frequencies. The 20 expected output frequencies considered in our study are represented as con-
fidence intervals of length 0.1 with a central point pe covering the values in the range [0.05,1.0].
The 21 observed output frequencies have been used to generate 21 sequences of test outcomes (i.e.,
sequences of “success” and “fail”) that follow a Bernoulli distribution with a probability of success
pa ; each output sequence thus simulates the output distribution of multiple runs of a same test case
against the implemented system. For pa , we considered all the values in the range [0,1], in steps of
0.05. In all these 420 scenarios we applied STUIOS (more precisely, the oracle strategy described
in Section 5.4) on the sequences of test outcomes and determined whether the output reported by
STUIOS was correct or not. In this context, the output reported by STUIOS is correct in two cases:

3Note that the use of a HPC cluster does not introduce bias in the results (i.e., in the test suites execution time), because the

test cases belonging to a same test suite are not executed in parallel but are executed in sequence on the same HPC node.
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Fig. 13. Accuracy boxplot with pc = 95% for
different values ofmaxE.

Fig. 14. Number of test case executions with
pc = 95% for different values ofmaxE.

(case-1) STUIOS reports that a test case passes in the presence of an observed output frequency
pa that matches the expected output frequency pe ; (case-2) STUIOS reports that a test case fails in
the presence of an observed output frequency pa that does not match the expected frequency pe .

For all the 420 scenarios, we have executed STUIOS using a confidence level pc equal to 95% and
40 different configuration values formaxE (we considered values in the range [10,400] with steps
of 10). For each scenario and for each configuration, we have executed STUIOS 100 times. For each
scenario, we computed the accuracy of STUIOS as the fraction of correct results generated in 100
STUIOS executions. The boxplot in Figure 13 shows the accuracy obtained for different values of
maxE. Each plot is based on 420 data points (each data point is the accuracy computed after exe-
cuting STUIOS 100 times on a certain scenario with a certain configuration formaxE) and reflects
the accuracy variation for a given configuration ofmaxE across the 420 scenarios. The boxplot in
Figure 14, instead, depicts cost by showing the number of test case executions required for each
scenario, for the 40 configurations of maxE. The boxplot in Figure 13 shows that the accuracy of
results improves for increasing values ofmaxE but this comes at the cost of a higher number of ex-
ecutions required for each single test case. In general, the median number of test case executions is
close tomaxE, which means that engineers will directly affect the test execution costs by increas-
ing the value ofmaxE. The median number of test case executions reaches a plateau asmaxE gets
closer to the upper limit for for the given confidence interval (e.g., values ofmaxE above 300 when
pc = 95%, where 381 is the upper limit). The default configuration of STUIOS (i.e., maxE = 100)
is a compromise between execution costs and accuracy (e.g., the first quartile in the boxplot in
Figure 13 shows that 75% of the data points have an accuracy above 0.8). However, engineers may
select different configurations based on the requirements of the system under test. For example,
in the presence of an unstable system (e.g., with a high risk of clock drifts [36]), engineers may
increase the chances of obtaining accurate results by settingmaxE = 300. Similarly, when a certain
degree of clock drift is acceptable, engineers may set the confidence level to 90%, which makes STU-
IOS more conservative (i.e., reject the null hypothesis less often) and thus prevents false alarms.

The outliers in Figure 13 are generated by executions where the observed output frequency
is close to the expected frequency (e.g., 0.45 vs. 0.50). To clarify this, we show in Figure 15 the
average STUIOS accuracy obtained with scenarios presenting various discrepancies between the
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Fig. 15. Average accuracy for different discrepancy values and different values ofmaxE.

expected and the actual frequency. Figure 15 does not include the case in which the observed fre-
quency matches the expected frequency (i.e., discrepancy = 0), because the accuracy is trivially 1
in that case. Figure 15 shows that, as expected, the worst results are obtained when the discrep-
ancy is minimal and equal to 0.05 (i.e., half the confidence interval). If engineers are interested in
detecting faults that may lead to a discrepancy below or equal to 0.05, then they should config-
ure STUIOS with a smaller confidence interval. However, failing to detect small discrepancies has
limited practical consequences as the behavior of the implemented system is close to that of the
specified one.

For example, in the case of BodySense, a confidence interval of 0.1 is sufficient to detect faults and
prevent false alarms, because a discrepancy below 0.05 characterizes outputs that are delayed by
85ms (0.05 × 1, 700, the duration of the control loop), which is the minimal time required for end-
to-end communication between BodySense and the test driver API and thus may not be indicative
of the presence of a fault. The plot in Figure 15 also shows that higher values for maxE improve
STUIOS accuracy in the presence of small but possibly relevant discrepancies. For example, with a
discrepancy of 0.15,maxE = 100 leads to an average accuracy above 0.75, whilemaxE = 30 yields
a very low average accuracy, below 0.3.

7.4 Threats to Validity

Internal threats. To limit the threats to the internal validity of the empirical evaluation, that is, a
faulty implementation of our toolset that may lead to erroneous results, we have manually verified
that all the UIO sequences generated by our toolset are valid.

External threats. Threats to external validity concern the generalisability of results. HOD and
BodySense are control systems with a main control loop that polls data from the environment and
then perform control operations. These kinds of control components are common in embedded
systems. In addition to this, HOD and BodySense are representative embedded systems in the
automotive domain, with typical complexity (in terms of size and number of models required
to capture its timing properties), and thus we expect that results generalise and STUIOS can be
successfully adopted to test many other systems.

8 RELATED WORK

Related work includes techniques for the generation of test cases and oracles from state-based
formalisms, e.g., FSMs, TAs, and EFSMs, as well as the testing of real-time systems.
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Most of the related work for the generation of test cases and oracles based on finite-state spec-
ifications deals with FSMs, not TAs. Two surveys are relevant, one focusing on FSM-based testing
approaches [26] and a more recent one also including experimental comparisons [16]. Other ap-
proaches focus on EFSMs [17, 31] but require deterministic EFSMs and thus cannot be applied in
the context of this article, as discussed in Section 5.3.1.

However, several approaches working with TAs target the generation of test cases but do not
address the problem of generating precise test oracles in the presence of time uncertainty [1, 18, 34,
35]. For example, Springintveld et al. introduced a technique for translating TAs into grid automata
to enable generation of test sequences by means of traditional algorithms for FSM testing [34].

Few techniques focussing on testing software timeliness in the presence of time uncertainty
have been reported [12, 13, 19, 20, 25]. The main difference with STUIOS is that these approaches
focus on test case generation and do not deal with the problem of generating test oracles for
existing test suites.

Some of the techniques dealing with time uncertainty perform feedback-driven, model-based
testing [12, 19, 25]. These techniques combine test generation and test execution in the same
process. Test inputs are generated at runtime during test execution by performing a random
exploration of the TA specifications. In the presence of non-determinism, a list of possibly active
locations is updated by simulating the actual system execution on the TAs based on the outputs
generated by the system. These approaches require the processing of models at runtime, an
activity that may introduce delays and thus make these techniques unsuitable to test real-time
systems [12]. In addition to this, existing feedback-driven approaches, different from STUIOS,
ignore some of the effects of uncertainty. More specifically, they simply verify that the system
does not generate invalid results, but they do not verify if test outputs occur with the expected
frequency. Further, they do not rely on confidence interval estimation to decide when to stop
testing and are thus unable to spot faults that alter the frequency of occurrence of valid outputs.

Among the existing test generation approaches addressing time uncertainty, the only one deal-
ing with the verification of the frequency of expected outputs is that of Hierons et al. [20], who
rely on mutation testing and probability estimation to build test suites that verify if a software
conforms to specifications given as probabilistic FSMs. The approach derives test cases that aim to
spot specific implementation faults. To this end, the approach identifies sequences of test inputs
that can determine if a mutated specification, which models a fault, differs from the original one.
The approach proposed by Hierons et al. focuses on test generation—thus preventing engineers
from reusing test suites derived with different criteria—while STUIOS focuses on the generation
of oracles for existing test suites, regardless of how they were generated. Furthermore, the effec-
tiveness of the approach from Hierons et al. has not been evaluated.

9 CONCLUSION

In the context of embedded systems, this article addresses the automated generation of effective
test oracles for timeliness test cases in the presence of time uncertainty. We propose an approach,
named STUIOS, to generate stochastic cases that extend a set of test cases provided by software
engineers. A stochastic test case includes the input-output sequences from initial test cases, a prob-
ability value that indicates the expected probability of observing the output sequence generated
by the test case, plus a probabilistic UIO sequence. The latter captures the probability of observ-
ing the output of a UIO sequence, identified by STUIOS, which helps predict if the test case has
terminated in the desired final test location. Probability values capture the expected frequency
of non-deterministic output sequences and thus make it possible for STUIOS to deal with non-
determinism. STUIOS then relies on executing multiple times each test case in such a way that it
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can employ hypothesis testing to determine whether a test case has passed, i.e., if it has generated
the expected output with the expected frequency, at a given level of confidence.

Results from two industrial case studies in the automotive domain, involving typical embedded
systems, have demonstrated that STUIOS is able to achieve higher fault detection effectiveness
compared to a previous test approach that did not include stochastic test cases. In practice, though
STUIOS expectedly requires additional test execution time, this can be considered to have negli-
gible practical consequences if test case execution is automated.
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