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Proof of Proposition 1
To prove the convergence of Algorithm 1 when Conditions 1 and 2 hold, we first need

to establish three lemmas. The first lemma states that if a solution x′ is the sample best
solution i.o., then all of its feasible neighbors are included in the estimation set i.o. In the
following lemma, we use ki as the index of a subsequence such that x̂∗ki−1 = x′, i.e., the
sample best on the iteration before iteration ki is x′.

Lemma 1 When Algorithm 1 is applied to Problem (1) and Condition 1 holds, if x̂∗k =
x′ i.o., then for any x̃ ∈ N (x′),

Pr {x̃ ∈ Eki
i.o.} = 1.

Proof: For any integer K > 0, let RK =
∑∞

k=K+1 I(x∗k = x′), where I(·) is the indicator
function. Also let R be an arbitrary positive integer. We have

Pr{x̃ /∈ Eki
∀ki > K} =

∞∑
r=0

Pr{x̃ /∈ Eki
∀ki > K|RK = r}Pr{RK = r}

=
R∑

r=0

Pr{x̃ /∈ Eki
∀ki > K|RK = r}Pr{RK = r}+

∞∑
r=R+1

Pr{x̃ /∈ Eki
∀ki > K|RK = r}Pr{RK = r}

≤
R∑

r=0

Pr{RK = r}+
∞∑

r=R+1

(1− ε)r Pr{RK = r}

≤ Pr{RK ≤ R}+ ε(1− ε)R+1.
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The first inequality comes from Condition 1. Since x̂∗ki−1 = x′ i.o. implies that RK = ∞
w.p. 1, we have Pr{RK ≤ R} = 0. For any ε > 0, we can always make R large enough such
that ε(1− ε)R+1 < ε. Therefore, we have

Pr{x̃ /∈ Eki
,∀ki > K} = 0.

Since K is arbitrary, it means that for any given K, w.p. 1, there is an iteration ki > K on
which x̃ is included in the estimation set. Hence we conclude that

Pr {x̃ ∈ Eki
i.o.} = 1. 2

It is not difficult to verify that Lemma 3.2 and Lemma 3.3 in Hong and Nelson (2007)
still hold under Conditions 1 and 2. We present their lemmas below for reference.

Lemma 2 Let x̂∗k, k = 0, 1, 2, . . ., be the sequence of solutions generated by the Generic
Algorithm when applied to Problem (1). Suppose that Assumption 1 is satisfied. If Conditions
1 and 2 hold, then

lim
k→∞

[
g(x̂∗k)−min

y∈Ek

g(y)

]
= 0 w.p. 1.

Lemma 3 Let x̂∗k, k = 0, 1, 2, . . ., be a sequence of solutions generated by the Generic Algo-
rithm when applied to Problem (1). Suppose that Assumption 1 is satisfied. If Conditions 1
and 2 hold, then g(x̂∗k) converges w.p. 1.

Lemma 2 states that in the limit, the algorithm is able to correctly select the best solution
within the estimation set. Lemma 3 shows that the objective value of the current sample
best solution converges.

Now we are ready to prove Proposition 1.

Proposition 1 Let x̂∗k, k = 0, 1, 2, . . . be a sequence of solutions generated by Algorithm 1
when applied to Problem (1). Suppose that Assumption 1 is satisfied. If Conditions 1 and 2
hold, then Pr{x̂∗k /∈M i.o.} = 0.

Proof: Since the event {x̂∗k /∈ M i.o.} ⊂ {x̂∗k ∈ MC i.o.}, we have Pr{x̂∗k /∈ M i.o.} ≤
Pr{x̂∗k ∈MC i.o.}. Suppose x̂∗k ∈MC i.o. Since |Θ| is finite, so is MC . Therefore, x̂∗k has a
convergent subsequence when x̂∗k ∈MC i.o. Notice that

Pr{x̂∗k ∈MC i.o.} ≤ Pr{x̂∗k = x i.o. for some x ∈MC}
≤

∑

x∈MC

Pr{x̂∗k = x i.o.}. (1)

We now consider Pr{x̂∗k = x′ i.o.} for some x′ ∈ MC . Let x̃ be a feasible neighbor of x′

such that g(x̃) < g(x′); x′ must have such a neighbor or it is not in MC . We have

Pr{x̂∗k = x′ i.o.} = Pr{x̂∗k = x′ i.o., g(x̂∗k) converges}+ Pr{x̂∗k = x′ i.o., g(x̂∗k) diverges}.
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By Lemma 3, g(x̂∗k) converges w.p. 1. So Pr{x̂∗k = x′ i.o., g(x̂∗k) diverges} = 0. Hence
we have Pr{x̂∗k = x′ i.o.} = Pr{x̂∗k = x′ i.o., g(x̂∗k) converges}. We again use ki to denote
the subsequence such that x̂∗ki−1 = x′ ∈ MC for all i = 1, 2, . . . . Consider a sample path on
which x̂∗k = x′ i.o. and g(x̂∗k) converges. Since the subsequence g(x̂∗ki−1) = g(x′), and thus
converges to g(x′), we know g(x̂∗k) → g(x′) on that sample path. Therefore,

Pr{x̂∗k = x′ i.o.} = Pr{x̂∗k = x′ i.o., g(x̂∗k) → g(x′)}. (2)

By Lemma 1, Pr {x̃ ∈ Eki
i.o.} = 1, so we can rewrite (2) as

Pr{x̂∗k = x′ i.o.} = Pr{x̂∗k = x′ i.o., g(x̂∗k) → g(x′), x̃ ∈ Eki
i.o.}. (3)

Let kij be the subsequence of the sequence ki such that x̃ ∈ Ekij
for j = 1, 2, . . .. By

Condition 2, Nkij
(x) → ∞ as kij → ∞ for all x ∈ Ekij

. Since Condition 2 requires that

x′ = x̂∗kij
−1 ∈ Ekij

and by the definition of kij , x̃ ∈ Ekij
, we have Nkij

(x′) → ∞ and

Nkij
(x̃) →∞ as kij →∞.
According to Assumption 1, for all ε > 0, there exists a random variable Kε such that

for all kij > Kε, |Ḡkij
(x′) − g(x′)| < ε, |Ḡkij

(x̃) − g(x̃)| < ε and Kε < ∞ w.p. 1. Therefore,

for all 0 < δ < 1, there exists a constant kε,δ such that Pr{Kε < kε,δ} > δ. This means the
event Ω = {ω : Kε < kε,δ} satisfies Pr{Ω} > δ. So we can rewrite (3) as

Pr{x̂∗k = x′ i.o.} = Pr{x̂∗k = x′ i.o., g(x̂∗k) → g(x′), x̃ ∈ Eki
i.o., Kε < kε,δ}+

Pr{x̂∗k = x′ i.o., g(x̂∗k) → g(x′), x̃ ∈ Eki
i.o., Kε ≥ kε,δ}

≤ Pr{x̂∗k = x′ i.o., g(x̂∗k) → g(x′), x̃ ∈ Eki
i.o., Kε < kε,δ}+ 1− δ. (4)

Consider a sample path ω ∈ Ω along which x̂∗k = x′ i.o. and x̃ ∈ Eki
i.o. Choose ε =

(g(x′)− g(x̃))/4. On iteration kij , x̃ ∈ Ekij
and x̂∗kij

−1 = x′, we have

Ḡkij
(x̃) < g(x̃) + ε < g(x′)− ε < Ḡkij

(x′) < g(x′) + ε (5)

for all kij > Kε,δ and ω ∈ Ω. So Ḡ(x̂∗kij
) ≤ Ḡkij

(x̃) < Ḡkij
(x′) for all kij > Kε,δ, which

means x̂∗kij
6= x′ for all kij > Kε,δ. In addition, from (5) we have |Ḡkij

(x̂∗kij
) − g(x′)| > ε

for all kij > Kε,δ. This means that g(x̂∗k) does not converge to g(x′) along sample path ω.
Therefore, there can not be any sample path ω that satisfies x̂∗k = x i.o., x̃ ∈ Eki

i.o., ω ∈ Ω
and g(x̂∗k) → g(x′) simultaneously. So we conclude

Pr{x̂∗k = x′ i.o., g(x̂∗k) → g(x′), x̃ ∈ Eki
i.o., ω ∈ Ω} = 0. (6)

Plugging (6) into (4), we have Pr{x̂∗k = x′ i.o.} ≤ 1− δ for all 0 < δ < 1. As we drive δ
towards 1, we have 1 − δ → 0 and thus Pr{x̂∗k = x′ i.o.} = 0. Since x′ ∈ MC is arbitrary,
we have Pr{x̂∗k = x i.o.} = 0 for all x ∈MC . Therefore, (1) gives Pr{x̂∗k /∈M i.o.} = 0. 2

Derivation of (5):

Let u(d) = min{x(d)
1 ,x

(d)
2 , . . . ,x

(d)
m }, for d = 1, 2, . . . , m. Then

V =
D∏

d=1

(u(d) − 0).
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Since x1,x2, . . . ,xm are sampled uniformly from Θ1 = [0, 1]D, we know that x
(d)
1 ,x

(d)
2 , . . . ,x

(d)
m

are i.i.d. U(0, 1) distributed. Therefore, we have E(u(d)) = 1/(m + 1) for all d = 1, 2, . . . , D.
Because all u(d)’s are also independent, we have

E(V ) =
D∏

d=1

E(u(d)) =

(
1

m + 1

)D

.2

Derivation of (6):

Let l(d) = max{−1/2,x
(d)
i , i = 1, 2, . . . ,m : x

(d)
i < 0}, u(d) = min{1/2,x(d)

i , i = 1, 2, . . . , m :

x
(d)
i > 0}, for d = 1, 2, . . . , m. Then V =

∏D
d=1(u

(d) − l(d)).
Let nd be the number of solutions that fall within [−1/2, 0] along dimension d. Clearly

nd has a binomial distribution Bin(m, 0.5). Conditioning on nd, it is easy to obtain that

E(l(d)|nd) = − 1

2(nd + 1)
, E(u(d)|nd) =

1

2(m− nd + 1)
.

Because of the independence among all directions, we have

E(V ) = En1,n2,...,nD
[E(V |n1, n2, . . . , nD)]

=
D∏

d=1

End
[E(u(d) − l(d)|nd)]

=
D∏

d=1

End

[
1

2(nd + 1)
+

1

2(m− nd + 1)

]

=
D∏

d=1

[
m∑

n=0

(
m

n

)(
1

2

)n (
1

2

)m−n (
1

2(nd + 1)
+

1

2(m− nd + 1)

)]
.

By symmetry of the last formula, we have

E(V ) =

{
2

m∑
n=0

(
m

n

)(
1

2

)m+1
1

n + 1

}D

. (7)

Note that
m∑

n=0

(
m

n

)(
1

2

)m+1
1

n + 1
=

1

m + 1

m∑
n=0

(m + 1)!

(n + 1)!(m− n)!

(
1

2

)m+1

.

Let k = n + 1. Then the previous equation becomes

m∑
n=0

(
m

n

)(
1

2

)m+1
1

n + 1
=

1

m + 1

m∑

k=1

(m + 1)!

k!(m + 1− k)!

(
1

2

)m+1

=
1

m + 1

[
m∑

k=0

(m + 1)!

k!(m + 1− k)!

(
1

2

)m+1

−
(

1

2

)m+1
]

=
1

m + 1

[
1−

(
1

2

)m+1
]

.
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Therefore, by Equation (7), we have

E(V ) =

{
2

m + 1

[
1−

(
1

2

)m+1
]}D

.2

Derivation of (8):
We start with the simplest case m = 1. Let x′ be the solution sampled. Recall that the

generic COMPASS constraint is (x∗ − x′)T (x − (x∗ + x′)/2) ≥ 0. Since x∗ = (0, 0, . . . , 0)T ,
the constraint is equivalent to

x′T (x− 1/2x′) ≤ 0. (8)

For Corner Case, x′ = [u1, u2, . . . , uD]T is sampled uniformly from Θ1 = [0, 1]D. Since the
volume of Θ1 is 1, the expected volume of the MPA is the same as the probability that
x = [w1, w2, . . . , wD]T ∼ U(0, 1)D satisfies (8). That is,

Ex′(V ) = Ex′ [Ex(V |x′)]
= Pr

{
x′Tx− 1

2
x′Tx′ ≤ 0

}

= Pr

{
D∑

i=1

uiwi − 1

2

D∑
i=1

u2
i ≤ 0

}

= Pr

{
D∑

i=1

(uiwi − 1

2
u2

i ) ≤ 0

}
. (9)

Since x and x′ are i.i.d. U(0, 1)D distributed, we know that ui, wi are i.i.d. U(0, 1) dis-
tributed, hence wi − 1/2u2

i are i.i.d. Therefore, we can approximate (9) using Central Limit
Theorem. After some calculation, it is not difficult to obtain that E(uiwi − 1/2u2

i ) = 1/12
and Var(uiwi − 1/2u2

i ) = 7/240. So

Ex′(V ) = Pr

{
D−1

∑D
i=1(uiwi − 1

2
u2

i )− 1/12√
7/(240D)

≤ −1/12√
7/(240D)

}

≈ Φ

(
−1/12√
7/(240D)

)
= Φ(−0.49

√
D).

Now we extend the analysis to the general case with m ≥ 1. Let xi = [ui,1, . . . , ui,D],
x = [w1, . . . , wD] and

Zi =
D−1

∑D
d=1(ui,dwd − 1

2
u2

i,d)− 1/12√
7/(240D)

.

The equation now is

Ex′,...,xm(V ) = Ex′,...,xm [Ex(V |x′, . . . ,xm)]

= Pr

{
xT

i x− 1

2
· xT

i xi ≤ 0, i = 1, 2, . . . , m

}

= Pr
{

Zi ≤ −0.49
√

D, i = 1, 2, . . . , m
}

, (10)
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where x,xi, i = 1, 2, . . . , m are i.i.d. U(0, 1) distributed and Zi have an approximate multi-
variate normal distribution MV N(0, Σ). The third step follows from the preceding analysis
with m = 1. We now claim that Zi’s are positively correlated. We first note that the

sign of Cov
(∑D

d=1(ui,dwd − 1/2u2
i,d),

∑D
d′=1(uj,d′wd′ − 1/2u2

j,d′)
)

is the same as the sign of

Cov(Zi, Zj) for any i, j ∈ {1, 2, . . . , D}. After some manipulations, we can write the covari-
ance as

Cov

(
D∑

d=1

(ui,dwd − 1/2 · u2
i,d),

D∑

d=1

(uj,dwd′ − 1/2 · u2
j,d′)

)
=

D∑

d=1

D∑

d′=1

Cov (ui,dwd, uj,d′wd′)−
D∑

d=1

D∑

d′=1

Cov
(
u2

i,d/2, uj,d′wd′
)−

D∑

d=1

D∑

d′=1

Cov
(
ui,dwd, u

2
j,d′/2

)
+

D∑

d=1

D∑

d′=1

Cov
(
u2

i,d/2, u
2
j,d′/2

)
.

It is straightforward to verify that Cov (ui,dwd, uj,d′wd′) = 0 if d 6= d′and Cov (ui,dwd, uj,d′wd′) =
E(w2

d)E(ui,d)E(uj,d)−E(wd)
2E(ui,d)E(uj,d) = 1/48 > 0 when d = d′. The last three terms are

all 0 due to the independence between all random variables involved. So Cov(Zi, Zj) > 0.
By Slepian’s inequality (Tong 1980), we have (10) ≥ Φ(−0.49

√
D)m asymptotically. 2

Derivation of (9): We follow the previous proof procedure for Equation (8). First,
x,x′, . . . ,xm now are i.i.d. U(−1/2, 1/2)D random variables, and thus ui, wi are i.i.d. U(−1/2, 1/2).
We then have E(uiwi − 1/2u2

i ) = −1/24 and V ar(uiwi − 1/2u2
i ) = 1/120. So for m = 1,

Ex′(V ) = P

(
D−1

∑D
i=1(uiwi − 1

2
u2

i ) + 1/24√
1/(120D)

≤ 1/24√
1/(120D)

)

≈ Φ

(
1/24√

1/(120D)

)
= Φ(0.46

√
D).

For m > 1, the difference now is Cov(Zi, Zj) = 0. This is because Cov (ui,dwd, uj,d′wd′) =
E(w2

d)E(ui,d)E(uj,d) − E(wd)
2E(ui,d)E(uj,d) = 0 as a result of E(ui,d) = E(uj,d′) = 0. There-

fore, we can still apply Slepian’s inequality and obtain E(V ) ≥ Φ(0.46
√

D)m. 2
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Figure 6: Performance plot for the high-dimensional test problem: D=5, 10, 15 and 20.
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