
Industrial Strength COMPASS: A Comprehensive
Algorithm and Software for Optimization via
Simulation

JIE XU and BARRY L. NELSON

Northwestern University

and

L. JEFF HONG

The Hong Kong University of Science & Technology

Industrial Strength COMPASS (ISC) is a particular implementation of a general framework for
optimizing the expected value of a performance measure of a stochastic simulation with respect

to integer-ordered decision variables in a finite (but typically large) feasible region defined by
linear-integer constraints. The framework consists of a global-search phase, followed by a local-

search phase, and ending with a “clean-up” (selection of the best) phase. Each phase provides a
probability1 convergenceguaranteeas the simulation effort increases without bound: Convergence

to a globally optimal solution in the global-search phase; convergence to a locally optimal solution
in the local-search phase; and convergence to the best of a small number of good solutions in the

clean-up phase. In practice, ISC stops short of such convergence by applying an improvement-
based transition rule from the global phase to the local phase; a statistical test of convergence

from the local phase to the clean-up phase; and a ranking-and-selectionprocedure to terminate the
clean-up phase. Small-sample validity of the statistical test and ranking-and-selection procedure

is proven for normally distributed data. ISC is compared to the commercial optimization via
simulation package OptQuest on five test problems that range from 2 to 20 decision variables and

on the order of 104 to 1020 feasible solutions. These test cases represent response-surface models
with known properties and realistic system simulation problems.

Categories and Subject Descriptors: G.3 [Mathematics of Computing]: Probability and Statis-

tics—Experimental Design; I.6.6 [Simulation and Modeling]: Simulation Output Analysis

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Optimization via simulation, random search, ranking and

selection

This research was partially supported by National Science Foundation grant number DMI-0217690
and Hong Kong Research Grants Council grant numbers CERG 613305 and 613706. Author Ad-

dresses: J. Xu, Department of Industrial Engineering & Management Sciences, Northwestern
University, Evanston, IL 60208-3119; email: jiexu@iems.northwestern.edu; B. L. Nelson, Depart-

ment of Industrial Engineering & Management Sciences, Northwestern University, Evanston, IL
60208-3119; email: nelsonb@northwestern.edu; L. J. Hong, Department of Industrial Engineering

and Logistics Management, The Hong Kong University of Science and Technology, Clear Water
Bay, Hong Kong; email: hongl@ust.hk.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–28.

2 · Xu et al.

1. INTRODUCTION

The popularity of stochastic simulation for system design and analysis has been
driven by a sequence of key advances: Implementation of intuitive process-interaction
(network) modeling paradigms; the development of graphical user interfaces for
model development; convenient animation of simulation results; interapplication
communication between simulation and other software; and integrated toolkits for
optimization of simulated system performance (see Nance and Sargent [2002] for a
more comprehensive overview of the evolution of discrete-event, stochastic simula-
tion). Only this last advance—which we call optimization via simulation (OvS)—is
an analysis capability (analysis methods have certainly been incorporated into sim-
ulation software, but are probably not responsible for its popularity). Although
not every simulation problem requires optimization, it is rare to find an application
where the analyst is uninterested in “the best” settings for the simulated system,
and in many cases finding a good system design is the reason the simulation was
constructed.

As noted by a number of authors [e.g., Fu 2002], there has been a disconnect be-
tween research on OvS and the practice of OvS, as represented by the commercial
OvS products. Simply stated, the impact of published research on commercial soft-
ware has been limited. Nevertheless, commercial OvS software has been successful
because (a) there was and is a substantial market for actually doing OvS in practice,
(b) the products are able to handle realistic problems with complex objectives and
constraints, while delivering results in a timely manner, and (c) they are integrated
into simulation modeling software. The research community, on the other hand,
has focused on OvS correctness, as quantified by convergence or “correct selection”
guarantees. These properties are easiest to prove (which is not to say easy to prove)
for simple, elegant algorithms that leave a host of implementation issues unresolved
(e.g., complex constraints and stopping rules). Correctness, in this formal sense,
is not a feature of commercial products. Correctness matters, however, because
when stochastic noise is present an inferior solution may be selected, and its actual
performance may be poorly estimated, in the absence of correctness guarantees.

In the last decade there has been significant research activity aimed at bridging
this divide, and we believe it has reached a level of maturity that supports a first step
toward developing OvS software that offers correctness guarantees while also being
competitive with the features provided by commercial products. This paper reports
one such step, which we call Industrial Strength COMPASS (ISC). The name is
derived from the Convergent Optimization via Most Promising Area Stochastic
Search algorithm of Hong and Nelson [2006], which is the core of ISC. ISC is a
specific instance of a high-level framework for OvS algorithms that consists of three
phases: Global, Local and Clean Up. Section 3 defines the properties that we
desire for each phase. While we are guilty of drawing heavily on our own research
in turning this framework into a specific algorithm, our approach is also strongly
influenced by the foundational work of Andradóttir [1995, 1999].

How can we establish that we are “competitive with the features provided by
commercial products?” We will do so by comparing ISC to OptQuest (OptTek Sys-
tems, Inc.). If OptQuest is not the best of the commercial products, it is certainly
a good representative of them and it is very widely used (it is integrated into 13
ACM Journal Name, Vol. V, No. N, Month 20YY.

Industrial Strength COMPASS · 3

simulation products according to www.opttek.com/simulation.html). OptQuest
implements robust metaheuristics; refer to the product web site for more details.
Because OptTek Systems, Inc. provided a standalone version of the OptQuest en-
gine, our comparisons are not tied to a particular simulation modeling product.

We use OptQuest to establish a competitive benchmark for optimization per-
formance as a function of simulation effort, and we count on OptQuest to deliver
good solutions quickly (which in our experience it does). We do not expect to beat
OptQuest in any comprehensive sense. OptQuest has had years of development,
and its algorithms are smart and efficient. We consider ISC to be a success if it
can deliver as good or better solution quality as OptQuest without expending sub-
stantially more simulation effort. This constitutes “success” because ISC provides
convergence guarantees and inference that OptQuest does not. Our only potential
advantage comes from how we deal with the stochastic aspect of the problem, which
is fundamentally different from any of the commercial products.

Since ISC is a first step, it has limitations:

Objective. Our objective is to maximize or minimize the expected value of a sim-
ulation output random variable whose distribution depends on a finite-dimensional
vector of controllable decision variables. This is also the implicit objective in
OptQuest. ISC does not support multiple objectives.

Decision Variables. We only consider integer-ordered decision variables. Contin-
uous-valued decision variables can be handled by discretizing them, but ISC does
not exploit the fact that they are continuous valued nor is discretizing likely to
be very efficient. Categorical decision variables are not considered at all, but if
there are only a small number of categories then ISC can be run separately for each
category. This is more limited than OptQuest.

Constraints. We only consider deterministic constraints, specifically linear-integer
inequality constraints. The methodology employed in ISC works for any convex fea-
sible region, but we have only implemented the methods for linear-integer inequality
constraints. OptQuest can also include a useful form of stochastic constraint.

Problem Size. While there is no conceptual limit to the problem size that ISC
can tackle, its performance will be affected more by the number of decision variables
than by the number of feasible solutions that they imply. This is due to the way we
define a locally optimal solution as being better than all of its 2d immediate neigh-
boring solutions, where d is the number of decision variables (see §3). Therefore,
to declare a solution “optimal” at least 2d + 1 solutions must be simulated exten-
sively. OptQuest is less restrictive on problem size but can provide no guarantee of
optimality without simulating all feasible solutions.

We will show that ISC achieves our goals: In some cases (noisy problem, multi-
modal response surface) demonstrating superior performance to OptQuest; in oth-
ers (low noise, more regular response surface) being beaten by OptQuest in terms
of relative effort expended; and in yet others having performance almost indistin-
guishable from OptQuest. Comparison of COMPASS-based approaches with other
convergent algorithms can be found in Hong and Nelson [2006]. The ISC software
and all supporting papers may be found at www.ISCompass.net.

In the next section we give a more precise statement of the OvS problem, review
ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Xu et al.

relevant literature, precisely state our objectives and set up the remainder of the
paper.

2. BACKGROUND

We are interested in solving the following problem:

Minimize g(x) = E [G(x)] subject to x ∈ Θ = Φ ∩ Zd (1)

where x is a vector of d integer-ordered decision variables in a feasible region Φ ⊂
<d, possibly defined by a set of constraints and Zd denotes all d-dimensional vectors
with integer components. We assume that Φ is compact and convex so that |Θ| <∞
(but probably quite large). The random variable G(x) typically has no closed
form, but can be observed through simulation experiments at x. We assume that
Var[G(x)] <∞ for all x ∈ Θ, and that we can simulate independent and identically
distributed replications, G1(x), G2(x), . . . at any x. Problem (1) is called a discrete
optimization-via-simulation (DOvS) problem, and we refer to any x as a potential
“feasible solution.”

DOvS problems arise in many areas of operations research and management
science. For instance, the following problems can all be modeled as DOvS problems:
capacity planning, where the capacities of all workstations need to be determined;
call center staffing, where the agents are allocated to different departments and
different time periods; and supply-chain management, where inventory order-up-to
levels are critical decisions. For reviews of the theory and practice of optimization
via simulation, see Fu [2002] and Fu, Glover and April [2005].

A number of methods have been proposed in the research literature to solve
DOvS problems, including globally convergent random search (GCRS) algorithms,
locally convergent random search (LCRS) algorithms, ranking and selection (R&S)
and ordinal optimization (OO). GCRS algorithms converge to the set of global
optimal solutions as the simulation effort goes to infinity. They typically achieve
global convergence by making sure that all feasible solutions are simulated infinitely
often. GCRS algorithms include the stochastic ruler algorithm of Yan and Mukai
[1992], the simulated annealing algorithm of Alrefaei and Andradóttir [1999], the
stochastic comparison algorithm of Gong et al. [1999] and the nested partitions
algorithm of Shi and Ólafsson [2000] and Pichitlamken and Nelson [2003].

LCRS algorithms include the COMPASS algorithm [Hong and Nelson 2006] and
the revised COMPASS algorithm [Hong and Nelson 2007a] that converge to a locally
optimal solution as the simulation effort goes to infinity. Hong and Nelson [2007a]
show that local convergence can be achieved by simulating only a locally optimal
solution and its neighbors infinitely often. Compared with GCRS, LCRS algorithms
generally converge much faster in practice, but they can be trapped in inferior
solutions if there exist multiple locally optimal solutions.

R&S procedures select the best solution by simulating all of them and making
statistical inference in the form of a probability of correct selection (PCS). They
include the indifference-zone procedures [e.g., Nelson et al. 2001], the Bayesian
procedures [e.g., Chick and Inoue 2001], and the optimal computing budget alloca-
tion procedures [OCBA, e.g., Chen et al. 2000]. When the set of feasible solutions
of Problem (1) is small, R&S procedures can be directly applied to find the best
solution. When the set is large, special R&S procedures have been developed to
ACM Journal Name, Vol. V, No. N, Month 20YY.

Industrial Strength COMPASS · 5

facilitate the optimization process [e.g., Hong and Nelson 2007b] and to “clean up”
after the optimization process [Boesel et al. 2003b].

OO softens the goal of finding an optimal solution to finding a top-n solution [Ho
et al. 1992]; it becomes a DOvS algorithm by first picking (often by blind picking)
a set of k solutions and then finding the best among the k solutions, often by using
OCBA. The critical issue is to determine k, which OO does by achieving a certain
level of the “alignment probability,” which is the probability that at least one of
the k solutions is a top-n solution.

The algorithms proposed in the research community typically have good conver-
gence or statistical properties. However, they are often too simple or inefficient to
solve practical problems. Therefore, they are seldom used in practice. On the other
hand, all of the major commercial simulation modeling products have simulation
optimization toolkits that use sophisticated metaheuristics designed for challeng-
ing deterministic optimization problems, but that often take a simplistic approach
to handling the noise of stochastic problems. Therefore, the algorithms work well
when the level of noise in the simulation output is low, but they can be significantly
misled when it is not.

In this paper, we modify several existing algorithms in the research literature
and combine them together under a carefully designed algorithm framework. We
show that the resulting new algorithm, called ISC, has nice convergence and statis-
tical properties and also has competitive performance compared to the commercial
package OptQuest. The algorithm framework includes three phases: Global, Local
and Clean Up. The Global Phase explores the whole feasible region and identifies
several good solution seeds; the Local Phase takes one seed at a time and finds a
locally optimal solution; and the Clean-up Phase selects the best from the set of
solutions identified in the Local Phase and also estimates its expected performance.

ISC is obtained by making specific choices for each phase. For the Global Phase,
we adapt a niching genetic algorithm (NGA) [Miller and Shaw 1995, Sareni and
Krahenbuhl 1998] that can quickly identify several clusters of good solutions. We
show that our version of the NGA can be made to converge to a globally optimal
solution as the simulation effort goes to infinity. For the Local Phase, we use a
modified version of the COMPASS algorithm that converges to a locally optimal
solution. A stopping test is used to terminate the COMPASS algorithm when a
locally optimal solution is identified with probability at least 1−αL. Therefore, as
1−αL → 1, the COMPASS algorithm can be shown to converge with probability 1
to a locally optimal solution. For the Clean-up Phase, we apply a R&S procedure to
select the best of the solutions identified in the Local Phase with probability greater
than or equal to 1−αC, and also provide a fixed-width ±δC confidence interval for
the expected value of the performance of the selected solution. As 1−αC → 1 the
best of these solutions will be identified with probability 1. Throughout the paper
we use the subscripts G, L and C to denote parameters associated with the Global,
Local and Clean-up Phases, respectively.

An alterative framework that has been proposed is the balanced explorative and
exploitative search with estimation scheme (BEESE) [Prudius and Andradóttir
2004, 2006]. BEESE integrates the global search, local search and estimation to-
gether, and it converges to a globally optimal solution as the simulation effort goes

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Xu et al.

to infinity. A framework with similar objectives is also proposed by Lin and Lee
[2006]. Compared to these frameworks, our framework is designed to find good lo-
cally optimal solutions, and stop with a statistical guarantee that we have done so,
without the need to simulate all feasible solutions. However, our approach requires
transitions between phases which these frameworks avoid.

The remainder of the paper is organized as follows: In Section 3 we introduce the
three-phase framework and discuss how to transition between phases. A high-level
description of the ISC algorithm is presented in Section 4 along with its convergence
and statistical properties. In Section 5 we evaluate the performance of ISC through
a number of examples and compare it to OptQuest. The paper is concluded in Sec-
tion 6. Proofs and the details of the ISC algorithm are provided in the appendices,
some of which are electronic (online-only).

3. DOVS FRAMEWORK

Our DOvS framework has three phases, Global, Local and Clean Up. In this section,
we discuss the desired properties of each phase.

In the Global Phase we want to quickly identify a number of solution seeds that
may lead to competitive locally optimal solutions in the second phase, and also
facilitate a quick start for the local search of the second phase. To ensure that the
algorithm used in this phase has good large-sample properties, we require it to be
globally convergent if the simulation effort of this phase goes to infinity.

Although the algorithm of the first phase should be globally convergent, it will
transition to the second phase in practice. The transition rules can be effort based
or quality based. An effort-based rule transitions from the first phase to the second
phase after the simulation budget for the first phase is consumed; a quality-based
rule transitions if it is clear that the seeds can lead to high-quality solutions in the
second phase. Effort-based rules are often arbitrary and therefore to be avoided;
but they are sometimes necessary because it is difficult to predict in advance how
long it might take a particularly difficult problem to transition based on quality
rules. The detailed transition rules used in ISC are introduced in the next section.

The Local Phase starts with the best solution seed identified in the first phase
and uses efficient local search to find a locally optimal solution; it then goes on
to the second-best solution seed and so on until exhausting all solution seeds. To
ensure good performance of the algorithm used in this phase, we require it to be
locally convergent as the simulation effort goes to infinity regardless of the quality
of the seeds that are provided. We define a local minimum as follows (this definition
is also used in Hong and Nelson [2006, 2007a]):

Definition: Let N (x) = {y : y ∈ Θ and ‖x− y‖ = 1} be the local neighborhood
of x ∈ Θ, where ‖x− y‖ denotes the Euclidean distance between x and y. Then x
is a local minimum if x ∈ Θ and either N (x) = ∅ or g(x) ≤ g(y) for all y ∈ N (x).
Let M denote the set of local minimizers of the function g in Θ.

Since the quality of the solutions found in the Local Phase is critical to the
performance of the algorithm, in practice we require each solution obtained in this
phase to be a local minimum with probability at least 1 − αL. Therefore, as the
ACM Journal Name, Vol. V, No. N, Month 20YY.

Industrial Strength COMPASS · 7

PCS 1− αL → 1, the effort goes to infinity and the algorithm is guaranteed to be
locally convergent.

The transition between the second and third phases can be either effort based
or quality based. For the effort-based rule, transition happens when the simulation
budget for the second phase is exhausted. If there is no effort limit, the algorithm
transitions once all solutions seeds are searched, which is what we prefer. The
Local Phase returns a set of solutions L, and is designed to give high confidence
that L ⊂M.

In the Clean-up Phase we want to select the best solution from among the locally
optimal solutions L found in the second phase, and the actual value of the selected
solution also needs to be estimated to within±δC , all with confidence level≥ 1−αC ,
where δC > 0 and 0 < αC < 1 are set by the user. As 1−αC → 1 the best solution
is therefore selected with probability 1.

4. METHODOLOGY

Our goal is to produce a DOvS algorithm that satisfies the requirements set by An-
dradóttir and Nelson [2004]: Provable asymptotic performance, competitive finite-
time performance and valid statistical inference at termination. We achieve this
by using the framework in §3. To a certain extent, we exploit existing technolo-
gies to fill in each phase. However, the requirement that we achieve “competitive
finite-time performance” requires us to invent a number of enhancements that im-
prove performance without affecting convergence guarantees. These enhancements
range from essential speed-ups to minor tweaks, and from rigorously justified to
“makes sense and seems to work well in experiments.” In this section we provide a
high-level review of the existing technologies we incorporate and the details of only
the most critical enhancements. In the electronic appendix we fully document the
entire algorithm; Figure 1 is an overview of the approach.

A few basic terms and concepts are critical to an understanding of ISC:

—To “sample a solution” means to select a solution randomly, either from Θ or a
designated subregion of it. The methods we use to sample solutions guarantee
that all solutions in the region of interest have a (nearly) uniform probability of
being selected.

—To “evaluate a solution” means to obtain one or more independent replications
of its performance and to average those results. The set of “visited solutions” are
those that have been evaluated at least once. We always accumulate performance
data on visited solutions, so that if a solution is evaluated more than once its
performance is estimated by the cumulative sample mean of all replications.

—Convergence guarantees are always as the simulation effort goes to infinity. To
keep the effort from going to infinity in ISC, we use transition rules in the Global
Phase, and statistical tests in the Local and Clean-up Phases. The small-sample
validity of these tests depends on the simulation output data being normally dis-
tributed, or on the sample size being large enough that Central Limit Theorem
considerations make normality a good approximation for the cumulative average.
The nature of the COMPASS algorithm, which concentrates effort on apparently
locally optimal solutions and their neighbors, tends to generate enough replica-
tions of the tested solutions that approximate normality can be anticipated. The

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Xu et al.

Fig. 1. Industrial Strength COMPASS implementation of the optimization framework.

convergence guarantees of the Local and Clean-up Phases do not depend on the
small-sample validity of these tests, however.

4.1 Global Phase

The role of the NGA is to serve as our global search engine, and we have extended
the basic NGA technology to make it globally convergent (if desired) for the class
of DOvS problems considered here (see the Appendix). As noted in §2, there
are already globally convergent DOvS algorithms, so why do we need another?
In practice, we will transition from Global to Local phases long before achieving
anything like global convergence, and the Local Phase will then pursue promising
subregions more intensely. Therefore, we need an algorithm that can achieve global
convergence, in a limiting sense, but does so by simultaneously identifying and
investigating one or more promising subregions of Θ that will be seeds for the locally
convergent second phase. COMPASS, which we use for the Local Phase, converges
particularly quickly given a good starting solution and a cluster of solutions around
it. The NGA, which is designed for multimodal functions, accomplishes this.

We chose genetic-algorithm technology because it is a population-based, as op-
posed to a point-to-point, search that considers many good solutions in parallel and
therefore tends to be somewhat robust to stochastic noise [Jin and Branke 2005].
That GAs converge slowly is not an issue since we depend on the rapid convergence
of COMPASS to close in on locally optimal solutions. What is far more important
is that we explore the feasible region broadly and identify collections of solutions
in promising subregions.

4.1.1 Niching GA. GAs, by their nature, are complicated algorithms to de-
scribe. Here we present a high-level overview of our version of a NGA; complete
details for each step below may be found in the electronic appendix. When we stop
ACM Journal Name, Vol. V, No. N, Month 20YY.

Industrial Strength COMPASS · 9

the NGA, based on a transition rule, it delivers one or more “niche centers” (good
solutions or seeds) and a cluster of other near-by solutions, as defined by a “niche
radius;” see Figure 1. The Local Phase attacks each niche in turn looking for a
locally optimal solution.

Niching GA

Initialization. Randomly sample mG solutions x1,x2, . . . ,xmG from Θ and eval-
uate them.

Evolution. Execute a generation of the NGA to evolve the current population of
mG solutions into a new population of mG solutions, maintaining a niche structure
around apparently good solutions:

(1) Form niches: Form up to q niches by clustering solutions within radius r of
good solutions.

(2) Selection: Select mG/2 solutions randomly, but with replacement, from the
population using a linear ranking scheme that gives preference to solutions with
better estimated performance (we use the approach described in Boesel [1999] and
Boesel et al. [2003a]).

(3) Mating: For each solution selected in Step 2, use a mating restriction scheme
to select its partner.

(4) Crossover: Randomly create a new pair of solutions that are geometrically
between each pair of solutions.

(5) Mutation: Randomly perturb the coordinates xi1, xi2, . . . , xid of each new
solution xi.

Evaluate Solutions. Evaluate all solutions in the current population.
Next Generation. Replace solutions in the population with newly generated so-

lutions.
Go to Evolution.

Key input parameters for the NGA are the number of niches to form, q, and the
niche radius, r, which defines how close a solution must be to a niche center (good
solution) to be clustered in the same niche. Because our algorithm is intended to
be general purpose, we have no way to know these values in advance, nor should we
expect the user to be able to provide them. To solve this problem, we enhance the
Initialization and Evolution steps so that on each iteration of the NGA we form a
rough response surface model over Θ from which we extract estimates of q and r;
therefore, q and r will change from iteration to iteration of the NGA. The modified
steps are as follows:

Enhanced Initialization. Estimate the number of regions containing local mini-
mums, q, and half the shortest distance between any of these two local minimums,
r, which will then serve as the number of niches and the niche radius, respectively,
for the NGA.

(1) Randomly sample mG solutions x1,x2, . . . ,xmG from Θ. The value of mG

is set as at least 50, since this guarantees that, with a probability greater than
90%, at least one of the mG solutions are among the best 5% of all solutions in Θ
based on calculation of the alignment probability in ordinal optimization (see, for
instance, Ho et al. [1992]).

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Xu et al.

(2) Evaluate each solution by obtaining n0 replications and averaging.
(3) For each x ∈ Θ, let its value be the sample average of the closest visited

solution to it; this defines a piecewise constant response surface over Θ. On this
response surface, let q be the number of local minimums (niche centers) and let r
be half the distance between the closest pair of local minimums.

Enhanced Evolution. Execute a generation of the NGA to evolve the current
population of mG solutions into a new population of mG solutions, maintaining a
niche structure:

(1) For each x ∈ Θ, let its value be the sample average of the closest visited
solution to it; this defines a piecewise constant response surface over Θ. On this
response surface, let q be the number of local minimums (niche centers) and let r
be half the distance between the closest pair of local minimums.

(2) Continue with the Evolution step as before....

Like most GAs, NGAs were designed for deterministic optimization problems. In
our stochastic context, to “evaluate” a solution means to simulate it and estimate
its value. The second key enhancement relates to how we do this so that we obtain a
global convergence guarantee (this step, along with our implementation of mutation,
guarantee that all solutions will be simulated infinitely often if the NGA is never
terminated, so that the sample averages will converge to their true expectations
with probability 1; see Appendix A):

Evaluation of Solutions. For all solutions in the current population that have
been evaluated previously, generate ∆n additional replications and average. For all
solutions in the population that have not yet been evaluated, generate n0 replica-
tions and average.

4.1.2 Transition Rules. In practice, we terminate the Global Phase when con-
ditions indicate that we have uncovered fertile regions for seeking locally optimal
solutions. We believe that there are at least four categories of transition rules:

Budget Rule. The user may specify a budget (in terms of number of replications)
for the Global Phase so that a transition occurs when the budget is exhausted if it
has not already occurred.

Niche Rule. If at any time there is only one niche, then transition to the Local
Phase.

Improvement Rule. If there is no apparent improvement in solution quality in
TG generations, then transition to the Local Phase. The value of TG may be user
specified.

Dominance Rule. If the solutions in one niche statistically dominate the solutions
in all other niches, then transition to the Local Phase.

Our implementation of ISC incorporates all of these rules, but in the empirical
evaluation we did not set a budget limit.

4.2 Local Phase

The role of the COMPASS algorithm is to start with a niche of solutions as input
and rapidly converge to a locally optimal solution. COMPASS is guaranteed to do
this as the number of iterations goes to infinity even if the niche does not surround
ACM Journal Name, Vol. V, No. N, Month 20YY.

Industrial Strength COMPASS · 11

a locally optimal solution [Hong and Nelson 2006]. However, the hope is that the
NGA has identified small subregions containing local optima so that COMPASS
can converge very quickly.

4.2.1 COMPASS. In the COMPASS algorithm, we use Vk to denote the set of
all solutions visited through iteration k of a COMPASS run, and use x̂∗

k to denote
the solution with the smallest aggregated sample mean among all x ∈ Vk; that is,
x̂∗

k is the sample best solution through iteration k. When COMPASS is run after
the transition from the Global Phase, the set V0 contains the solutions from the
niche being explored.

At the end of iteration k, we construct

Ck = {x : x ∈ Θ and ‖x− x̂∗
k‖ ≤ ‖x− y‖, ∀y ∈ Vk and y 6= x̂∗

k}

the most promising area at iteration k. The set Ck includes all feasible solutions
that are at least as close to x̂∗

k as to other solutions in Vk. At iteration k + 1,
COMPASS samples mL solutions (nearly) uniformly from Ck. Notice that Ck is
never empty since x̂∗

k is always in Ck, and we do not require the mL solutions to
be unique. As we show below, the most promising area is defined by a collection
of linear constraints (including the original constraints that defined the feasible
region).

The COMPASS algorithm uses a simulation-allocation rule (SAR) to evaluate
solutions in Vk at each iteration. The rules we employ, which are described in the
electronic appendix, allocate replications either based on a fixed schedule or using
OCBA ideas. Let ak(x) be the additional observations allocated to x at iteration
k as determined by the SAR; ak(x) may depend on all past information such as
Vk and Gi(x), i = 1, 2, . . ., for all x ∈ Vk. Then Nk(x) =

∑k
i=0 ai(x) denotes the

total number of observations on solution x at iteration k for every x ∈ Vk. We use
Ḡk(x) to denote the sample mean of all Nk(x) observations of G(x) at iteration k.
The basic COMPASS algorithm is as follows [Hong and Nelson 2006]:

COMPASS

Step 0. Set iteration counter k = 0 and form C0 based on the solutions in V0.
Step 1. Let k = k + 1. Sample xk1,xk2, . . . ,xkmL uniformly and independently

from Ck−1. Let Vk = Vk−1 ∪ {xk1,xk2, . . . ,xkmL}. Determine ak(x) according to
the SAR for every x in Vk. For all x ∈ Vk, evaluate x by taking ak(x) observations
and updating Nk(x) and Ḡk(x).

Step 2. Let x̂∗
k = argminx∈Vk

Ḡk(x). Construct Ck and go to Step 1.

The COMPASS algorithm converges to a locally optimal solution as k→∞ under
very mild conditions, essentially that each sample mean Ḡk(x) satisfies a strong law
of large numbers, the SAR guarantees that the number of replications allocated to
all visited solutions goes to infinity, and Θ is finite [Hong and Nelson 2006]. Stronger
conditions allow COMPASS to converge when Θ is countably infinite; see Hong and
Nelson [2006] and also Andradóttir [2006]. Since ISC assumes that observations of a
solution are obtained from independent and identically distributed replications with
finite variance, the first condition is easily satisfied. However, as noted in Hong and
Nelson [2007a], the latter condition—that the number of replications that all visited

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Xu et al.

solutions receive goes to infinity—is inefficient and much stronger than necessary.
In fact, only those solutions in Vk that are necessary to define Ck need to receive
additional replications on iteration k, and only solutions in the neighborhood of the
locally optimal solution identified by COMPASS need to receive an infinite number
of replications in the limit.

Our primary enhancement to COMPASS is solution pruning, which means that
at the end of iteration k we determine which solutions in Vk generate active con-
straints for the most promising area; stated differently, we find the smallest set of
solutions that define Ck. Then only the solutions that define Ck, the current sample
best solution, and the newly sampled solutions xk1,xk2, . . . ,xkmL are evaluated ac-
cording to the SAR. The trick is figuring out if x ∈ Vk is an active solution, which
is the enhancement we present here.

In COMPASS, each visited solution xi ∈ Vk that is not the current sample best
solution x̂∗

k defines a constraint plane that is halfway between xi and x̂∗
k. The most

promising area consists of the solutions closer to x̂∗
k than to xi; that is, on the x̂∗

k

side of the planes. These constraints take the form

(x̂∗
k − xi)

′
(
x− x̂∗

k + xi

2

)
≥ 0.

Removing redundant solutions is equivalent to finding all solutions that do not
define active constraints. We can decide if a solution xi ∈ Vk is redundant by
solving a linear program (LP) where we maximize the constraint of interest subject
to the other constraints (see for instance Telgen [1983]). Therefore, to decide if
solution xi is redundant we solve

minx (x̂∗
k − xi)

′
(
x− x̂∗

k + xi

2

)

s.t. (x̂∗
k − xj)

′
(
x − x̂∗

k + xj

2

)
≥ 0 ∀xj ∈ Vk, j 6= i.

If the objective function is nonnegative, then the constraint is redundant and the
solution is not active. After doing it the first time we only need to apply pruning
to the currently active solutions and the newly sampled solutions, not all visited
solutions. Therefore, the number of active solutions in COMPASS can be kept
small by occasionally doing this pruning, and since solving small LPs is fast, the
overhead is more than offset by avoiding the need to apply the SAR to an ever-
increasing number of solutions. Further, it turns out that having a small number
of COMPASS constraints also speeds the random sampling of new solutions from
the most promising area.

A second, less-critical enhancement to COMPASS is to locate the constraint plane
based on how much improvement we predict in moving from xi to x̂∗

k rather than
always using half the distance. This modification keeps COMPASS from closing in
too quickly when the current sample best is not conclusively better than the other
active solutions, and is described in the electronic appendix.

4.2.2 Transition Rule. The evolution of the COMPASS algorithm guarantees
that eventually the most promising area is a single solution x̂∗, and that only the
solutions in its neighborhood N (x̂∗) will be active. At this point it is reasonable
ACM Journal Name, Vol. V, No. N, Month 20YY.

Industrial Strength COMPASS · 13

to stop COMPASS and test if the single solution is superior to all of its neighbors.
We propose the following hypothesis test:

H0 : g(x̂∗) ≤ min
y∈N (x̂∗)

g(y) vs. H1 : g(x̂∗) > min
y∈N (x̂∗)

g(y).

We set the Type I error to αL and we want the power to be at least 1 − αL

if g(x̂∗) ≥ miny∈N (x̂∗) g(y) + δL, where δL is a tolerance that the user chooses
(that defaults to δC defined in the next section). If x̂∗ passes the test, then we
stop COMPASS and declare x̂∗ to be locally optimal; otherwise, the test gives a
solution in N (x̂∗) that is better than x̂∗, which enables COMPASS to continue.
Notice that, if we drive 1−αL to 1, then this drives the sample size to infinity and
we are guaranteed to find a locally optimal solution.

We can rewrite this test in the following form:

Pr{declare x̂∗ locally optimal} ≥ 1− αL if g(x̂∗) ≤ min
y∈N (x̂∗)

g(y)

Pr{declare x̂∗ not locally optimal} ≥ 1− αL if g(x̂∗) ≥ min
y∈N (x̂∗)

g(y) + δL.

This test can be viewed as a special case of comparisons with a standard (see, for
instance, Nelson and Goldsman [2001] and Kim [2005]), with x̂∗ being the standard.
Therefore, we can use a highly efficient comparison-with-a-standard procedure to
carry out the test. In the ISC algorithm we use the sequential procedure of Kim
[2005]. This procedure takes one simulation observation at a time from all solutions
still in contention and determines if any of them can be eliminated. It stops when
only one solution remains and selects that solution. The procedure typically needs
fewer simulation observations to make the selection decision than a two-stage pro-
cedure, for instance, the procedures in Nelson and Goldsman [2001]. Moreover, it
can be shown to guarantee the Type I error and power requirement if the simulation
observations are normally distributed.

If there is no budget limit in the Local Phase (and we did not impose one in our
empirical evaluation), then ISC transitions to the Clean-up Phase when all niches
identified in the Global Phase have been explored by COMPASS. Therefore, the
first two phases of the ISC algorithm attempt to ensure that the search space is
both fully explored and thoroughly searched.

4.3 Clean-up Phase

When we transition to the Clean-up Phase, we have a set L of solutions that have
been declared, with high statistical confidence, to be locally optimal (L ⊂ M). If
|L| = 1, then we simply need to make sure we have estimated the value of this
solution with sufficiently high precision; if |L| > 1 then we want to select the best
of these local optima, and estimate its value with sufficiently high precision.

We measure “precision” by a user-specified parameter δC > 0, which indicates
that we want confidence ≥ 1 − αC that we have identified the best in L when its
true mean is at least δC better than all of the others. The user should set δC to
the smallest difference that it is worth detecting relative to the decision that the
simulation model is required to support. The smaller δC is the more simulation
effort (replications) that will be required to deliver the correct-selection guarantee.
We also want to estimate the value of the selected solution to within ±δC with high

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Xu et al.

confidence. If we drive 1− αC → 1 then this drives the sample size to infinity and
we guarantee to both select the best and estimate its value perfectly. To accomplish
this we invoke the “clean up” technology of Boesel et al. [2003b] to select the best,
and enhance their procedure with a ±δC confidence interval on the value of the
selected solution. Here we present a high-level overview of the Clean-up Phase.

Clean Up

Screening. Using whatever data are already available on the solutions in L, dis-
card any solutions that can be shown to be statistically inferior to one or more of
the others. Let LC be the surviving solutions.

Selection. Acquire enough additional replications on the solutions in LC to select
the best with the desired guarantees. Let xB be the selected solution.

Estimation. With confidence level ≥ 1− αC , xB is the best, or within δC of the
best, of the solutions in L and g(xB) ∈ Ḡ(xB)± δC .

A proof of the validity of the confidence interval for normally distributed data is
in Appendix B.

5. EVALUATION

The “no free lunch theorems” of Wolpert and Macready [1997] imply that we cannot
expect any optimization algorithm to dominate all others, and they support the
intuitive notion that, with essentially no restriction on the function g(x) and the
noisiness of G(x), we can always invent a problem to make any approach look bad.
This fact is a strong argument in favor of correctness guarantees, because even
in a problem designed to make, say, ISC perform poorly, we nevertheless have a
guarantee to get a locally optimal solution eventually. In any event, no statements
about either ISC or OptQuest that apply to all possible problems can be made
based on the five test cases we present here.

To evaluate the performance of ISC we have selected both known response-surface
functions to which we add noise, and realistic DOvS problems that have a physical
interpretation. The response-surface functions were chosen to facilitate control of
the surface, noise properties and problem dimension to see how they affect ISC. The
realistic problems were selected to provide some sense of how ISC can be expected
to perform in practice. The problems were not selected to be particularly difficult
for OptQuest, and in fact for one of the response-surface functions OptQuest is
significantly better than ISC, using our performance metrics.

We made three important decisions about how ISC would be evaluated with
respect to OptQuest:

(1) For each DOvS problem considered, we make multiple, independent trials of
each optimization algorithm. For ISC, this means that both the random sampling
that is internal to ISC, and the simulation outputs themselves, are independent
from trial to trial. For OptQuest, only the simulation outputs are independent
from trial to trial since we have no control over what, if any, randomness is internal
to OptQuest.

(2) We focus on average performance over the trials as a function of the simula-
tion effort (although we also look at the quality of the final solution from individual
ACM Journal Name, Vol. V, No. N, Month 20YY.

Industrial Strength COMPASS · 15

runs). This raises two issues:
(a) We measure “effort” only in terms of the simulation effort, and specifically the
number of replications consumed. In doing so, we are assuming that (i) the effort
per replication is roughly the same at all solutions x ∈ Θ, which is reasonable for our
test problems, and (ii) that the optimization overhead for both ISC and OptQuest is
small relative to the cost of running simulations. Assumption (ii) is not strictly true.
For our response-surface functions the simulations are essentially instantaneous, so
algorithm overhead is probably relatively significant. And even though OptQuest
is a finely tuned algorithm that typically seemed to impose little overhead, on our
flowline design and inventory management test problems it did execute substantially
slower than ISC while on the high-dimensional response-surface problem it was
significantly faster. Solving the LPs to do solution pruning and randomly sampling
the most-promising area in the Local Phase are the primary overhead in ISC, and
both can be slow but could be made faster with continued development.
(b) We judged performance, when possible, using the true expected value of the
solution that each algorithm currently thinks is the best, rather than by its esti-
mated value. Of course this is impossible to do in real problems for which g(x) is
not known, but it is the appropriate metric for an evaluation since g(x̂∗) will be
the long-run performance we get from the selected solution, not Ḡ(x̂∗).

(3) We first ran trials of ISC, because ISC has the advantage of knowing when to
stop. OptQuest can stop in two ways: either the computation budget is exhausted
or no improvement in the estimated objective value is obtained within a certain
number of iterations. To make sure that we did not stop OptQuest prematurely,
we gave it a budget substantially larger than the maximum number of replications
any ISC trial used for the first three and the fifth test problems, and the average
number of replications ISC used for the fourth test problem. We did not have
OptQuest stop based on lack of improvement.

5.1 Test Problems

The first test problem is a modification of the multimodal function F2 used in Miller
and Shaw [1995]. We rescale F2, change its sign (since it represents a maximization
problem) and then add up two copies of it and call the resulting function g1(x1, x2):

F2(x) =
sin6(0.05πx)

22(x−10
80)2

, 0 ≤ x ≤ 100

g1(x1, x2) = −[F2(x1) + F2(x2)], 0 ≤ x1, x2 ≤ 100. (2)

The function F2 has 5 local optima with a global optimum at x = 10. The
magnitudes of the local optima decrease exponentially: F2(10) = 1, F2(30) =
0.917, F2(50) = 0.7071, F2(70) = 0.4585 and F2(90) = 0.25. Since there is no
interaction between the two variables, g1 has 25 local optima and a global opti-
mum at (10, 10) with objective value −2 (see Figure 2). This function represents a
response surface with many, widely spaced local optima.

Normally distributed noise with zero mean and standard deviation of 0.3 was
added to g1 to make it a DOvS problem. Considering the difference between the
global minimum (−2) and the second best solution (−1.917), the noise is quite

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Xu et al.

0
20

40
60

80
100

0

20

40

60

80

100
−2

−1.5

−1

−0.5

0

Fig. 2. Test function g1 (0 ≤ x1, x2 ≤ 100).

significant. The feasible solution space is 0 ≤ x1 ≤ 100, 0 ≤ x2 ≤ 100 and x1, x2 ∈
Z+.

The second test problem is the singular function of Hong [2004]. To facilitate
the use of a log scale in our performance plots, we add one to the original singular
function so now it is

g2(x1, x2, x3, x4) = (x1 +10x2)2 +5(x3−x4)2 +(x2−2x3)4 +10(x1−x4)4 +1. (3)

When only integer solutions are considered, this function has three local minima:
(0, 0, 0, 0) with g2(0, 0, 0, 0) = 1; (1, 0, 0, 1) with g2(1, 0, 0, 1) = 7; and (−1, 0, 0,−1)
with g2(−1, 0, 0,−1) = 7. This test problem represents a response surface with a
small number of tightly clustered local optima.

We consider two versions of the stochastic noise for this surface: (a) normally
distributed noise with zero mean and standard deviation

√
g2(x1, x2, x3, x4) (noise

decreases as we approach the global optimum and (b) normally distributed noise
with zero mean and standard deviation 30 (substantial noise near the global opti-
mum). The feasible solution space is −100 ≤ xi ≤ 100, xi ∈ Z+, i = 1, 2, . . ., 4.

The third test problem is a three-stage flow line with finite buffer storage space
in front of stations 2 and 3 (denoted by x4 and x5) and an infinite number of jobs in
front of station 1 (see Buzacott and Shantikumar [1993], Pichitlamken and Nelson
[2003]). There is a single server at each station, and the service time at station i is
exponentially distributed with service rate xi, i = 1, 2, 3. If the buffer of station i is
full, then station i−1 is blocked and a finished job cannot be released from station
i − 1. The total buffer space and the service rates are limited. The objective is to
find a buffer allocation and service rates such that the steady-state throughput is
maximized. The constraints are x1 + x2 + x3 ≤ 20, x4 + x5 = 20, 1 ≤ xi ≤ 20 and
ACM Journal Name, Vol. V, No. N, Month 20YY.

Industrial Strength COMPASS · 17

xi ∈ Z+ for i = 1, 2, . . . , 5. This gives 21, 660 feasible solutions. The local optima
happen to also be global optima: (6, 7, 7, 12,8) and (7, 7, 6, 8, 12) with steady-state
throughput 5.776. The average throughput from time 50 to time 1000 constitutes
a replication. This test problem represents a realistic DOvS problem where we
actually know the answer.

The fourth test problem is an inventory management problem with dynamic
consumer substitution. The model that we optimize is adapted from Mahajan and
Van Ryzin [2001] and it represents a difficult research problem for which the optimal
solutions are not known.

The model considers a one-shot inventory stocking decision faced by a retailer
for v product variants at the beginning of a season; no inventory replenishment
happens in the model, and there is no salvage value for the products. It is assumed
that each individual consumer chooses an available product with the highest utility,
which may be a no-purchase option. Pricing is assumed to be an exogenous decision.
Variant j’s unit price is given as pj and the unit cost is cj.

The number of customers is Poisson with mean 1000, and the customer’s choice
behavior is modeled by the widely used Multinomial Logit model (MNL). Briefly,
variant j’s utility to customer t is Utj = aj − pj + ξtj, j = 1, 2, . . . , v, where aj

is variant j’s quality factor, and ξtj is a random variable having an extreme value
(Type I) distribution. See Mahajan and Van Ryzin [2001] for complete details.

In Mahajan and Van Ryzin [2001], a continuous relaxation of the problem was
numerically solved via a sample path algorithm, which is essentially a continuous-
variable OvS method. Although the continuous version of this problem is of some
practical interest for commodities like gasoline, it is not appropriate for some situa-
tions. We apply ISC and OptQuest to the original integer-ordered problem. There
are 6 products and one no-purchase option.

The original problem was unconstrained. However, since demands are not infi-
nite, there exist reasonable upper bounds that we may impose on decision variables
without worrying about cutting out globally optimal solutions. In the numerical
experiment we ran, which is based on Example 1 in Mahajan and Van Ryzin [2001],
there are 6 integer variables, each ranging from 0 to 500. Therefore, the size of the
feasible solution space is 5006 ≈ 1.6× 1016 solutions.

The fifth test problem was designed to illustrate the impact of dimension. Let

g5(x1, x2, . . . , xd) = −β exp

−γ

d∑

j=1

j(xj − ξ?)2

where we set γ = 0.001, β = 10000 and ξ? = 0. This gives a surface shaped
like an inverted multivariate normal density function with a single globally optimal
solution at x = (ξ?, ξ?, . . . , ξ?) having value -10,000. The feasible region is the
hyperbox defined by

xj ∈
{
−m1/d

2
,
m1/d

2

}

for j = 1, 2, . . . , d with m = 1020, where we round the bounds to the nearest
integer if necessary. Defining the feasible region in this way keeps the number of
feasible solutions (nearly) the same as dimension changes, allowing us to isolate

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · Xu et al.

the impact of dimension from that of number of feasible solutions. To make the
problem stochastic we added normally distributed noise with standard deviation
0.3× |g5(x)| so that noise increases near the optimal solution.

5.2 Tuning the DOvS Algorithms

Both OptQuest and ISC have options or settings that can enhance or degrade their
performance for any particular problem. While developing ISC we tried to identify
good general-purpose choices. Those that seemed to have the most impact are as
follows:

—In the Global Phase, the key settings are related to the transition rules. We found
that a good choice for the number of NGA generations without an improvement
to trigger a transition from Global to Local Phases was TG = 3 generations,
and we used that in all experiments reported here. We also found that the
dominant niche rule—which triggers a transition if there appears to be only a
single niche—could have a substantial impact on performance. Therefore, we
report results both with and without this rule.

—In the Local Phase, we found that an adaptive SAR (based on OCBA ideas, see
the electronic appendix) typically worked better than a fixed incremental allo-
cation rule for dimension d ≤ 10, so for the first four test problems we use the
adaptive rule. We also tested a modification of COMPASS that invokes a sequen-
tial statistical test whenever the data indicate that COMPASS should backtrack
from the current most promising area to a surrounding area. This test attempts
to prevent COMPASS from incorrectly terminating progress toward a locally op-
timal solution, but it does so at the cost of substantial additional sampling to
control the power of the test. We report results without the backtracking test
since it did not appear to be helpful.

Note that none of these settings affects the asymptotic convergence guarantees
offered by ISC, and we did not tune the parameters for the test problems reported
here.

For OptQuest, the most critical setting is how it allocates replications to solu-
tions. In all experiments reported here we used both the default setting and the
adaptive allocation option: The default setting allocates 3 replications per solution
and no more. The adaptive setting allocates at least 3, but no more than 100 repli-
cations to each solution. OptQuest stops adding replications within this range to
a solution x when the length of a 95% confidence interval for g(x) is less than 5%
of the sample mean, or if the confidence interval for g(x) does not overlap the 95%
confidence interval for the current sample best solution’s mean. For the inventory
management problem we raised OptQuest’s minimum number of replications from
3 to 20 for both the default and adaptive settings because the problem was simply
too noisy for OptQuest to make any progress with 3 replications per solution.

After terminating its search, OptQuest includes an option to take the three so-
lutions with the sample best performance and apply a R&S procedure to discover
which of them is the true best, with high confidence. This R&S procedure plays
a different role than the Clean-up Phase of ISC, since it is not used to terminate
OptQuest, and the three solutions chosen for evaluation are not necessarily ex-
pected to be locally optimal. For these reasons we do not report results from using
ACM Journal Name, Vol. V, No. N, Month 20YY.

Industrial Strength COMPASS · 19

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0
Multimodal

Number of replications

g(
x)

ISC
ISC−d
OptQuest D
OptQuest A

Fig. 3. Performance plot for the multimodal function.

the R&S option of OptQuest.

5.3 Empirical Results

For the first two test problems the performance plot is the average for fifty trials
of the true expected value of the solution that each DOvS algorithm thinks is the
best solution found so far as a function of the number of replications consumed.
Recall that OptQuest is given a budget substantially larger than the maximum
number of replications consumed by any trial of ISC. In the legends on the plots,
“d” refers to ISC with the dominant niche transition rule turned on, while “D”
and “A” are versions of OptQuest with the default and adaptive sample allocation
rules, respectively.

A performance plot for the multimodal function is shown in Figure 3. Clearly
OptQuest with the default rule makes more rapid initial progress than ISC, but then
becomes trapped in inferior solutions. Notice also that since ISC is self stopping,
and stops after different numbers of replications on each of the fifty trials, fewer
trial results are being averaged when moving from left to right on the replications
axis. This is why the performance of ISC can appear to get worse or better near
the end of the plot.

A performance plot for the singular function with large noise is shown in Figure 4.
Here OptQuest with the adaptive allocation rule is clearly superior, while OptQuest
with the default allocation rule is inferior, to ISC. In this problem ISC tends to
terminate at or near one of the local optima, but not always the global optimum.
Recall that this problem had three locally optimal solutions in close proximity that
are likely not separated by the NGA. When noise that decreases near the optimal
solution is added, OptQuest’s performance is even better.

A performance plot for the flowline design problem is shown in Figure 5. Be-
cause this problem executed much more slowly, and the overhead for both ISC

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · Xu et al.

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Singular σ = 30

Number of replications

g(
x)

ISC
ISC−d
OptQuest D
OptQuest A

Fig. 4. Performance plot for the singular function.

0 500 1000 1500 2000 2500 3000 3500
−6

−5

−4

−3

−2

−1

0

Number of replications

g(
x)

Flowline

ISC
ISC−d
OptQuest D
OptQuest A

Fig. 5. Performance plot for the flowline problem.

and OptQuest was more substantial, the performance curves are the average of
25 and 10 trials for ISC and OptQuest, respectively. For this realistic problem
OptQuest makes faster initial progress, but both DOvS algorithms converge to a
global optimal solution, with ISC knowing when to stop.

While the flowline design problem is a relatively easy DOvS problem, the in-
ventory management problem is a particularly difficult one: The response is quite
noisy, and g(x) appears to be relatively flat near the good solutions (recall that
ACM Journal Name, Vol. V, No. N, Month 20YY.

Industrial Strength COMPASS · 21

Table I. Ten Trials of ISC and OptQuest on the Inventory Management Problem and the

Average Deviation of the Estimated Solution Value from “True”

ISC OptQuest: Default OptQuest: Adaptive

Trial Ḡ(x̂∗) “True” SE Ḡ(x̂∗) “True” SE Ḡ(x̂∗) “True” SE

1 1891 1874 1.6 1921 1858 1.5 1948 1874 1.5
2 1892 1873 1.6 1950 1875 1.6 1942 1868 1.6

3 1894 1870 1.4 1934 1870 1.6 1962 1877 1.7
4 1877 1871 1.7 1950 1873 1.6 1935 1871 1.4

5 1882 1869 1.4 1933 1859 1.3 1938 1859 1.6
6 1878 1860 1.7 1964 1852 1.8 1964 1869 1.5

7 1896 1876 1.6 1926 1861 1.4 1956 1872 1.5
8 1895 1876 1.5 1958 1872 1.6 1950 1863 1.7

9 1892 1878 1.5 1929 1855 1.7 1945 1867 1.6
10 1890 1876 1.4 1940 1867 1.6 1956 1866 1.6

Ave Dev 16 76 81

the true response surface is not known). To compare ISC and OptQuest, we ran
each for 10 trials, and at the end of each trial did further extensive simulation of
its chosen best solution to estimate g(x̂∗) very precisely. For this problem, we only
ran ISC without the dominant niche test, and OptQuest was given a budget equal
to the average number of replications that ISC used (approximately 100,000).

Table I shows the results. For each algorithm, the Ḡ(x̂∗) column shows the
estimated value of the sample best solution when the algorithm terminated, while
the column labeled “True” is an estimate of this solution’s true expected value
based on 10,000 replications (the standard error of this estimate is shown in the
SE column). While ISC found slightly better solutions—bigger is better in this
problem, and the average solution values for ISC, OptQuest (default allocation) and
OptQuest (adaptive allocation) were 1872, 1864 and 1869, respectively—of equal
importance is that ISC’s estimate of the performance of the chosen solution is
much closer to its “True” value: Both ISC and OptQuest tend to overestimate the
true objective function value, as expected in a maximization problem, but ISC’s
estimate is on average only 16 < δC = 20 greater, as guaranteed by ISC (only one
deviation was greater than 20, and that was 24). This demonstrates the benefit of
controlling the precision of the final estimate in the Clean-up Phase.

Statistically guaranteed convergence becomes more and more difficult to obtain
as problems dimensionality d increases, and therefore the efficiency of ISC is affected
more by dimension than by the number of feasible solutions. The fifth test problem
illustrates this issue. Although we report results for a specific test problem, some
general lessons learned from looking at a number of high-dimensional test problems
are the following:

—The overhead for constraint pruning in the Local (COMPASS) Phase becomes
significant as dimension increases, although constraint pruning is still very im-
portant. For dimension d ≥ 10 we recommend pruning less frequently than the
ISC default value of 5.

—As dimension increases it improves efficiency if the Local (COMPASS) Phase
defers adaptively allocating replications until an apparently locally optimal solu-
tion is discovered, at which point the stopping test takes over sample allocation.
Therefore, we recommend turning off OCBA so that the sample allocation scheme

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · Xu et al.

increases sampling just fast enough to guarantee convergence when d ≥ 10.
—ISC is guaranteed to stop eventually. However, including a maximum budget is

important in high dimension since it is impossible to know in advance how long
it might take to stop and at present it is not possible to gracefully interrupt ISC.

For ISC, we set δC = 10 ≈ β(1− e−γ), the performance gap between the optimal
solution and its neighbors; did constraint pruning only every 50 iterations; turned
off the OCBA adaptive sample allocation; and otherwise used default ISC settings.
OptQuest was run using its adaptive sample allocation setting. We discovered that
OptQuest always starts by evaluating the feasible solution at the center of the
feasible region, which means in our problem it starts with the optimal solution.
Therefore, for OptQuest we shifted the position of the optimal solution a bit so
that at least one iteration would be required to find it by chance alone. We ran
5 macroreplications of each algorithm for dimensions d = 5, 10, 15 and 20. We
again ran ISC first, then gave OptQuest a budget larger than the largest number
of replications used by ISC. Here is what we observed dimension by dimension:

d = 5. Both ISC and OptQuest quickly found the optimal solution.
d = 10. ISC found the optimal solution on all 5 trials, taking approximately 1

minute to do so and a maximum of 27,966 replications. OptQuest used a budget of
30,000 replications in approximately 0.2 minutes (showing lower algorithm overhead
than ISC). In 3 of 5 trials it found the optimal solution, and in the other two trials
it selected another good solution (within 1% of optimal).

d = 15. ISC’s algorithm overhead becomes substantial, taking approximately 20
times longer to exhaust a maximum of 172,348 replications than the 180,000 budget
given to OptQuest. ISC found the optimal in all 5 trials; OptQuest found it in 2
trials and otherwise chose solutions within about 1% of optimal.

d = 20. ISC spent about 30 times as long as OptQuest to exhaust a maximum
of 359,054 replications; OptQuest was given a budget of 360,000. ISC again found
the optimal solution on each trial while OptQuest discovered it on 2 of them and
otherwise chose solutions within 1% of optimal.

Some general statements about the results at all dimensions are that (a) ISC’s
terminal confidence interval on the value of the selected solution (which was always
the optimal solution) always contained its true expected value; (b) OptQuest was
distracted from the optimal solution when it visited an inferior solution that got
a particularly favorable sample, and as a result OptQuest’s estimate of the value
of its selected solution was better than its true value, often by several times δC ;
and (c) OptQuest appeared to make good use of insight it gained about the shape
of the response surface (which is particularly nice in this example), a feature that
would help ISC.

Across these five cases, ISC demonstrated that it could be competitive with
OptQuest, despite enforcing finite-sample and limiting guarantees. This perfor-
mance encourages us to believe that provable guarantees and practical usefulness
can be compatible. Of course, there will be problems on which a severe price is paid
to attain provable convergence, and robust metaheuristics that “break the rules”
will provide much better solutions. We believe that this will most often be the case
ACM Journal Name, Vol. V, No. N, Month 20YY.

Industrial Strength COMPASS · 23

when the available time for optimization is tight or dimension is high so that rapid
solution improvement is essential. Convergence tends to slow progress.

6. CONCLUSIONS

We have presented Industrial Strength COMPASS, an algorithm and software for
DOvS that has provable asymptotic performance, competitive finite-time perfor-
mance and valid statistical inference at termination. Our focus in this paper has
been on using ISC in the same way that the commercial products are typically used:
with no information about the problem at hand other than the definition of the
objective function, decision variables and constraints, and a link to the simulation
model. Only a single parameter, the error tolerance on the estimate of the optimal
solution δC , must be set by the user; all of the other parameters have default val-
ues that we obtained during development of ISC (the electronic appendix contains
tables of all of the parameters and their default values).

Like OptQuest, ISC has parameters that can be adjusted in ways that may make
it more effective on a particular problem. Of these tunable parameters, the most
critical determine the aggressiveness of the Global Phase in allocating replications to
distinguish good solutions from bad, and how demanding the Local Phase is before
declaring a solution to be locally optimal. Our defaults lean toward a relatively
passive Global Phase that explores broadly and applies little effort to each solution
visited, and a relatively stringent test for local optimality in the Local Phase. These
choices could waste time exploring the entire surface too broadly when a little
additional effort might uncover a friendly (e.g., unimodal) response surface quickly,
or by repeatedly applying time-consuming local optimality tests in an area with
many close solutions. What we would like to have are not better ways for the user
to set these parameters, but rather adaptive methods for tuning them during the
optimization run as more and more is learned about the particular DOvS problem
at hand. This is a fruitful area for future research.

Certain types of a priori information can be exploited by the user to make ISC
more effective, however:

(1) If the function g(x) is known or strongly suspected to be unimodal, then
convergence is likely to be more rapid if the Global (NGA) Phase is skipped, go-
ing directly to the Local (COMPASS) Phase from an initial sample of solutions.
COMPASS alone converges very quickly for unimodal functions.

(2) If the simulation budget is tight and the goal is to find a pretty good solution
quickly, then the Local (COMPASS) Phase could be skipped, using an effort-based
transition rule to terminate the NGA, which explores the feasible region broadly,
then moving directly to Clean Up to obtain statistical confidence in the selected
solution. This is similar to the algorithm in Boesel et al. [2003a].

(3) Known good starting solutions or a systematic experimental design can be
used to seed the NGA or COMPASS.

(4) For problems with dimension greater than 10, pruning constraints less fre-
quently and using the base (not OCBA) sample allocation rule is recommended.

An overriding objective in the development of ISC was to have an algorithm that
could stop on its own with well-defined guarantees. This objective led us to search

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · Xu et al.

for locally optimal solutions and use R&S procedures to establish and compare
them. ISC is not likely to work well under a very strict and tightly time-constrained
budget—since the user would have to provide arbitrary effort-based transition rules
for each phase—nor does it exploit an essentially unlimited budget—the NGA is
probably not the choice of globally convergent algorithm we would make if that had
been our goal. We contend that the time required to develop a detailed simulation
model, and the impact of the decision that will be based on it, argue in favor of a
liberal, but not infinite, computing budget in most situations.

In our effort to bridge the gap between research and practice, we attempted to
resolve key implementation issues often overlooked in the research literature. Of
these, we can claim some success in incorporating constraints, developing meaning-
ful transition and stopping rules, and adaptively allocating simulation effort without
giving up convergence or statistical guarantees. Open issues not addressed include
incorporating stochastic constraints, multiple objectives, and mixed (integer, con-
tinuous and categorical) decision variables. All of these need solutions before we
can claim a truly general-purpose OvS algorithm.

APPENDIX

In this Appendix we prove any new results not available in the literature (and
therefore cited in the paper).

A. GLOBAL CONVERGENCE OF THE NGA

We require that the NGA satisfies the following requirements, where the specific
values may differ from problem to problem:

(1) In the Selection and Mating steps of iteration k, any solution sampled in
iteration k − 1 has a probability at least p1 > 0 of being selected for crossover.

(2) In the Crossover step, any parent solution has a probability at least p2 > 0
of being generated as an offspring.

(3) In the Mutation step, any offspring generated in the crossover has a proba-
bility at least p3 > 0 of being selected for mutation.

(4) In the Mutation step, each coordinate may be selected with a probability at
least p4 > 0, and each feasible solution along the coordinate may be selected with
a probability at least p5 > 0.

In this subsection, we show that the NGA converges to a global optimal solution
as the number of iterations goes to infinity.

The NGA allocates at least ∆n ≥ log10(number of iterations) observations to
any previously simulated solution and n0 ≥ 1 observations to any new solution
in the Evaluate Solutions step. If we can show that all feasible solutions are vis-
ited infinitely often as the number of iterations goes to infinity, then the global
convergence follows directly from the strong law of large numbers.

For any two solutions x1,x2 ∈ Θ, there exists a path in Θ, denoted x1,y1,y2, . . . ,
y|Θ|−1,x2, such that any two consecutive solutions in the path differ at most by one
coordinate. Let Sk denote the set of solutions sampled in iteration k. If x1 ∈ Sk,
then it is selected for crossover in iteration k + 1 with a probability at least p1. If
it is selected for crossover, it is generated as an offspring with a probability at least
ACM Journal Name, Vol. V, No. N, Month 20YY.

Industrial Strength COMPASS · 25

p2; then it is selected for mutation with a probability at least p3. If it is selected
for mutation, then y1 will be sampled in iteration k + 1 with a probability at least
p4p5. Therefore, Pr{y1 ∈ Sk+1|x1 ∈ Sk} ≥

∏5
i=1 pi. Then

Pr{x2 ∈ Sk+|Θ||x1 ∈ Sk}
= Pr{y1 ∈ Sk+1|x1 ∈ Sk}Pr{y2 ∈ Sk+2|y1 ∈ Sk+1}
× · · · × Pr{x2 ∈ Sk+|Θ||y|Θ|−1 ∈ Sk+|Θ|−1}

≥

(
5∏

i=1

pi

)|Θ|

. (4)

Since Equation (4) holds for any pair of solutions x1,x2 ∈ Θ, then any solution
may be visited in any |Θ| consecutive iterations with a positive probability that
is bounded away from 0. Therefore, all solutions in Θ will be visited infinitely
often as the number of iterations goes to infinity. Therefore, the NGA is globally
convergent.

B. CLEAN-UP INFERENCE

Let x̃∗ = argminx∈Lg(x). ISC applies the “clean-up” procedure of Boesel et al.
[2003b] to the solutions in L, starting with the data that have already been ob-
tained prior to the Clean-up Phase. This procedure obtains additional replica-
tions as needed to guarantee to select x̃∗ with probability ≥ 1 − αC whenever
the data are normally distributed, the solutions are simulated independently and
g(x̃∗) − minx∈L,x 6=x̃∗ g(x) ≤ −δC where 1/2 < 1 − αC < 1 and δC > 0 are user-
specified parameters (1 − αC defaults to 0.95 in ISC). We prove our results under
the independence assumption because the complex sequential sampling that occurs
in the Global and Local Phases makes it difficult to synchronize random numbers
so as to effectively use common random numbers [Law and Kelton 2000], so we
believe this is a reasonable approximation even if common random numbers are
used.

Let xB be the solution selected by this procedure. Then we will show that,
whatever the values of the g(x),x ∈ L, Pr

{
g(xB) ∈ Ḡ(xB) ± δC

}
≥ 1 − αC/2.

This is a new result, not proven in Boesel et al. [2003b].
Let b = δC t/h where h is the sampling constant used in the clean-up procedure

(specifically h = h(2, (1−αC/2)1/(|L|−1), n) is Rinott’s constant in the special case
of 2 solutions, confidence level (1 − αC/2)1/(|L|−1) and n degrees of freedom; see
Boesel et al. [2003b]), t = t1−(1−1

2 (1−αC)1/L),n−1, and n is the minimum number of
replications any solution in L received prior to transition to the Clean-up Phase.
Notice that this t value is not the t-value used in the screening procedure in Boesel
et al. [2003b], but rather is an artifact used to show that the final confidence interval
is valid.

The clean-up procedure requires each solution x ∈ L to receive

NC (x) = min
{

N
(0)
C (x),

⌈
h2S2(x)

δ2
C

⌉}

replications, where N
(0)
C (x) is the number of replications solution x received prior to

the Clean-up Phase and S2(x) is the sample variance of these replications. Notice
ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · Xu et al.

that

Pr
{
g(xB) ∈ Ḡ(xB) ± b

}
≥ Pr

{
g(x) ∈ Ḡ(x) ± b, ∀x ∈ L

}

≥
∏

x∈L

Pr
{
g(x) ∈ Ḡ(x) ± b

}
(5)

where (5) follows because the solutions are simulated independently and the proba-
bility on the right-hand side is with respect to an experiment in which all solutions
in x ∈ L receive N (x) samples. But notice that

Pr
{
g(x) ∈ Ḡ(x) ± b

}
= Pr

{
Ḡ(x)− g(x)
S(x)/

√
N (x)

∈ ±
√

N (x)
S(x)

b

}

and √
N (x)

S(x)
b ≥ hS(x)

δ

b

S(x)
= t.

Therefore, Pr
{
g(x) ∈ Ḡ(x) ± b

}
≥ (1 − αC/2)1/k and Pr

{
g(xB) ∈ Ḡ(xB) ± b

}
≥

1− αC/2. The result that we want then follows by noting that t/h ≤ 1, so b ≤ δC .

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Li-
brary by visiting the following URL: http://www.acm.org/pubs/citations/
journals/jn/20YY-V-N/p1-URLend.

ACKNOWLEDGMENTS

The authors gratefully acknowledge OptTek Systems, Inc. for providing the OptQuest
engine to use in our research, and the clarifying comments of the Editor, Area Ed-
itor, Associate Editor and referees.

References

Alrefaei, M. H., and Andradóttir, S. 1999. A simulated annealing algorithm
with constant temperature for discrete stochastic optimization. Management
Science 45, 748–764.

Andradóttir, S. 1995. A method for discrete stochastic optimization. Manage-
ment Science 41, 1946–1961.

Andradóttir, S. 1999. Accelerating the convergence of random search methods
for discrete stochastic optimization. ACM TOMACS 9, 349–380.

Andradóttir, S. 2006. Simulation optimization with countably infinite feasible
regions: Efficiency and convergence. ACM TOMACS 16, 357–374.

Andradóttir, S., and Nelson, B. L. 2004. Selection error control and statis-
tical inference for simulation optimization. Proceedings of the 2004 NSF Design,
Service, and Manufacturing Grantees and Research Conference, Dallas, Texas.

Boesel, J. 1999. Search and Selection for Large-Scale Stochastic Optimization.
Doctoral dissertation, Department of IEMS, Northwestern University, Evanston,
IL.

Boesel, J., Nelson, B. L., and Ishii, N. 2003a. A framework for simulation-
optimization software. IIE Transactions 35, 221–230.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Industrial Strength COMPASS · 27

Boesel, J., Nelson, B. L., and Kim, S.-H. 2003b. Using ranking and selection
to ‘clean up’ after simulation optimization. Operations Research 51, 814-825.

Buzacott, J. A., and Shantikumar. J. G. 1993. Stochastic Models of Manu-
facturing Systems. Prentice-Hall, Englewood Cliffs, NJ.

Chen, C.-H., Lin, J., Yücesan, E., and Chick, S.E. 2000. Simulation budget
allocation for further enhancing the efficiency of ordinal optimization. Discrete
Event Dynamic Systems, Theory and Applications 10, 251–270.

Chick, S. E., and Inoue, K. 2001. New two-stage and sequential procedures for
selecting the best simulated system. Operations Research 49, 732–743.

Fu, M. C. 2002. Optimization for simulation: Theory vs. practice. INFORMS
Journal on Computing 14, 192–215.

Fu. M. C., Glover, F. W., and April, J. 2005. Simulation optimization: A
review, new developments, and applications. In Proceedings of the 2005 Winter
Simulation Conference, IEEE, 83–95.

Gong, W.-B., Ho, Y.-C., and Zhai, W. 1999. Stochastic comparison algorithm
for discrete optimization with estimation. SIAM Journal on Optimization 10,
384–404.

Ho, Y. C., Sreenivas, R., and Vakili, P. 1992. Ordinal optimization of discrete
event dynamic systems. Journal of Discrete Event Dynamic Systems 2, 61–88.

Hong, L. 2004. Discrete Optimization via Simulation: Algorithms and Error
Control. Doctoral dissertation, Department of IEMS, Northwestern University,
Evanston, IL.

Hong, L. J., and Nelson, B. L. 2006. Discrete optimization via simulation
using COMPASS. Operations Research 54, 115–129.

Hong, L. J., and Nelson, B. L. 2007a. A framework for locally convergent ran-
dom search algorithms for discrete optimization via simulation. ACM TOMACS
17, 19/1–19/22.

Hong, L. J., and Nelson, B. L. 2007b. Selecting the best system when systems
are revealed sequentially. IIE Transactions 39, 723–734.

Jin, Y. and Branke, J. 2005. Evolutionary optimization in uncertain environ-
ments - A survey. IEEE Transactions on Evolutionary Computation 9, 303–317.

Kim, S.-H. 2005. Comparison with a standard via fully sequential procedures.
ACM TOMACS 15, 1–20.

Law, A.M., and Kelton, W. D. 2000. Simulation Modeling and Analysis, 3rd
edition. McGraw-Hill, New York.

Lin, X., and Lee, L. H. 2006. A new approach to discrete stochastic optimization
problems. European Journal of Operational Research 172, 761–782.

Mahajan, S., and Van Ryzin, G. 2001. Stocking retail assortments under dy-
namic consumer substitution. Operations Research 49, 334–351.

Miller, B. L., and Shaw, M. J. 1995. Genetic algorithms with dynamic niche
sharing for multimodal function optimization. IlliGAL Report No. 95010, Illinois
Genetic Algorithms Laboratory, University of Illinois at Champaign-Urbana.

Nance, R. E., and Sargent R. G. 2002. Perspectives on the evolution of
simulation. Operations Research 50, 161–172.

Nelson, B. L., and Goldsman, D. 2001. Comparisons with a standard in
simulation experiments. Management Science 47, 449–463.

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · Xu et al.

Nelson, B. L., Swann, J., Goldsman, D., and Song, W. 2001. Simple pro-
cedures for selecting the best simulated system when the number of alternatives
is large. Operations Research 49, 950–963.

Pichitlamken, J., and Nelson, B. L. 2003. A combined procedure for opti-
mization via simulation. ACM TOMACS 13, 155–179.

Prudius, A. A., and Andradóttir, S. 2004. Simulation optimization using
balanced explorative and exploitative search. In Proceedings of the 2004 Winter
Simulation Conference, IEEE, 545–549.

Prudius, A. A., and Andradóttir, S. 2006. Balanced explorative and exploita-
tive search with estimation for simulation optimization. Working Paper, School
of ISyE, Georgia Tech, Atlanta, GA.

Sareni, B., and Krahenbuhl, L. 1998. Fitness sharing and niching methods
revisited. IEEE Transactions on Evolutionary Computation 2, 97–106.

Shi, L., and Ólafsson, S. 2000. Nested partitions method for stochastic opti-
mization. Methodology and Computing in Applied Probability 2, 271–291.

Telgen, J. 1983. Identifying redundant constraints and implicit equalities in
systems of linear constraints. Management Science 29, 1209–1222.

Wolpert, D. A., and Macready, W. G. 1997. No free lunch theorems for
optimization. IEEE Transactions on Evolutionary Computation 1, 67–82.

Yan, D., and Mukai, H. 1992. Stochastic discrete optimization. SIAM Journal
of Control and Optimization 30, 594–612.

Received Month Year; revised Month Year; accepted Month Year

ACM Journal Name, Vol. V, No. N, Month 20YY.

Industrial Strength COMPASS · App–1

This document is the online-only appendix to:

Industrial Strength COMPASS: A Comprehensive Algorithm
and Software for Optimization via Simulation
JIE XU and BARRY L. NELSON
Northwestern University
and
L. JEFF HONG
The Hong Kong University of Science & Technology

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–28.

This online supplement documents the various algorithms that constitute Indus-
trial Strength COMPASS. The source code is available from www.ISCompass.net.

A. NICHING GA

The purpose of the NGA is to find promising subregions of the solution space Θ.
Each subregion has a center, which is the sample best solution in that subregion, and
a handful of other solutions around the center. In the Local Phase, COMPASS is
initialized with the center solution as the current sample best, and the surrounding
solutions as the active solutions defining the most-promising area.

To be consistent with the GA literature, we use the term “individual” to mean
a feasible solution and its “fitness” to mean the estimated expected value of the
solution. The NGA described here is designed for minimization problems with
integer-ordered decision variables.

A.1 The NGA Framework in ISC

In this section, we outline the NGA framework we use in ISC. Subsequent sections
elaborate on important steps in the outline.

Algorithm 1 The NGA framework in ISC.

Step 0. Randomly sample mG solutions from Θ. Assign n0 replications to eval-
uate each solution (§A.2).

Step 1. Identify niche radius r and number of niches q and dynamically construct
niches (§A.3).

Step 2. Apply niche-based transition rule. If conditions are met, stop the NGA
(§A.12).

Step 3. Apply fitness sharing (§A.4).

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY.

App–2 · Xu et al.

Step 4. Apply grouping procedure using shared fitness values. Note that here more
replications may be assigned (§A.6).

Step 5. Calculate group selection probabilities for each solution (§A.6).
Step 6. Select mG/2 parents via Stochastic Universal Sampling, and the other

mG/2 parents via a mating restriction scheme (§§A.5–A.7).
Step 7. Do arithmetical crossover for each pair of parents (§A.8).
Step 8. Apply mutation operator to each solution generated by crossover (§A.9).
Step 10. Evaluate new solutions by assigning enough replications to each solu-

tion.
Step 11. Replace old population with new population and conserve niche centers

(§A.10).
Step 12. Apply transition rules to decide if the NGA should stop (§A.12). If not,

go back to Step 1.

A.2 Randomly Sampling Solutions

ISC can use either algorithm RMD [Hong and Nelson 2006] or algorithm MIX-D
[Pichitlamken and Nelson 2003] to randomly sample integer solutions from the ap-
propriate feasible space. RMD, which is the default algorithm, guarantees (nearly)
uniform sampling of solutions provided the space is connected in the sense that any
solution can be reached from any other solution by a sequence of coordinate direc-
tion moves. MIX-D provides the same guarantees for any convex feasible region.
RMD is the default in ISC because it is substantially faster.

A.3 Identifying Niche Radius and Number of Niches

Key input parameters for the NGA are the number of niches to form, q, and the
niche radius, r, which defines how close a solution must be to a niche center to
be clustered in the same niche. Because our algorithm is intended to be general
purpose, we have no way to know these values in advance, nor should we expect the
user to be able to provide them. To solve this problem, we form a rough response
surface model over Θ from which we extract estimates of q and r.

To explain the approach, we define for any subset of solutions I ⊆ Θ and partic-
ular solution x∗ ∈ I the region

C(x∗) = {x : x ∈ Θ and ‖x− x∗‖ ≤ ‖x− y‖, ∀y ∈ I and y 6= x∗}

which is essentially a COMPASS most-promising area centered at x∗. Further, let

A(x∗) = {j ∈ I : xj defines an active (non-redundant) constraint in C(x∗)}

which is determined via constraint pruning.

Algorithm 2 Niche radius identification on iteration k.

Step 1. Reindex the solutions in the current population so that Ḡk(x1) ≤ Ḡk(x2) ≤
· · · ≤ Ḡk(xmG). Let I = {1, 2, . . . , mG}, L = ∅.

Step 2. For each i ∈ I, do
(1) If Ḡk(xi) ≤ Ḡk(xj), ∀j ∈ A(xi), then L = L ∪ {i}, I = I \ {A(xi)}.
(2) I = I \ {i}. Go to Step 1.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Industrial Strength COMPASS · App–3

Step 3. Return r = mini,j∈L,i6=j
1
2‖xi − xj‖ and q = |L|.

The niche centers are the solutions in L, and for each solution xi ∈ L its niche are
those solutions no more than r distant from xi. Solutions that do not fall within a
niche, if there are any, form a non-niched group. No solution will be in more than
one niche.

A.4 Fitness Sharing

The NGA explores multiple regions in the solution space in parallel through the
so-called fitness sharing mechanism. “Fitness” is a term used in the GA literature
to mean the value of the objective function for a solution [e.g., Miller and Shaw
1995]. Here fitness is the sample average of all of the observations obtained on a
solution. The basic idea is that if a niche is populated with too many solutions,
those solutions should be given less chance to reproduce than they would have had
in an ordinary GA, thus allowing solutions in less populated niches to have higher
probabilities of being selected to generate new solutions. This can be done by
discounting the fitness value of an individual by some factor that is dependent on
how many solutions are in its niche. The discounted fitness values are then used in
the NGA’s selection, mating, crossover and mutation steps.

If a niche has n individuals including the niche center, then the shared fitness
value fsh of an individual within that niche with fitness value f is calculated as the
discounted fitness value fsh = f/m if f is negative, and fsh = fm if f is positive,
where m is the discounting factor, and we choose to let m = n. In ISC, the fitness
value f of solution xi is its sample mean Ḡk(xi).

If an individual xi is within the non-niched group, its shared fitness is calcu-
lated similarly, except that the discounting factor m is now calculated by using a
triangular sharing function, m =

∑N
j=1 sh(‖xi − xj‖), and

sh(‖xi − xj‖) =
{

1− ‖xi−xj‖
r if ‖xi − xj‖ < r,

0 otherwise.

In ISC, since the NGA operates in a noisy environment, the selection step uses a
statistical grouping procedure (see §A.6) that incorporates sample variance infor-
mation. Therefore, the fitness sharing step should also modify the sample variances
to reflect the fact that the fitness value is now the discounted sample mean. We
choose a very simple implementation: If the sample variance of solution xi is S2(xi),
then the sample variance used in the grouping procedure is S2(xi)/m if fsh = f/m,
or S2(xi)m if fsh = fm.

A.5 Selection

A selection method has two components: assigning selection probabilities to indi-
viduals, and selecting individuals based on those probabilities.

In the NGA implemented for ISC, we combine linear ranking with Stochastic
Universal Sampling (SUS) [Baker 1987], which is a version of stratified sampling.
According to Sareni and Krahenbuhl [1998], SUS is the best for NGA among several
selection methods.

ACM Journal Name, Vol. V, No. N, Month 20YY.

App–4 · Xu et al.

A linear ranking scheme assigns the ith-best solution a selection probability

si =
1

mG

(
η − 2(η − 1)

(
i − 1

mG − 1

))
,

where η is a constant between 1 and 2. The larger η is, the more likely a better
solution is to be selected (in GA terminology, the higher the selection pressure).
The worst solution has a selection probability of p1 ≡ smG = (2− η)/mG and thus
as long as η < 2, the worst solution has a positive probability to be selected as
a parent for producing new solutions as required in Appendix A of the published
paper. For a DOvS problem, we suggest choosing a relatively low value for η, such
as 1.5.

Given selection probabilities for each individual, SUS constructs a roulette wheel
where the area for each individual is proportional to its selection probability. Then
the roulette wheel is spun once, and the pointer will rest on some individual which
is then selected as a parent. Other individuals are selected by advancing the pointer
at a regular spacing until it wraps back to its starting point. A modification here
is that instead of selecting mG parents, only mG/2 parents are selected through
SUS because the second parent needs to be selected by a mating selection scheme,
which will be introduced shortly. So the pointer is advanced by a spacing of 2/mG.

A.6 GA Selection in the Presence of Noise

To cope with the stochastic aspect of DOvS problems, we adopted the selection
procedure described in Boesel [1999]. The idea is to define a metric to characterize
the variability in the assigned selection probability, ŝi, in a stochastic environment
as a squared deviation from the desired probability si. The expected sum of squared
deviations due to misranking is defined as

E(SSD) = E

{
N∑

i=1

(si − ŝi)
2

}
.

It is proved in Boesel [1999] that if N individuals can be divided into g groups,
and that all individuals in group i are known to be superior to all solutions in
group i + 1, and within group i all within-group orderings are equally likely to be
observed, then E(SSD) is minimized when all members of each group are assigned
their group’s average selection probability. That is, m

(i)
j , the selection probability

assigned to an individual j in group i of size Ni, is given by

m
(i)
j =

1
Ni

Ni∑

j=1

s
(i)
j , (6)

where s
(i)
j is the selection probability of individual j in group i, as calculated by

the deterministic NGA selection scheme.
In ISC, we use the grouping procedure devised by Boesel [1999]. The algorithm

groups solutions that are not statistically significantly better than each other into
one group. If there are too few groups formed in the first round, the algorithm
identifies one group that is easiest to break into more groups, adds replications to
solutions within that group, and processes that group again.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Industrial Strength COMPASS · App–5

Notice that the sample average Ḡ(xi) and sample variance S2(xi) are shared
fitness values and sample variances. We use ni to denote the number of replications
that have been assigned to xi.

Algorithm 3 Grouping procedure for NGA.

Step 1. Given current population (Ḡ(xi), S2(xi), ni), i = 1, 2, . . ., mG, let n̄ =
1

mG

∑mG

i=1 ni.

Step 2. Sort and reindex so that Ḡ(x1) ≥ Ḡ(x2) ≥ · · · ≥ Ḡ(xmG).
Step 3. Let

S2 =
1

mG

mG∑

i=1

S2(xi)

R = Q1−αG

mG,
∑mG

i=1 (ni−1)
S/
√

n̄,

where Q1−αG

mG,
∑mG

i=1 (ni−1)
is the upper 1− αG quantile of the studentized range distri-

bution [e.g., Miller 1981] with mG d.f. and
∑mG

i=1(ni − 1) samples.
Step 4.

(1) g = 1, i = 1
(2) while i < mG do

(a) Gg = {i}, bottom = i, i = i + 1
(b) while Ḡ(xbottom)− Ḡ(xi) < R and i < mG do

. Gg = Gg ∪ {i}, i = i + 1
(c) end while
(d) g = g + 1

(3) end while
Step 5. If the number of groups formed g < gm, where gm is the minimum number

of groups to obtain, let

R̂i = max
j∈Gi

Ḡ(xj)−min
j∈Gi

Ḡ(xj), i = 1, 2, . . . , g,

m̂i = |Gi|.

(1) For any group with |R̂i| < δG, do nothing further with Gi.
(2) For groups with |R̂i| ≥ δG, do the following

(a) R̂ = max R̂i, ̂̀= arg maxi=1,2,...,g R̂i.
(b) Set

n̂ =
⌈

Q2S2

R̂2

⌉
,

where

Q = Q1−αG

m̂ ̂̀,
∑

j∈G ̂̀
(nj−1),

S2 =
1

m̂̂̀

∑

j∈G ̂̀

S2
j .

ACM Journal Name, Vol. V, No. N, Month 20YY.

App–6 · Xu et al.

(c) Obtain max(n̂ − nj , 0) more observations for j ∈ Ĝ̀.
(d) Apply fitness sharing.
(e) Go to Step 1 but with group ̂̀as the population, and update gm ← gm−g+1.

One issue with the grouping procedure is how many groups we want to form at
each iteration. Boesel [1999, pp. 66–68] pointed out that for linear ranking, each
additional group formed provides less benefit and we may use as few as 3 groups.

A.7 Mating Restriction

The purpose of a mating restriction scheme is to maintain stable growth of niches
during the evolution process by selecting individuals that are similar enough to
each other to participate in crossover.

The mating restriction mechanism implemented here is proposed by Miller and
Shaw [1995] and is known as dynamic inbreeding. Given the first parent xi selected
by the usual GA selection scheme, the inbreeding scheme works as follows:

Algorithm 4 Dynamic inbreeding.

Step 1. Uniformly randomly sample m individuals from the population.
Step 2. From those individuals, select the best one that is within the same niche

group as xi. If there is no such an individual, select the one that is closest to xi.

A.8 Crossover

Michalewicz [1996] described several crossover operators for GAs that optimize real-
valued variables. Our experiments suggested that the arithmetical operator works
best. Given two parents xi and xj , the arithmetical crossover operator produces two
offspring x′

i and x′
j by generating a number β from U (0, 1) distribution, and letting

x′
i = βxi + (1 − β)xj , and x′

j = (1 − β)xi + βxj . Since this is an integer-ordered
optimization problem, we need to round x′

i,x
′
j to integers.

One consequence of this rounding is that there is a nonzero probability that a
parent will be generated as an offspring. Since the feasible solution region Θ is
bounded, let ξ > 0 be the largest absolute value of a coordinate of any feasible
solution xj . Then with a probability p2 = 1/(4ξ) > 0, we have β ≤ 1/(4ξ), in
which case x′

i = βxi + (1 − β)xj will be rounded to xj (and similarly x′
j will be

rounded to xi). The probability that a parent is generated as an offspring is thus
at least p2, which satisfies the requirement in our proof of the global convergence
of NGA in Appendix A of the published paper.

The arithmetical operator automatically handles convex constraints. But after
rounding offspring to integers, it is possible that the resulting solutions are in-
feasible. In that case, we simply keep the parents. Another drawback with the
arithmetical operator is that there is no way to generate offspring outside of the
convex combination of its two parents. To alleviate this problem, we use a relatively
large mutation probability p3.

A.9 Mutation

Two mutation operators are implemented: uniform and non-uniform [Michalewicz
1996]. When a solution is chosen to undergo a mutation according to the mutation
ACM Journal Name, Vol. V, No. N, Month 20YY.

Industrial Strength COMPASS · App–7

probability p3, a coordinate of that solution is randomly chosen with a probability
of p4 = 1/d (where d is the dimension of x), and its value is perturbed as follows:

—Uniform mutation: A line segment is drawn along the chosen coordinate direction,
which hits boundaries of the feasible region at both ends. Then the new value
of that coordinate is randomly chosen on that line segment. Since the feasible
solution region Θ is bounded, we may assume that the largest absolute value a
coordinate of any feasible solution xj can have is ξ > 0, and thus each solution
along that coordinate will be selected with a probability at least p5 = 1/2ξ > 0,
thus satisfying the requirement in Appendix A of the published paper.

—Non-uniform mutation: The basic idea is that as evolution continues, more fine
tuning capability may be desirable to make the NGA more aggressive. Therefore,
the mutated coordinate of x, say x′

i, is determined as

x′
i =

{
xi + ∆(k, right(i)− xi), with probability 0.5,
xi −∆(k, xi − left(i)), with probability 0.5,

where k is the generation number, right(i) and left(i) are the end points of the
line segment along the ith coordinate direction to the boundary of the feasible
region, and ∆(k, y) = y×U (0, 1)×(1−k/K)b. Here K is the maximum number of
generations allowed and b is a parameter controlling the degree of non-uniformity.

Preliminary experiments showed that non-uniform mutation was better suited
for our purpose. In the framework of ISC, however, it is not clear how to set K for
non-uniform mutation because the NGA can be terminated at any generation. We
simply chose K very large and if it does happen that the number of generations
k exceeds K, we use a small number in place of 1 − k/K. Therefore, in ISC the
function ∆(k, y) for non-uniform mutation is

∆(k, y) = y × U (0, 1)×max

{
0.005,

(
1− k

K

)b
}

.

A careful reader will notice that non-uniform mutation invalidates the NGA
global convergence proof, so uniform mutation can be used to strictly adhere to the
framework.

A.10 Replacement of Old Generation

Although it is not an essential component of the NGA, we choose to implement
elitism as an option to speed up convergence and conserve old niche centers so
as to stabilize the growth of niches; “elitism” means that the best individuals,
in particular, niche centers, are always preserved through evolutions. Elitism is
routinely used in GAs to speed up convergence. However, a consequence of using
elitism is that it invalidates the global convergence property of the NGA, as proved
in Appendix A of the published paper. If this is a concern, then the user can turn
elitism off and thus preserve the global convergence property of the NGA. In our
experience elitism helps, and since we transition from the Global Phase long before
anything like global convergence occurs, this is a useful practical compromise.

ACM Journal Name, Vol. V, No. N, Month 20YY.

App–8 · Xu et al.

Table II. Control Parameters for the NGA

Parameter Functionality Value

mG Population size 50

η Linear ranking coefficient 1 ≤ η ≤ 2, 1.5

m Mating restriction parameter

(Algorithm 4)

10

p3 Mutation probability 0.328

b Nonuniform mutation parame-
ter, the bigger b, the larger the

non-uniformity

1.5

K Used in non-uniform mutation 50

TG Maximum number of genera-

tions without continuous im-
provement for transition to lo-

cal phase to occur

3

gm Minimum number of groups to

form in Algorithm 3

3

δG Minimum difference in fitness
values to detect in Algorithm 3

User specified (default δC)

αG Grouping quantile parameter

in Algorithm 3

0.1

n0 Initial number of replications User specified (default 5)

∆n Incremental number of replica-

tions

log10(number of iterations)

Algorithm 5 Generation update.

Step 1. If elitism is turned on, do Step 2.

Step 2. Niche center conservation:
(1) Mark all individuals in the new population as unprocessed.
(2) For each old niche center xi, scan the unprocessed individuals in the new

population. If the worst individual that is within the niche radius r from xi is
inferior to xi, then replace that individual with xi.

(3) If there is no such individual, replace the worst unprocessed individual in the
new population with xi.

(4) Mark the modified individual as processed and go back to 2.

A.11 GA Control Parameters

Table II lists control parameters for the NGA in ISC.

A.12 Transition Rules

In practice, we terminate the NGA when conditions indicate that we have uncovered
fertile regions for seeking locally optimal solutions. If the budget for the NGA is
exhausted, we also terminate it and move on to the local search phase.

A.12.1 Budget Rule. If the user specifies a budget for the NGA in terms of
number of replications, then at the beginning of each iteration the NGA checks
whether that budget is exceeded. If it is, then the NGA is terminated; otherwise
the NGA proceeds to generate a new population. Notice that this is a soft budget
ACM Journal Name, Vol. V, No. N, Month 20YY.

Industrial Strength COMPASS · App–9

rule because as long as there are some replications available at the beginning of an
iteration, the NGA will continue.

A.12.2 Niche Rule. If at any time there is only 1 niche, then go to the Local
Phase. The philosophy is that when there is only one niche it suggests that there
is likely only one local minimum and thus running local search alone is sufficient.

A.12.3 Improvement Rule. If the NGA does not achieve any improvement in
TG generations—that is, no apparently better solutions are found in any of TG

consecutive generations—then go to the Local Phase. This is similar to a regular
GA stopping criterion except that we may want to set TG smaller, say TG = 3.

A.12.4 Dominance Rule. Let q be the number of niches and let xij be the jth

solution in niche i, i = 1, 2, . . . , q, j = 1, 2, . . . , qi. Further let nij be the number of
observations collected for xij , let ni =

∑qi

j=1 nij, and let νi = ni − qi.
If the solutions within one niche dominate all other niches (on the whole, not

just the best individual), then we exploit it by going to the Local Phase.
The model used here is that the `th replication of solution xij gives a fitness value

Yij` = µij + εij`, where εij`’s are i.i.d. and are distributed as N (0, σ2
i). We assume

equal variance within a niche population. We denote by tν,β the β quantile of the
t distribution with ν d.f. We further define

SSEi =
qi∑

j=1

nij∑

`=1

(Yij` − Ȳij·)2

=
qi∑

j=1

nij∑

`=1

Y 2
ij` −

qi∑

j=1

nijY
2
ij`

where Ȳij· =
∑nij

`=1 Yij`/nij, and

µi =
1
qi

qi∑

j=1

µij,

µ̂i =
1
ni

qi∑

j=1

nij∑

`=1

Yij`.

Let I = {i : µ̂i ≥ µ̂j − ωij, ∀j 6= i}, where

ω =

√(
t2νi,β

SSEi

νini
+ t2νj ,β

SSEj

νjnj

)
,

β = (1− α)1/(q−1).

Thus, the set I contains niches that are statistically better than others in terms
of average quality of individuals within those niches. If |I| = 1, then we believe
that there is a dominant niche and thus stop the NGA to move on to explore that
niche with the local search algorithm.

ACM Journal Name, Vol. V, No. N, Month 20YY.

App–10 · Xu et al.

A.13 Setting Up COMPASS After the NGA Finishes

Upon finishing the Global Phase, we have at hand a list of niche centers together
with surrounding solutions. For each niche center, starting from the best one, we
run COMPASS using that center as the starting point and surrounding solutions
as active solutions.

B. COMPASS IN ISC

B.1 Generalized COMPASS Constraint Placement

The idea behind generalized constraint placement is to approximate the decrease
in objective value as linear along the line connecting a solution xi to the current
sample best x̂∗, and to make the constraint hyperplane as close to x̂∗ as possible
subject to the estimated difference being statistically significant, but no more than
half way. The generalized COMPASS constraint is

(x̂∗ − xi)(x − (βx̂∗ + (1− β)xi)) ≥ 0, β ∈ [0, 1/2]. (7)

Notice that when β = 0, the constraint simplifies to (x̂∗ −xi)(x−xi) ≥ 0, which
means that x̂∗ and x are on the same side with respect to xi geometrically, and
thus nothing is cut off. If β = 1/2, then it is the usual COMPASS constraint.

One problem with the generalized COMPASS constraint placement algorithm is
that when objective values of active solutions are very close to the current sample
best solution, β is very likely to be set to zero, cutting nothing off. Therefore, the
algorithm would fail to declare a singleton and the stopping test procedure would
not be invoked; that is, COMPASS would not terminate even upon hitting a local
optimum. To circumvent this difficulty, we impose a lower bound ε on the value of
β and then relate it to the dimension of the solution space. Intuitively, the higher
the dimension is, the smaller β should be to avoid unnecessarily cutting off too
many points. We used ε = ηd, with η = 0.5, where d is the dimension of a solution
x.

Assuming that we have independent sampling with unequal sample sizes and
unequal variances, the smallest difference between Ḡ(x̂∗) and Ḡ(xi) we can detect
is

t1−αp,νS, (8)

where the standard error of the point estimate S ≡ s.e.(Ḡ(x̂∗) − Ḡ(xi)) and ap-
proximate degrees of freedom ν are given by Banks, et al. [2004]:

S =

√
S2(xi)

ni
+

S2(x̂∗)
n

(9)

ν =
(S2(xi)/ni + S2(x̂∗)/n)2

[(S2(xi)/ni)2/(ni − 1)] + [(S2(x̂∗)/n)2/(n− 1)]
(10)

where S2(xi) and S2(x̂∗), and ni and n, are sample variances and number of ob-
servations, respectively, for xi and x̂∗. The degrees of freedom ν is rounded to an
integer in the expression above. We require that n ≥ 2, ni ≥ 2, and recommend
that n ≥ 5, ni ≥ 5.

We will set β ∈ [ε, 1/2] based on the statistical test, unless the Euclidean distance
between x̂∗ and xi is less than or equal to

√
d, in which case we set β = 1/2 and

ACM Journal Name, Vol. V, No. N, Month 20YY.

Industrial Strength COMPASS · App–11

do not apply the test. Here
√

d is the distance to the farthest point in the unit
hypercube.

Algorithm 6 gives the procedure to determine β.

Algorithm 6 COMPASS Constraint Placement.

Step 0. If ‖x̂∗ − xi‖ ≤
√

d, set β = 1/2 and return; otherwise go to Step 1.
Step 1. Calculate S and ν by (9) and (10).
Step 2. If |Ḡ(xi) − Ḡ(x̂∗)| < t1−αp,νS, then let β = ε; otherwise, let

β = min
{

1−
t1−αp,νS

|Ḡ(xi)− Ḡ(x̂∗)|
,
1
2

}
.

C. COMPASS SAMPLE ALLOCATION RULE

The base sample allocation rule (SAR) for COMPASS is that every active solution
has at least n0(ln k)1.01 replications, where k is the number of COMPASS iterations;
this is the rule used in Hong and Nelson [2006]. Thus, active solutions receive an
infinite number of replications in the limit which guarantees the convergence of
COMPASS.

However, as COMPASS progresses toward locally optimal solutions, it may be
desirable to adaptively allocate additional simulation effort beyond that specified
by the fixed schedule. Intuitively, any solution that is not statistically inferior to
the current sample best should be allocated somewhat more replications than those
that are not so that their status can become clearer. To accomplish this, we also
implemented an adaptive SAR based on OCBA (see for instance Chen et al. [2000]).
In COMPASS as implemented in ISC—Algorithm 8 in Section C.1 below—we apply
the following OCBA heuristic in Step 1 (an option that can be turned off by the
user):

Again, let S2(xi) and S2(x̂∗) denote sample variances for xi and x̂∗. Let δ̂(x) =
Ḡ(x) − Ḡ(x̂∗). Assume that at each iteration we have ∆N additional replications
to allocate to active solutions that define the most promising area. In our imple-
mentation, we fix ∆N to the size of the set of active solutions, denoted by Ak−1.
Note that these are additional replications.

Algorithm 7 describes the OCBA-based adaptive SAR.

Algorithm 7 Adaptive SAR for COMPASS.

Step 0. At iteration k, let ∆N = |Ak−1|.
Step 1. Allocate 2 additional replications to x̂∗.
Step 2. Let ∆N = ∆N − 2.
Step 3. Let R =

∑
x∈Ak−1

S2(x)/δ̂(x).

Step 4. Set ∆N (x) = S2(x)/δ̂(x)
R

·∆N . If ∆N (x) < 1, round down to 0; otherwise,
round to the nearest integer.

C.1 COMPASS with Constraint Pruning

When the kth iteration begins, we have:

—A most promising area (MPA) Ck defined by
ACM Journal Name, Vol. V, No. N, Month 20YY.

App–12 · Xu et al.

—x̂∗
k−1: The sample best solution from previous iteration, which is the user

specified starting point x0 when k = 1.
—A set of active solutions, denoted by A(x̂∗

k−1), plus the original problem con-
straints that define the constraints actually forming the MPA. For notational
simplicity, we shall use Ak−1 instead of A(x̂∗

k−1) in the following.

—A list of visited solutions Vk−1, which is {x0} and the active solutions provided
by the NGA, A0, when k = 1.

—A list of the sample best visited solutions, denoted as Bk−1, in Vk−1. The size of
the list is usually set to the dimension of the solution space d; Bk−1 = {x0} for
k = 1.

Algorithm 8 COMPASS with Constraint Pruning.

Step 0. Let k = 0, V0 = {x0}, and A0 be the active solutions provided by the
NGA. Let C0 = Θ.

Step 1. Let k = k + 1. Let Bk−1 = ∅. Uniformly and independently sample mL

solutions (duplicates allowed) from Ck−1 (see §A.2). Denote this set of solutions as
Sk. Apply SAR to x̂∗

k−1, Ak−1 and Sk, and let Vk = Vk−1 ∪ Sk.

Step 2. Identify Ak by solving LP programs formed by x̂∗
k as the center, and

Sk,Ak−1,Bk−1, and x̂∗
k−1 (if x̂∗

k−1 6= x̂∗
k), as candidate active solutions, and thus

obtain Ck.

Step 3. Check if Ck is a singleton. If not, go to Step 1; else, apply stopping test
procedure to x̂∗

k∪Ak using x̂∗
k as the standard. If x̂∗

k is still optimal, return x̂∗
k as the

final result; else, let x̃ be the new sample best, let x̂∗
k−1← x̂∗

k, Ak−1 ←Ak, x̂∗
k ← x̃,

populate Bk−1 with the d sample best solutions in Vk, and go to Step 2.

C.2 COMPASS Control Parameters

Table III lists the control parameters for COMPASS.

D. CLEAN-UP

Once the COMPASS local search has exhausted all niches found by the NGA global
search, or the budget has run out, ISC enters the Clean-up Phase with a collection
of locally optimal solutions that we reindex as L = {1, 2, . . ., |L|} for convenience.

We want to select the best of these solutions, or one within δC of the best, with
high confidence, and also state a ±δC confidence interval on the performance of
the selected solution. The user specifies parameters δC and αC , but αC defaults to
0.05.

Algorithm 9 Clean-Up Procedure.

Input. L, the set of locally optimal solutions of size |L| and constants δC and
αC. For each i ∈ L, N

(0)
C (xi) is the number of observations, Ḡ(xi) is the sample

mean, and S2(xi) is the sample variance.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Industrial Strength COMPASS · App–13

Table III. COMPASS Control Parameters

Parameter Functionality Default value

n0 Initial number of replications
assigned to a new solution

User specified (default 5)

mL Within the most promising

area, randomly sample with re-
placement mL solutions

5

Nk The minimum number of repli-
cations assigned to a solution

at iteration k

n0(lnk)1.01

αp 1−αp is the confidence level for
generalized COMPASS con-

straint placement method

0.10

δL Indifference zone parameter for

the local optimality stopping
test.

User specified (default δC)

αL 1 − αL is the confidence level

for the local optimality stop-
ping test.

User specified (default

0.05)

cp Number of COMPASS itera-

tions between constraint prun-
ings

User specified (default 5)

Step 1. Let

n = min
i∈L

N
(0)
C (xi),

ti = t
(1−αC/2)1/(|L|−1),N

(0)
C (xi)−1

,

h = h(2, (1− αC/2)1/(|L|−1), n)

ωi` =

{
t2i S

2(xi)

N
(0)
C (xi)

+
t2`S

2(x`)

N
(0)
C (x`)

}1/2

, ∀i 6= `

where h(2, (1− αC/2)1/(|L|−1), n) is Rinott’s constant in the special case of 2 solu-
tions, confidence level (1 − αC/2)1/(|L|−1) and n degrees of freedom (see Boesel et
al. [2003]).

Step 2. Let I = {i : Ḡ(xi) ≤ Ḡ(x`) + ωi`, ∀` 6= i}.
Step 3. For all i ∈ I, compute NC(xi) = max{N (0)

C (xi), dh2S2(xi)/δ2e}. Collect
NC(xi) −N

(0)
C (xi) more observations and update Ḡ(xi).

Step 4. Let B = arg mini∈I Ḡ(xi). Report xB as the best solution and claim
Ḡ(xB)± δC as the (1− αC/2)× 100% confidence interval for g(xB).

E. USER-SPECIFIED PARAMETERS FOR TEST PROBLEMS

In Table IV we list user specified ISC control parameters using the notation intro-
duced earlier. The only parameter that does not have a default is δC .

References

Baker, J. E. 1987. Reducing bias and inefficiency in the selection algorithm. In
Proceedings of the 2nd International Conference on Genetic Algorithms, 14–21.

ACM Journal Name, Vol. V, No. N, Month 20YY.

App–14 · Xu et al.

Table IV. Control Parameters used in Test Problems

Multi-modal Singular Flowline Inventory High-d

n0 5 5 5 20 5
δG 0.08 1 0.05 0.1 10

αb 0.05 0.05 0.05 0.05 0.05
δb 0.08 1 0.05 20 10

αL 0.05 0.05 0.05 0.05 0.05
δL 0.08 1 0.05 50 10

αC 0.05 0.05 0.05 0.05 0.05
δC 0.08 1 0.05 20 10

cp 5 5 5 5 50

Banks, J., Carson, J. S., Nelson, B. L., and Nicol, D. M. 2004. Discrete-
Event System Simulation, 4th ed., Pearson Prentice Hall, Upper Saddle River,
NJ.

Boesel, J. 1999. Search and Selection for Large-Scale Stochastic Optimization.
Doctoral dissertation, Department of IEMS, Northwestern University, Evanston,
IL.

Boesel, J., Nelson, B. L., and Kim, S.-H. 2003. Using ranking and selection
to ‘clean up’ after simulation optimization. Operations Research 51, 814-825.

Chen, C.-H., Lin, J., Yücesan, E., and Chick, S. E. 2000. Simulation budget
allocation for further enhancing the efficiency of ordinal optimization. Discrete
Event Dynamic Systems: Theory and Applications 10, 251–270.

Hong, L. J., and Nelson, B. L. 2006. Discrete optimization via simulation
using COMPASS. Operations Research 54, 115–129.

Michalewicz, Z. 1996. Genetic Algorithms + Data Structures = Evolution Algo-
rithms, 3rd ed., Springer, Berlin.

Miller, R. G. 1981. Simultaneous Statistical Inference, 2nd ed., Springer, Berlin.
Miller, B. L., and Shaw, M. J. 1995. Genetic algorithms with dynamic niche

sharing for multimodal functino optimization. IlliGAL Report No. 95010, Illinois
Genetic Algorithms Laboratory, University of Illinois at Champaign-Urbana.

Pichitlamken, J., and Nelson, B. L. 2003. A combined procedure for opti-
mization via simulation. ACM TOMACS 13, 155–179.

Sareni, B., and Krahenbuhl, L. 1998. Fitness sharing and niching methods
revisited. IEEE Transactions on Evolutionary Computation 2, 97–106.

ACM Journal Name, Vol. V, No. N, Month 20YY.

