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Abstract—Model-based testing is a technique to design ab-
stract tests from models that partially describe the system’s
behavior. Abstract tests are transformed into concrete tests, which
include test input values, expected outputs, and test oracles.
Although test oracles require significant investment and are
crucial to the success of the testing, we have few empirical results
about how to write them. With the same test inputs, test oracles
that check more of the program state have the potential to reveal
more failures, but may also cost more to design and create.

This research defines six new test oracle strategies that check
different parts of the program state different numbers of times.
The experiment compared the six test oracle strategies with two
baseline test oracle strategies. The null test oracle strategy just
checks whether the program crashes and the state invariant test
oracle strategy checks the state invariants in the model.

The paper presents five main findings. (1) Testers should
check more of the program state than just runtime exceptions.
(2) Test oracle strategies that check more program states do
not always reveal more failures than strategies that check fewer
states. (3) Test oracle strategies that check program states multi-
ple times are slightly more effective than strategies that check the
same states just once. (4) Edge-pair coverage did not detect more
failures than edge coverage with the same test oracle strategy. (5)
If state machine diagrams are used to generate tests, checking
state invariants is a reasonably effective low cost approach. In
summary, the state invariant test oracle strategy is recommended
for testers who do not have enough time. Otherwise, testers should
check state invariants, outputs, and parameter objects.

I. INTRODUCTION

A primary goal of software testing is to find faults by
running tests. Whether tests can find faults depends on two
key factors: test inputs and test oracles. In our context, test
inputs consist of method calls to a system under test (SUT)
and necessary test values. A test oracle determines whether a
test passes. An example of a test oracle is an assertion in JUnit
tests. Exhaustively enumerating all test inputs is effective at
finding faults, but is prohibitively expensive. As a compromise,
tests are usually created to satisfy a coverage criterion. A
coverage criterion is a rule or a set of rules that are applied
to software artifacts (source code, models, etc.) to create a
set of test requirements that have to be covered by tests [1].
A more effective test coverage criterion often results in more
test inputs to detect more faults than a weaker criterion. When
tests are executed, a fault may be triggered to produce an error
state, which then propagates to be revealed as a failure that can
be observed by checking program states (outputs and internal
state variables). Testers are likely to observe more failures by
checking more program states. As suggested by Briand et al.

[3], we define a test oracle strategy (abbreviated as OS) as a
rule or a set of rules to specify which program states to check.
The theory is the more program states are checked, the more
faults an OS is likely to reveal [3], [19], [22], [23].

In model-based testing (MBT), a model (for example, a
UML state machine diagram) partially specifies the behav-
iors of a system. Abstract tests are generated to cover test
requirements imposed by a coverage criterion. For instance,
edge coverage requires all transitions in a UML state machine
diagram to be covered. Thus, an abstract test may look like:
“transition 1, state invariant 1, ..., transition n, state invariant
n.” These abstract tests need to be converted into concrete tests.
Properties of models such as state invariants in a state machine
diagram can be used for OSes. If test oracle data, including
expected test values, is very well specified by some specifi-
cation language and additional information used to transform
abstract test oracle data to executable code has been provided,
the concrete test oracles can be generated automatically. Such
test oracles are called specified test oracles [8] because the
specification of a system is used as a source to generate test
oracles, including expected values.

As pointed out by Harman et al. [8], automated test oracles
are not available in many situations. For model-based testing,
transformation from abstract tests to concrete tests requires that
a model has to be very well specified using additional informa-
tion. The information may include specification languages such
as the object constraint language (OCL) and other additional
diagrams and mapping tables to map abstract information to
executable code. Such complicated requirements are usually
not easy to realize in practice. Thus, most practitioners cannot
use automated test input and oracle generation [12]. This is
particularly true when agile processes are used. Therefore,
most testers have to provide expected values manually for test
oracles.

A test oracle must address observability. Observability is
how easy it is to see a program’s internal state variables and
outputs [6]. If a test oracle checks more program states, the
observability of the program states is increased, and more
faults may be revealed. However, writing test oracles can
be costly because testers usually provide expected values
manually. Model-based testing can use state invariants from
state machine diagrams as test oracles. This paper starts with
that premise and asks the following questions. Is checking only
the state invariants good enough? Should testers also check
class variables? What is the cost of checking more of the
program state?
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We previously developed a test automation framework to
transform abstract tests to concrete tests [9], [10], [12]. This
paper extends that work by studying OSes for system-level
tests in model-based testing. This paper proposes six novel
OSes. Each OS checks different outputs and internal program
states such as class variables after each transition or at the end
of a test. The new OSes are defined in section III.

We evaluated the effectiveness and cost of the new OSes
based on the same test inputs. 16 open source and example
programs, with UML state machine diagrams, were used. Test
inputs were generated to satisfy edge coverage (EC), which
covers all transitions, and edge-pair coverage (EPC), which
covers all pairs of transition [1]. EC and EPC differ when at
least one node as indegree and outdegree greater than one.
Then by generating test oracle data for all OSes, we designed
16 sets of tests for each program (2 coverage criteria * 8 OSes).
Then we ran the tests against faulty versions of the programs.

This research had five conclusions for using OSes in model-
based testing. First, just checking runtime exceptions misses
many faults and wastes much of the testing effort. Second,
OSes that check more program states were not always more
effective at finding faults than OSes that check fewer program
states. Third, OSes that check program states multiple times
were only slightly more effective than OSes that check the
same program states once. Fourth, with the same program
states, a test set that satisfies a stronger coverage criterion
was not more effective at finding faults than tests from a
weaker coverage criterion. Fifth, if state machine diagrams are
used to generate tests, checking state invariants is a reasonably
effective low cost approach. To achieve higher effectiveness,
testers can check outputs and parameter objects.

The contents of the paper are as follows. Section II
introduces the background of test oracles and discusses related
work. Section III presents all eight OSes and how tests were
created. Section IV shows the experimental design, subjects,
procedure, and results and also has a discussion of the results
and possible threats to validity. Finally, section V presents
conclusions and discusses future work.

II. BACKGROUND AND RELATED WORK

An important property of an OS is its precision [3]. The
precision of an OS refers to the degree to which the internal
state variables and outputs of a program are checked by this
OS. The more internal state variables and outputs an OS
checks, the more precise the OS is. The precision of an OS
also refers to the OS’s tolerance for errors because if an OS
checks more internal state variables and outputs, it is possible
that the OS can reveal more faults. The null OS (NOS) is
considered as the least precise OS since it does not check any
variable or output explicitly. It only reports a failure when a
program terminates abnormally, thus, it tolerates many faults.
In contrast, the most precise OS checks all possible internal
state variables and outputs whenever they appear during the
execution of test cases, so this OS is called the very precise
OS [3] or the maximum OS [22].

How and which internal state variables and outputs should
be checked by an OS depends on the cost-effectiveness of
OSes. Although a more precise OS can reveal more faults
(effectiveness), it needs more assertions (cost) than a less

precise OS. Assertions usually are written by hand, each
assertion requires expected results, and adds to execution time.
Keep in mind that automated test oracle generation is often not
available for many situations in industry.

The frequency of checking the program state is a factor
when considering the cost-effectiveness of an OS. Given two
OSes that check the same internal state variables and outputs,
if they find the same faults, the one that checks the states less
frequently will be more cost-effective.

To our knowledge, only a few papers have studied the test
oracle problem empirically. Briand et al. [3] compared the
very precise OS with the state invariant OS (SIOS) based on
the statecharts of three classes of less than 500 lines of code
apiece. The very precise OS checks all the class attributes and
outputs after each operation and is considered to be the most
accurate verification possible. In contrast, SIOS only checks
the invariants of states reached after each transition. They
found that the very precise OS is more effective at finding
faults than SIOS. They also found that the cost of the very
precise OS is higher than SIOS in terms of the number of test
cases, the CPU execution time, and the lines of code.

Xie and Memon [23] considered what to evaluate and how
often to check program states from GUIs. They found that the
variations of the two factors affect the fault-detection ability
and cost of test cases. They proposed six OSes that check a
widget, a window, and all windows after every event and after
the last event of a test. They concluded that “weak” OSes
detect fewer faults and a “thorough” OS at the end of a test
case yields the best cost-effectiveness ratio in many cases.

Staats et al. [22] found that an OS that checks outputs and
internal state variables can find more defects than an OS that
only checks the outputs. They also concluded that the number
of variables checked by the maximum OS is bigger than that
checked by the output-only OS and only a small portion of
the added internal state variables contributes to improving
fault-detection ability. To evaluate how internal state variables
affect the fault-detection ability, some less precise OSes were
compared. A less precise OS checks outputs and some inter-
nal state variables but not all. In their experiment, internal
variables were chosen randomly for these less precise OSes.
Therefore, which internal variables contribute to improving the
effectiveness is unclear.

Shrestha and Rutherford [19] empirically compared NOS
and the pre and post-condition OS (PPCOS) using the Java
Modeling Language [4]. They found that the latter can find
more faults than the former. They suggested that test engineers
should move beyond NOS and use more precise OSes.

The test oracle comparator problem for web applications is
how to determine automatically if a web application gets cor-
rect outputs given a test case and expected results. Sprenkle et
al. [20] developed a suite of 22 automated oracle comparators
to check HTML documents, contents, and tags. They found
that the best comparator depends on applications’ behaviors
and the faults.

Yu et al. [24] studied the effectiveness of the output-only
OS and six other OSes that check more internal state variables
to detect special faults that appear in six concurrent programs.
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They found that these six more precise OSes detected more
faults than the output-only OS.

This paper presents a comprehensive experiment to study
the effectiveness and cost of OSes and give guidelines about
which OS should be used. A comparison between this paper
and others are in table I. The first column shows the metrics
and the other columns represent others’ work.

Shrestha et al. used nine small programs, with the biggest
having 263 statements. Others studied no more than six
programs. This research used 16 programs with lines of code
(LOC) ranging from 52 to 14,155. The subjects include general
libraries, GUIs, and web applications. In contrast, Xie and
Memon only studied GUIs and Sprenkle et al. studied web
applications. Staats et al. worked on synchronous reactive
systems [7], which do not have OO classes.

This research considers several OSes: NOS, SIOS, and six
more precise OSes, which is more comprehensive than the
other studies. We also studied which internal state variables
contribute to the effectiveness of the OSes. This research also
studied the frequency of checking program states, which only
Xie and Memon studied before. Eight OSes that have different
precisions were used in our experiment while both Shrestha et
al. and Briand et al. studied two OSes.

Staats et al. [21] and Mateo and Usaola [17] proposed
similar approaches that use mutation analysis to select which
program states to check automatically. But this approach could
be even more costly because users have to apply mutation
analysis before providing test oracle data. Thus, this approach
needs further study. Fraser and Zeller [5] also used mutation
testing to derive test inputs and test oracles but they did not
study the effectiveness or cost of OSes.

III. TEST INPUTS AND ORACLES GENERATION

This section presents how tests were generated at the
system level and discusses the six new and two baseline OSes.

A. Test Sequence Generation

This research evaluated different OSes with the same tests.
The tests were generated from UML state machine diagrams of
16 Java programs using the structured test automation language
framework (STALE) [10]. STALE can read UML state ma-
chine diagrams and transform them into general graphs. Given
a graph coverage criterion, STALE can generate abstract test
paths to satisfy the coverage criterion. The abstract tests are
composed of transitions and state invariants. To transform the
abstract tests to concrete tests, users need to use the structured
test automation language [12] to provide mappings. A mapping
is a data structure that includes test inputs from distinguished
elements (transitions and state invariants) to implementation.
Each distinguished element from a diagram can have more
than one mapping because testers need to provide as many
mappings as possible to satisfy all the state invariants for a
specific coverage criterion. Each mapping for an element only
needs to be written once. When an element appears again in an
abstract test, an appropriate mapping is selected automatically
to satisfy the necessary state invariants. The concrete code of
a mapping for a transition is a sequence of method calls.

The concrete test code for state invariants can be trans-
formed to JUnit assertions, allowing each assertion to be eval-
uated at run-time. If an assertion evaluates to false, it means the
state invariant is not satisfied by the concrete test sequences
of the currently used mapping for a transition between this
state and a preceding state. Therefore, the concrete test code
of another mapping for the transition will be used and the state
invariant is re-evaluated. This process continues until the state
invariant is satisfied. If no existing mappings can satisfy a state
invariant, STALE reports errors and asks the tester to provide
more mappings.

Since the concrete test code of state invariants can be eval-
uated as JUnit assertions, the assertions can be used directly
as test oracles. This is what we call SIOS. Additionally, testers
can use STALE to write more assertions to check other internal
state variables such as class variables and outputs. For instance,
if the executable test code of a transition has a method call:
“boolean sign = classObjectA.doActionB();”, testers can write
assertions to evaluate the return value of the method call sign
and classObjectA’s class member variables by providing the
expected test values.

STALE uses a prefix-graph based solution [11] to reduce
the number of tests as well as the number of times transitions
appear in the tests, which is considered as a type of quantitative
human oracle cost reduction [8].

Fig. 1. Part of a state machine diagram of the vending machine example

Below we use an example of a vending machine program
to show how to use STALE to generate tests and add test
oracle data. The vending machine has been simplified as
follows: customers insert coins to purchase chocolates; only
dimes, quarters, and dollars are accepted; and the price for
all chocolate is 90 cents. Figure 1 shows three states and
associated transitions of a UML state machine diagram for the
vending machine program, which describes how the system
behaves when customers insert coins. Figure 2 shows part
of the implementation of the class VendingMachine. This
simplified state machine diagram only considers one state
invariant, credit. The comments next to each state document
the state status. Thus, Constraint1 is in State1, Constraint2 is
in State2, and Constraint3 is in State3.

STALE can read the state machine diagram and generate
abstract tests. If testers choose EC, then the test requirements
“State1, coin, State2,” “State2, coin, State3,” and “State1, coin,
State3” need to be covered by the abstract tests. Testers need to
provide mappings so the abstract tests can become executable
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Metric This research Briand
et al.

Xie
et al.

Staats et al. Shrestha
et al.

Sprenkle
et al.

Yu et al.

Number of programs 16 3 5 4 9 4 6
Types of subjects General, GUI, Web General GUI Non-OO General Web Concurrent
NOS used Yes No No No Yes No No
PPCOS or SIOS used Yes Yes No No Yes No No
Less precise OSes used Yes No Yes Yes No Yes Yes
Internal state variables
are used

Yes No Yes Internal state
variables picked
randomly

No Yes Yes

Frequency of checking
program states

Yes No Yes No No No No

The number of OSes
used

8 2 6 3 2 22 7

TABLE I. A COMPARISON OF PREVIOUS TEST ORACLE RESEARCH PAPERS

public class VendingMachine
{

private int credit; // Current credit in the machine.
...
// Constructor: vending machine starts empty.
public VendingMachine() {}

// A coin is given to the vendingMachine.
// Must be a dime, quarter or dollar.
public void coin (int coin) {}

// Get the current credit value.
public int getCredit () {}
...

Fig. 2. Class VendingMachine (partial)

code. To satisfy state invariants Constraint1, Constraint2, and
Constraint3, we may have to provide multiple mappings for the
transition coin. The concrete test code of one mapping can be
“vm.coin(10);”, which inserts a dime into the vending machine.
vm is an object of class VendingMachine and is defined in
another mapping. STALE provides a mechanism to let other
mappings use this object. To satisfy the state invariants in
State2 and State3, we provide another mapping whose test
code is “vm.coin(100);”, which inserts a dollar.

Testers also provide mappings for the state invariants
to evaluate if they are satisfied. For instance, test code
“vm.getCredit() ≥ 90;” is used to evaluate if Constraint3 is
satisfied. If a state invariant is not satisfied by one mapping,
another mapping is selected. If no mappings can satisfy this
state invariant, STALE will ask testers to enter more mappings.
Testers can also provide more test oracle data to check other
fields of class VendingMachine.

B. Test Oracle Strategies

Two OSes were used as baselines in the experiment.
One is NOS, which only checks for exceptions or abnormal
termination, as implicitly provided by Java runtime systems
[19]. In our experience, most faults do not cause runtime
exceptions, so this OS sounds trivial. It is, however, often used
in industry.

The second OS is SIOS, which checks the state invariants
from the state machine diagram. After testers use STALE to

provide proper test mappings from abstract model elements
to concrete test code, all state invariants in the state machine
diagram should be satisfied. Since all the state invariants can be
transformed to executable code using the provided mappings,
these state invariants can be added to the tests as assertions
automatically. SIOS is more precise than NOS.

This research considers two dimensions when designing
OSes: how often to check states (frequency), and how many
internal state variables to check (precision). Regarding the
frequency, testers can check states after each method call, each
transition, or they can check states only once. For precision,
this research defines four elements of the program state to
check:

1) State invariants: Check the state invariants in the
model

2) Object members: Check member variables of objects
that call methods in a transition

3) Return values: Check return values for each invoked
method

4) Parameter members: Check member variables of ob-
jects that were passed to a method call as parameters

Deep checking was used for objects, that is, if an object’s
member was also an object, it was checked recursively until
primitive variables were found.

We propose six new OSes beyond SIOS. Each new OS
satisfies all the state invariants in a model and explicitly writes
the satisfied state invariants as assertions. Additionally, they
check more program states.

OS1: After each transition is executed, check all distinct
object members in this transition only once

OS2: After each transition is executed, check the return
values of the distinct methods only once

OS3: After each transition is executed, check all distinct
object members in this transition and the return
values of the distinct methods only once

OS4: After each transition is executed, check all distinct
parameter members and the return values of the
distinct methods only once

OS5: After each transition is executed, check all distinct
object and parameter members and the return
values of the distinct methods only once
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OT: After the last transition, check all distinct object
and parameter members and the return values of
the distinct methods that appear in all transitions
only once

OS5 is not the most precise oracle strategy possible because
it does not check outputs and variables whenever they appear
in the tests. OT is the same as OS5, but with a lower frequency
(one check per test). We could have designed frequency-one
versions of the other OSes, but evaluating frequency for one
strategy seemed enough.

Fig. 3. Precision relationship among test oracle strategies

Figure 3 shows the precision relationships among the OSes.
An arrow from one OS to another indicates that the higher OS
is more precise.

IV. EXPERIMENTS

The experiments address four questions:

RQ1: With the same test inputs, does a more precise OS
reveal more faults than a less precise OS?

RQ2: With the same test inputs, does checking pro-
gram states multiple times reveal more faults than
checking the same program states once?

RQ3: With the same OS, do tests that satisfy a stronger
coverage criterion reveal more faults than tests
that satisfy a weaker coverage criterion?

RQ4: Which OS should be recommended when consid-
ering both effectiveness and cost?

Other researchers [3], [19], [22], [23] have studied RQ1,
finding that more precise OSes are more effective than less
precise OSes at revealing faults. However, they used different
test coverage criteria and OSes on different types of programs,
as discussed in section III.

RQ2 was evaluated by Xie and Memon [23], who found
that checking variables after each GUI event can detect more
faults than checking the same variables once after the last event
of the test. However, their study only monitored states of GUIs
such as windows. Our research checks entire program states
of different kinds of programs.

Briand et al. [3] found that tests that satisfy a stronger
coverage criterion can find more faults than a weaker criterion

(RQ3), with the same test oracle strategy, for one program, but
not the other two. Our experiment uses two different coverage
criteria and 16 programs.

A very effective OS may be too costly for practical use.
Thus, RQ4 considers the cost-effectiveness of the OSes. The
rest of this section presents the experimental design, subjects,
procedure, results, and threats to validity.

A. Experimental Design

The experiments compare the six new OSes (OS1, OS2,
OS3, OS4, OS5, and OT) with the two baseline OSes, NOS
and SIOS. All OSes were applied to edge-adequate and edge
pair (EP)-adequate tests. Then the tests were run against faulty
versions of the programs. The faults revealed and the cost of
using the OSes were recorded.

Andrews et al. [2] found that synthetic faults generated
using mutation testing can be used as real faults in experiments
to predict the real fault detection ability of tests. In mutation
testing, a mutant is a slight syntax change to the original
program. A mutation operator is a rule or a set of rules that
specifies how to generate mutants. If a test causes a mutated
program (mutant) to produce different results from the original
program, this mutant is said to be “killed.” If a mutant cannot
be killed by any tests, it is called equivalent.

The mutation score is the ratio of mutants that are killed
over the killable (non-equivalent) mutants, which measures the
effectiveness of a test set. Therefore, if different OSes are
compared with the same test inputs and then the tests are run
against mutants, the mutation score of each set of tests can
reflect the relative effectiveness of each OS. A higher mutation
score indicates the OS is more effective. A more precise OS
can be expected to be at least as effective at revealing faults
as a less precise OS. Thus, we expect OS1, OS2, OS3, OS4,
OS5, and OT to reveal more faults than NOS and SIOS.

The experiment used muJava [16], a mutation analysis tool
for Java, to generate synthetic faults. Each mutated program
has only one mutant. Users can generate mutants, run tests
against mutants, and view mutants, which helps testers recog-
nize equivalent mutants. The latest version of muJava supports
JUnit tests and all features of Java 1.6. So the JUnit tests that
STALE generates are used in muJava directly. Mutants were
generated by using the 15 selective method-level mutation
operators of muJava [15].

This experiment used muJava to seed mutants, which are
treated as faults. Each program has a different number of faults
thus we measured the effectiveness of OSes as percentages of
faults detected so that they would all be on the same scale.

Each test had eight different versions, one for each test
oracle strategy. Generating and running the test oracles had
three kinds of cost.

First, testers entered test oracle data as assertions by hand.
Second, STALE generated tests based on these assertions. Note
that each assertion was used many times in the concrete tests
because the program states were checked after each transition.
Third, assertions were executed as part of the tests. The
second and third steps were automated, so the human cost
in the first step dominates. Therefore, we used the number of
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distinct assertions as a proxy for cost. This carries an implicit
assumption that all assertions are equally difficult to write, a
limited necessary to make this study practical.

We introduce a cost effectiveness ratio to measure the
effect of writing fewer assertions on the mutation score. The
cost-effectiveness of an OS is the ratio of the number of
assertions over the percentage of faults detected. A smaller
cost-effectiveness is better.

Cost-effectiveness =
#assertionsCreatedByHand

%FaultsDetected
(1)

To better specify how to measure the goals of the ex-
periments, three groups of hypotheses are extracted from the
first three research questions. The first group of hypotheses
(HypothesesA) compares all pairs of OSes, OSA and OSB ,
where OSB is more precise than OSA. The null and alternative
hypotheses are listed below.

Null hypothesis (H0):
There is no difference between the percentage of
faults detected by OSA and OSB with the same
test inputs.

Alternative hypothesis (H1):
OSB detects more faults than OSA with the same
test inputs.

The test oracle strategy pairs that can be applied to
HypothesesA are: {NOS, SIOS}, {SIOS, OS1}, {SIOS,
OS3}, {SIOS, OS5}, {OS1, OS3}, {OS3, OS5}, {OS1, OS5},
{OS2, OS5}, {OS4, OS5}, {SIOS, OS2}, {SIOS, OS4},
{OS2, OS3}, and {OS2, OS4} for both EC and EPC. We
did not compare NOS with the other OSes because NOS is
expected to be much less effective than other OSes. NOS and
the other OSes are compared in section IV-D.

RQ2 asks if checking program states multiple times reveals
more faults than checking the same program states once. OT
checks the same parts of the state that OS5 checks, but OS5
checks after each transition and OT only checks once. Thus,
the second hypothesis (HypothesesB) for RQ2 is:

Null hypothesis (H0):
There is no difference between the percentage of
faults detected by OT and OS5 with the same test
inputs.

Alternative hypothesis (H1):
OS5 detects more faults than OT with the same
test inputs.

The third group of hypotheses (HypothesesC) for RQ3
takes two test coverage criteria CCA and CCB into consider-
ation, where CCB subsumes CCA.

Null hypothesis (H0):
There is no difference between the percentage of
faults detected by criterion CCA and CCB if both
use the same OS.

Alternative hypothesis (H1):
CCB detects more faults than CCA if both use
the same test oracle strategy.

HypothesesC can be applied to edge-adequate and EP-
adequate tests for any of the eight OSes used in this paper.

B. Experimental Subjects

We evaluated 16 Java programs and used STALE to gen-
erate tests from their UML state machine diagrams. First, we
generated test inputs to satisfy both EC and EPC. Then we
entered test oracle data for our six OSes (NOS did not need
test oracle data, and the state invariant test oracle data were
provided by STALE while generating test inputs). Finally, the
eight OSes were applied to the two sets of tests that satisfy
EC and EPC, resulting in 16 sets of tests for each program.
Six of the 16 programs are open source projects, six are
from textbooks, and the other four are from the coverage web
application for Ammann and Offutt’s book [1]. All programs
are in Java and we generated the UML state machine diagrams
by hand.

Table II shows some properties of the programs and tests.
The column LOC shows the lines of code for each program.
The columns E and EPs give the number of edges and edge-
pairs for each program’s FSM. The columns Tests show the
number of tests for edge-adequate and EP-adequate tests.
The columns Trans represent the number of transitions that
appear in the tests and the columns SI provide the number of
appearances of state invariants that are satisfied and also used
as test oracles. The columns Distinct Trans and Distinct SI
represent the number of distinct mappings of transitions and
state invariants provided by hand.

As stated in section III-A, users need to provide mappings
for transitions and state invariants so that abstract tests can
be transformed to concrete tests. Since transitions and state
invariants appear many times, the numbers of the columns
Trans and SI are far more than those of the columns Distinct
Trans and Distinct SI. By comparing the columns Distinct
Trans for EC and EPC, we see that we only needed to provide
more mappings for EPC than EC for three programs. That is,
the mappings required to satisfy state invariants for EC also
satisfy most of the state invariants for EPC. Thus, the results
did not show much difference between EC and EPC.

C. Experimental Procedure

The experiment was carried out in the following steps:

1) For each program, the first author used STALE to
create test inputs by hand to satisfy EC, and then
generate additional test inputs to satisfy EPC.

2) STALE was used to enter expected results for the
OSes. 16 tests were generated for each pair of com-
bination for the two coverage criteria and eight OSes.

3) Generated faults for each program using muJava.
Identified and removed equivalent mutants by hand.

4) Each set of tests was run against the faults for each
program. The number of faults detected and the num-
ber of times the internal state variables and outputs
are checked for each set of tests were recorded.

5) The cost-effectiveness of each OS was calculated and
analyzed.

For efficiency, tests were only run against faults that
appeared in methods called when the tests were run on the
original program.

368



Programs LOC E EPs
Properties of the Tests

Edge Edge Pair
Tests Trans SI Distinct

Trans
Distinct
SI

Tests Trans SI Distinct
Trans

Distinct
SI

ATM 463 12 19 5 18 22 6 6 6 30 39 6 6
BlackJack 403 20 34 8 27 27 11 3 9 51 51 11 3
Calculator 2,919 76 403 14 167 167 11 9 39 893 893 11 9
CorssLexic 654 51 162 26 113 209 11 7 63 404 756 11 7
DFGraphCoverage 4,512 42 201 8 49 78 10 7 45 390 643 10 7
DynamicParser 1,269 65 213 20 116 408 13 15 26 385 1,233 14 15
GraphCoverage 4,480 59 187 16 122 207 14 11 23 359 605 14 11
JMines 9,486 28 91 9 60 6 7 1 22 201 21 7 1
LogicCoverage 1,808 62 259 30 115 94 12 8 94 561 483 12 8
MMCoverage 3,252 107 318 78 273 228 20 16 142 699 570 20 16
Poly 129 21 64 5 32 57 11 6 12 129 237 18 6
Snake 1,382 45 107 7 70 120 10 8 8 194 341 10 8
TicTacToe 665 12 20 5 24 7 6 3 7 46 16 6 3
Tree 234 24 74 6 35 48 6 3 8 99 146 6 3
Triangle 124 31 156 6 36 36 7 5 27 271 271 7 5
VendingMachine 52 26 61 7 44 88 6 6 9 105 210 7 6
Total 31,832 681 2,369 250 1,301 1,802 161 114 540 4,817 6,515 170 114

TABLE II. EXPERIMENTAL SUBJECTS

D. Experimental Results

We computed the faults detected by each OS for each
program with both sets of tests. Then the number of faults
detected by each OS were divided by the total number of faults
for each program, producing percentages of faults detected
by each OS for each program, as shown in Table III. The
total number of the faults (“# Faults”) is 9,627. So a total of
60,842,640 tests were executed ((8 OSes * 250 edge-adequate
tests) + (8 OSes * 540 EP-adequate tests)) * 9,627).

Table III shows that NOS detected far fewer faults than
the other OSes on average, indicating NOS is much less
effective at finding faults. Since a more precise OS checks
more program states than a less precise OS, we expected that
the more precise OSes could find more faults. However, Table
III shows that the percentages of the faults detected by OS1,
OS2, OS3, OS4, OS5, and OT are very close, although slightly
higher than that of SIOS.

We also wanted statistical evidence of the effectiveness
difference between a less precise OS and a more precise
OS. First, we used Qqplots [18] (not shown due to space)
to determine that the percentages of faults detected by the
OSes are not normally distributed. Then we used the one-
tailed Wilcoxon signed-rank test (statistical significance level
α = 0.05) [14] to compare the paired percentages of the faults
detected by two different OSes for both EC and EPC. This is
a non-parametric test to assess whether two population means
differ when data are not normally distributed. We used this test
because the paired data were from the same tests (either EC
or EPC) with different OSes.

We compared the OS pairs {NOS, SIOS}, {SIOS,
OS1}, {SIOS, OS3}, {SIOS, OS5}, {OS1, OS3}, {OS3,
OS5}, {OS1, OS5}, {OS2, OS5}, {OS4, OS5}, {SIOS,
OS2}, {SIOS, OS4}, {OS2, OS3}, and {OS2, OS4} for
HypothesesA. We got the p-values from 0.0002 - 0.0027 for
{NOS, SIOS}, {SIOS, OS1}, {SIOS, OS3}, {SIOS, OS5},

{OS1, OS5}, {OS2, OS5}, and {OS4, OS5}, so we can reject
H0. For these pairs, the effectiveness of a more precise OS is
significantly greater than that of a less precise OS. Although
we found statistical evidence of differences between OS1 and
OS5, OS2 and OS5, and OS4 and OS5, these differences are
very small, as shown in Table III. We also found that the
differences between the OSes in three pairs {SIOS, OS2},
{SIOS, OS4}, and {OS2, OS3} are not due to chance.

For pairs {OS1, OS3}, {OS3, OS5}, and {OS2, OS4}, the
number of paired data whose percentages of faults detected by
OSes are different is fewer than five, so we could not perform
the Wilcoxon signed-rank test. This also implies that there is
no significant difference between the pairs {OS1, OS3}, {OS3,
OS5}, and {OS2, OS4}. In summary, for HypothesesA, we
reject H0 for the pairs {NOS, SIOS}, {SIOS, OS1}, {SIOS,
OS3}, {SIOS, OS5}, {OS1, OS5}, {OS2, OS5}, {OS4, OS5},
{SIOS, OS2}, {SIOS, OS4}, and {OS2, OS3}.

Although Table III tells us that a more precise OS can
detect more faults than a less precise OS, the results of
the Wilcoxon signed-rank test say that the percentage of
faults detected by a more precise OS might not significantly
differ from that of a less precise OS (such as {OS1, OS3}).
Therefore, the answer to RQ1 is: for any two OSes that have
different precision, the more precise OS might not always be
more effective than the less precise OS.

We also used the Wilcoxon signed rank test for
HypothesesB to decide if the frequency of checking variables
impacts the effectiveness of OSes. The results showed that we
can reject H0, and OS5 detects more faults than OT for EC and
EPC at a significant level. So OS5 is more effective than OT
for both EC and EPC. However, from TABLE III, we can see
that the difference between the average percentages of faults
detected by OT and OS5 is very small (0.59 vs. 0.61 for EC
and 0.61 vs. 0.63 for EPC). OS5 only found more faults than
OT for six programs (37.5% of all programs) for EPC. With

369



Programs #Faults
Percentage of Faults detected by Test Oracle Strategies

Edge Edge Pair
NOS SIOS OT OS1 OS2 OS3 OS4 OS5 NOS SIOS OT OS1 OS2 OS3 OS4 OS5

ATM 257 0.19 0.30 0.80 0.67 0.71 0.71 0.80 0.80 0.21 0.32 0.80 0.68 0.72 0.72 0.80 0.80
BlackJack 56 0.27 0.34 0.39 0.38 0.38 0.38 0.38 0.39 0.27 0.34 0.39 0.38 0.38 0.38 0.38 0.39
Calculator 494 0.19 0.41 0.45 0.46 0.43 0.46 0.43 0.46 0.24 0.45 0.49 0.50 0.47 0.50 0.47 0.50
CorssLexic 470 0.37 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.39 0.45 0.46 0.46 0.46 0.46 0.46 0.46
DFGraph
Coverage

683 0.40 0.40 0.61 0.61 0.40 0.61 0.40 0.61 0.40 0.40 0.61 0.61 0.40 0.61 0.40 0.61

Dynamic
Parser

3,378 0.51 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.51 0.68 0.68 0.68 0.68 0.68 0.68 0.68

Graph Cov-
erage

385 0.49 0.55 0.71 0.78 0.55 0.78 0.55 0.78 0.49 0.55 0.71 0.78 0.55 0.78 0.55 0.78

JMines 263 0.25 0.25 0.26 0.30 0.25 0.30 0.25 0.30 0.77 0.77 0.78 0.78 0.77 0.78 0.77 0.78
Logic Cov-
erage

436 0.50 0.86 0.87 0.87 0.86 0.87 0.86 0.87 0.50 0.86 0.87 0.87 0.86 0.87 0.86 0.87

MM Cover-
age

845 0.17 0.30 0.31 0.31 0.30 0.31 0.30 0.31 0.17 0.30 0.31 0.31 0.30 0.31 0.30 0.31

Poly 259 0.49 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.51 0.97 0.97 0.97 0.97 0.97 0.97 0.97
Snake 572 0.29 0.39 0.50 0.74 0.70 0.74 0.70 0.74 0.38 0.40 0.50 0.74 0.70 0.74 0.70 0.74
TicTacToe 1,045 0.05 0.44 0.49 0.44 0.47 0.47 0.49 0.49 0.05 0.49 0.50 0.49 0.49 0.49 0.50 0.50
Tree 113 0.21 0.53 0.62 0.62 0.57 0.62 0.42 0.62 0.29 0.59 0.62 0.62 0.62 0.62 0.62 0.62
Triangle 263 0.02 0.49 0.60 0.53 0.63 0.64 0.63 0.64 0.02 0.49 0.63 0.53 0.65 0.65 0.65 0.65
Vending
Machine

108 0.00 0.60 0.77 0.69 0.83 0.83 0.83 0.83 0.00 0.61 0.78 0.71 0.84 0.84 0.84 0.84

Average 9,627 0.34 0.54 0.59 0.60 0.58 0.61 0.58 0.61 0.37 0.56 0.61 0.62 0.60 0.63 0.60 0.63
TABLE III. EFFECTIVENESS OF TEST ORACLE STRATEGIES

regard to RQ2, checking program states multiple times was
only slightly more effective than checking the same program
states once.

Table III shows that each OS for the edge-adequate tests
reveals almost the same number of faults as the same OS for
the EP-adequate tests. We used the one-tailed Mann-Whitney
test (statistical significance level α = 0.05) [14] to look for
statistical evidence that EPC is more effective than EC. The
reason that we used one-tailed Mann-Whitney test rather than
the Wilcoxon signed rank test was that the compared data
were from two independent tests (one from EC and the other
from EPC). We applied each OS to the edge-adequate and
EP-adequate tests for each program and then compared the
percentages of the faults detected by the two paired sets of
tests that have the same OS. The p-values are between 0.3953
and 0.5823 for all the OSes, so we cannot reject H0 for
HypothesesC . Therefore, the answer to RQ3 is that EPC did
not reveal more faults than EC with the same OS, although
this could be because there were not significantly more edge
pairs than edges.

Table IV shows how many distinct assertions were created
by hand for each OS. Since a more precise OS checks more
program states than a less precise OS, more distinct assertions
were generated for the more precise OSes. Thus, the cost of
OS5 is greater than that of any other OS except OT. Although
OT checks program states less frequently than OS5, it uses
the same number of distinct assertions as OS5. Furthermore,
OS1, OS3, OS5, and OT require similar numbers of distinct
assertions but have far more assertions than OS2 and OS4. This
is because object members checked by OS1, OS3, OS5, and
OT produced lots of assertions since we checked the member
variables of objects recursively. For the same OS, the EP-
adequate tests do not have many more distinct assertions than

the edge-adequate tests. This is because we did not need to
create many more mappings to satisfy EPC than the mappings
created for EC, as discussed in section IV-B.

Fig. 4. The averages of cost-effectiveness of edge-adequate tests

Figure 4 gives the average cost-effectiveness from formula
1 over all the programs. The cost-effectiveness was computed
for EC, not EPC, because EPC is not significantly more
effective than EC for the programs and the cost of each OS for
EPC is almost the same as that for EC. Since the cost of NOS
is 0, we excluded it from this comparison. Figure 4 shows that
SIOS is the most cost-effective, followed by OS2 and OS4.

E. Discussion and Recommendations

We found statistical evidence that the more precise OS is
more effective in terms of the percentage of faults detected
than the less precise OS for the following pairs: {NOS, SIOS},
{SIOS, OS1}, {SIOS, OS3}, {SIOS, OS5}, {OS1, OS5},
{OS2, OS5}, {OS4, OS5}, {SIOS, OS2}, {SIOS, OS4}, and
{OS2, OS3}, but not for {OS1, OS3}, {OS3, OS5}, and
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Programs
Cost of Test Oracle Strategies

Edge Edge Pair
NOS SIOS OT OS1 OS2 OS3 OS4 OS5 NOS SIOS OT OS1 OS2 OS3 OS4 OS5

ATM 0 6 74 39 44 49 60 74 0 6 74 39 44 49 60 74
BlackJack 0 3 552 515 40 552 40 552 0 3 552 515 40 552 40 552
Calculator 0 9 123 123 20 123 20 123 0 9 123 123 20 123 20 123
CorssLexic 0 7 127 127 15 127 15 127 0 7 127 127 15 127 15 127
DFGraph
Coverage

0 7 163 163 18 163 18 163 0 7 163 163 18 163 18 163

Dynamic
Parser

0 15 23 23 15 23 15 23 0 15 23 23 15 23 15 23

Graph Cov-
erage

0 11 156 156 26 156 26 156 0 11 156 156 26 156 26 156

JMines 0 1 792 792 82 792 82 792 0 1 792 792 82 792 82 792
Logic Cov-
erage

0 8 181 181 10 181 10 181 0 8 181 181 10 181 10 181

MM Cover-
age

0 16 587 584 20 587 20 587 0 16 587 584 20 587 20 587

Poly 0 6 12 10 12 12 12 12 0 6 14 12 14 14 14 14
Snake 0 8 463 463 55 463 55 463 0 8 463 463 55 463 55 463
TicTacToe 0 3 90 32 7 36 61 90 0 3 90 32 7 36 61 90
Tree 0 3 35 23 15 35 15 35 0 3 35 23 15 35 15 35
Triangle 0 5 59 50 14 59 14 59 0 5 59 50 14 59 14 59
Vending
Machine

0 6 18 17 9 17 9 18 0 6 21 19 9 20 9 21

Total 0 114 3,455 3,298 402 3,375 472 3,455 0 114 3,460 3,302 404 3,380 474 3,460
TABLE IV. COST OF TEST ORACLE STRATEGIES

{OS2, OS4}. This shows that if the precision difference of
two OSes is not large enough, there is no difference between
the effectiveness of the OSes.

In Table III, the percentage of faults detected (mutation
score) by the EP-adequate tests for the most precise OS (OS5)
in this paper is only 0.63. This is a low score considering that
90% mutation is considered a good test set. The test inputs
were generated to satisfy state invariants in the state machine
diagrams while mutation-adequate tests usually require more
test inputs. This implies that mutation coverage is generally
more effective at finding faults than EC and EPC on the model.
We previously [13] found that mutation can find more faults
than EPC at the unit testing level. Furthermore, the system
tests generated in this paper could only call methods that are
mapped to the models at a high level.

Table III shows that NOS is not very good at revealing
faults. This suggests that checking runtime exceptions is not
enough. We also noticed that SIOS can reveal more than 80%
of the faults detected by OS5 but with many fewer assertions.
Test inputs were generated to satisfy state invariants, thus
checking the limited number of outputs and internal state
variables used in the state invariants can reveal many faults.
In contrast, checking more program states (as OS5 does) that
are not affected by the test inputs are not likely to reveal
more faults. If the tester wants to check more program states,
checking return values or parameter members (as with OS2
and OS4) yields better cost-effectiveness than checking object
members (as with OS1, OS3, OS5, and OT), because they
require more cost with little increase in effectiveness.

The results show that checking program states multiple
times was only slightly more effective than checking the same
program states once for both EC and EPC. Our belief is that
program states are changed when execution enters a different

state of a state machine diagram. Therefore, most faults should
be revealed if all program states are checked for each distinct
diagram state, as done by OT. Checking the same program
states multiple times does not seem to help much.

Moreover, we found statistical evidence that EP-adequate
tests are not significantly more effective than edge-adequate
tests. This may be because EPC did not require many more
mappings on the state machine diagrams, even though EPC
had more tests.

Checking program states frequently could require too many
assertions in tests. OT results in 7,534 assertions for EC
(16,782 for EPC) but OS5 produces 24,084 (83,821 for EPC).
These numbers were not shown in the tables due to lack of
space. Checking lots of program states could cause the size
of a JUnit test method to exceed 65,536 bytes, resulting in a
compiler error. Since testers must split these methods by hand,
this results in additional hidden costs.

Figure 4 shows that SIOS is the most cost-effective for
both EC and EPC. So if testers need to save time, SIOS is
a good choice. Otherwise, testers should choose OS2 or OS4
because they are almost as effective as OS5 but require fewer
assertions than OS5.

F. Threats to Validity

As in most software engineering studies, we cannot be
sure that the subject programs are representative. The results
may differ with other programs and models. Another threat to
external validity is that we generated tests to satisfy EC and
EPC. The results may differ if we used different tests. One
construct validity threat is that we used muJava to generate
synthetic faults. Using real faults or another mutation tool may
yield different results. Another is that we approximated cost by
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the number of assertions, a simplification that was required to
make the experiment practical. Another internal threat is that
the first author identified equivalent mutants by hand, thus,
mistakes could affect the results in small ways.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes six new test oracle strategies to help
find more faults with less cost in model-based testing. We
compared these OSes with two baseline OSes: NOS and SIOS.
We generated test inputs to satisfy EC and EPC from UML
state machine diagrams for 16 programs. Then the eight OSes
were applied to the edge-adequate and EP-adequate tests,
resulting in 16 sets of tests for each program. These sets of
tests were run against faults. The effectiveness and cost of each
OS were recorded and the cost-effectiveness was calculated in
section IV.

We had several findings. First, NOS is not very effective
and testers need to check program states, not just runtime
exceptions. Second, the more precise OSes did not always
detect more failures than the less precise OSes. Third, an OS
that checks program states multiple times was only slightly
more effective than OSes that check the same states just once.
Fourth, with the same OS, a stronger test coverage criterion
was not more effective at finding faults than a weaker criterion.
In summary, checking only runtime exceptions will result in
many failures not being noticed. Checking only state invariants
(SIOS) is recommended for testers who are willing to sacrifice
a little quality for time; otherwise, testers should check state
invariants, outputs and parameter objects (OS2 or OS4).

In the future, we plan to improve SIOS, and develop new
OSes such as checking the program states in OS1, OS2, OS3,
OS4 once. Using mutation analysis to select which program
states to check seems promising [17], [21], but could be costly
because testers have to run mutation analysis before providing
test oracle data. We intend to seek a way to select OSes that
are effective but less costly.
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