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Proof of Proposition 1

To prove the convergence of Algorithm 1 when Conditions 1 and 2 hold, we first need
to establish three lemmas. The first lemma states that if a solution x’ is the sample best
solution i.o., then all of its feasible neighbors are included in the estimation set i.o. In the
following lemma, we use k; as the index of a subsequence such that Xj ;| = x/, i.e., the
sample best on the iteration before iteration k; is x'.

Lemma 1 When Algorithm 1 is applied to Problem (1) and Condition 1 holds, if X} =
x' i.0., then for any x € N (x'),

Pr{x €&, io.} =1.

Proof: For any integer K > 0, let Rx = > 7, Z(x}, = x), where Z(-) is the indicator
function. Also let R be an arbitrary positive integer. We have

Pr{% ¢ &,k > K} = > Pr{x ¢ &k > K|Rx = r}Pr{Rx =1}

r=0

R
= Z Pl”{f( é gkz\VI/CZ > K|RK = T}Pr{RK — T} +
r=0

> Pr{x ¢ &Yk > KRy = r}Pr{Ry = r}
r=R+1
R 00
< Z Pr{Rk =r}+ Z (1—¢€)"Pr{Rk =1}
r=0 r=R+1
< Pr{Rx < R} +¢(1 — et



The first inequality comes from Condition 1. Since X;,_; = x’ i.0. implies that Rg = oo
w.p. 1, we have Pr{Rx < R} = 0. For any ¢ > 0, we can always make R large enough such
that (1 — €)1 < . Therefore, we have

Pr{x ¢ &, ,Vk; > K} = 0.

Since K is arbitrary, it means that for any given K, w.p. 1, there is an iteration k; > K on
which x is included in the estimation set. Hence we conclude that

Pr{xe &, io}=1 0O

It is not difficult to verify that Lemma 3.2 and Lemma 3.3 in Hong and Nelson (2007)
still hold under Conditions 1 and 2. We present their lemmas below for reference.

Lemma 2 Let X;,k = 0,1,2,..., be the sequence of solutions generated by the Generic
Algorithm when applied to Problem (1). Suppose that Assumption 1 is satisfied. If Conditions
1 and 2 hold, then

I X:) — mi =0 w.p. L
Jim (%) — min g(y) w.p

Lemma 3 Let Xj, k =0,1,2,..., be a sequence of solutions generated by the Generic Algo-
rithm when applied to Problem (1). Suppose that Assumption 1 is satisfied. If Conditions 1
and 2 hold, then g(X}) converges w.p. 1.

Lemma 2 states that in the limit, the algorithm is able to correctly select the best solution
within the estimation set. Lemma 3 shows that the objective value of the current sample
best solution converges.

Now we are ready to prove Proposition 1.

Proposition 1 Let Xj, k = 0,1,2,... be a sequence of solutions generated by Algorithm 1
when applied to Problem (1). Suppose that Assumption 1 is satisfied. If Conditions 1 and 2
hold, then Pr{X} ¢ M i.0.} =0.

Proof: Since the event {X; ¢ M io.} C {X; € M%i0.}, we have Pr{X; ¢ M io.} <
Pr{x; € MY i.0.}. Suppose X; € MC i.0. Since |O| is finite, so is M. Therefore, X} has a
convergent subsequence when X € MY i.o. Notice that

Pr{x; € M%io0.} < Pr{X;=xi.o0. for some x € M}

< ) Pr{x;=xio}. (1)

xeMC

We now consider Pr{X} = x’ i.0.} for some x’ € M. Let x be a feasible neighbor of x’
such that g(x) < g(x'); x’ must have such a neighbor or it is not in M¢. We have

Pr{x; = x' i.0.} = Pr{X} = x' i.0.,, g(X}) converges} + Pr{X; = x’ i.0., g(X}) diverges}.
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By Lemma 3, g(Xj) converges w.p. 1. So Pr{X; = x' i.0.,¢(X}) diverges} = 0. Hence
we have Pr{X; = x’' i.0.} = Pr{X} = x’ i.0.,,¢(X}) converges}. We again use k; to denote
the subsequence such that QZH =x' € M% foralli=1,2,.... Consider a sample path on
which X; = x’ i.0. and g(X}) converges. Since the subsequence g(X; _;) = g(x’), and thus
converges to g(x'), we know ¢(X}) — ¢g(x’) on that sample path. Therefore,

Pr{x; =x"1.0.} = Pr{X; =x"1.0,9(X}) — g(x)}. (2)
By Lemma 1, Pr{x € &, i.0.} = 1, so we can rewrite (2) as
Pr{x; =x'i0.} = Pr{X; =x"1.0,9(X}) — g(x'),%x € &, i.0.}. (3)

Let k;; be the subsequence of the sequence k; such that x € &, for j = 1,2,.... By
Condition 2, Ny, (x) — oo as k;; — oo for all x € &, . Since Condition 2 requires that
x' =X | € ék] and by the definition of k;;, X € ]Skij, we have Ny, (x') — oo and
N, (x) 2 00 as ki, — oo.

According to Assumption 1, for all € > 0, there exists a random variable K. such that
for all k;, > K., |Gy, (X)) — g(x')| < &,|Gy, (X) — g(X)| < € and K. < oo w.p. 1. Therefore,
forall0 <d <1, thére exists a constant k:;(; such that Pr{K. < k.s} > 0. This means the
event Q = {w : K. < k. s} satisfies Pr{Q} > §. So we can rewrite (3) as

Pr{X; =x"i0} = Pr{X; =x"10,9(X}) — g(X'),x € &, 1.0, K. < kes} +
Pr{x; = x" i.0.,9(X;) — g(X'),x € &, 1.0., K. > k. s}
< Pr{x; =x"10,9(X;) = 9(x),x € &, 1.0, K. <k.st+1—90. (4)

Consider a sample path w € Q along which X; = x’ i.0. and x € &, i.0. Choose ¢ =
(9(x’) — g(x))/4. On iteration k;,, X € &, and ﬁzijﬂ = x’, we have

Gi,, (%) < g(%) +¢ < g(x') — & < Gy, (X)) < g(x) +< (5)

for all k;; > K.5 and w € Q. So G(%;, ) < Gy, (%) < Gy, (X)) for all k;; > K. 5, which
means X; 7 x’ for all k;; > K.s. In addition, from (5) we have |Gkij (X3, ) —9(x)| > ¢
for all k;;, > K. ;5. This means that g(Xj) does not converge to g(x’) along sample path w.

Therefore, there can not be any sample path w that satisfies X; = x i.0.,x € &, i.0.,w € Q
and ¢(X;) — g(x’) simultancously. So we conclude

Pr{x; = x" i.0.,9(X}) — g(x'),x € &, i.0.,w € Q} = 0. (6)

Plugging (6) into (4), we have Pr{X; = x'i.0.} <1—¢forall 0 < ¢ < 1. As we drive §
towards 1, we have 1 —§ — 0 and thus Pr{X; = x’ i.0.} = 0. Since x’ € M is arbitrary,
we have Pr{X; = x i.0.} = 0 for all x € M. Therefore, (1) gives Pr{X; ¢ M i.0.} =0. O

Derivation of (5):
Let u(d) = min{xgd),xgd), o ,xﬁﬁ‘f)}, ford=1,2,...,m. Then
D
V=]l -0).

d=1



Since x1, Xa, . . . , X, are sampled uniformly from @1 [0, we know that ng), Xé ), e ,xfff)

17,
are i.i.d. U(0,1) dlstrlbuted Therefore, we have E(u®) = /(m +1)foralld=1,2,...,D.

Because all u(?’s are also independent, we have
D
H E(u'?) ! in
m+1

Derivation of (6):
Let [(4) = max{—l/Z,xd) i=1,2,. Xl(d <0}, ul? = m1n{1/2,xZ J=1,2,...,m:
D> 0}, ford=1,2,...,m. Then V — H (@) — @),
Let ng be the number of solutions that fall within [—1/2,0] along dimension d. Clearly
ng has a binomial distribution Bin(m, 0.5). Conditioning on ng, it is easy to obtain that

1 1
E(Dny) = —————  EuD|n,) = .
Because of the independence among all directions, we have
E(V) - Enl,nz ..... np [E(V|n1, Nno, ... ,TLD)]
D
= [[EuE@? —19n)]
d=1
D
1 1
= H End _'_
ey 2(ng+1)  2(m—ng+1)

RO @ )

By symmetry of the last formula, we have
D
I /m\ 1\ 1
= <2 = .
PG g

im n™ o1 i m+1 1"
n) \2 n+1 m—l—l (n+ )!(m —n)! \ 2 '

n=0 n=

Note that

Let kK = n + 1. Then the previous equation becomes

i (T;) <%>m+l " Jlr L mir 1 i /-c!(r(nm++1lz!k)! G)mH

B m;Jrl i k!(élm++1lz!k)! (é)mH . (%)mH]




Therefore, by Equation (7), we have

1 m+1 D
)
2
Derivation of (8):

We start with the simplest case m = 1. Let x’ be the solution sampled. Recall that the
generic COMPASS constraint is (x* — x/)T(x — (x* +x')/2) > 0. Since x* = (0,0,...,0)7,
the constraint is equivalent to

xT(x —-1/2x") <. (8)

For Corner Case, x' = [uy,us, ..., up]? is sampled uniformly from ©; = [0,1]P. Since the
volume of ©7 is 1, the expected volume of the MPA is the same as the probability that
X = [wy,wa, ..., wp]T ~ U(0,1)P satisfies (8). That is,

Ew(V) = Ex [Ex(V[x)]
1
—X

= Pr {Z(u,w, - %uf) < O} . (9)

Since x and x’ are i.i.d. U(0,1)? distributed, we know that u;, w; are i.i.d. U(0,1) dis-
tributed, hence w; — 1/2u? are i.i.d. Therefore, we can approximate (9) using Central Limit
Theorem. After some calculation, it is not difficult to obtain that E(u;w; — 1/2u?) = 1/12
and Var(u;w; — 1/2u?) = 7/240. So

D' (uw; — tu?) — 1/12 —1/12 }

Bell) = Pr{ /7/210D) < /7/(10D)

N -1/12
~ ®<—7/(240D)) = &(—0.49VD).

Now we extend the analysis to the general case with m > 1. Let x; = [u;1, ..., u;pl,
X = [wy,...,wp] and
D' Y (uigwa — july) —1/12
7/(240D) '

Zi -
The equation now is

.....

1
= Pr{xiTx—§~x;fpxigO,i—l,Z,...,m}
- Pr{Zig—0.49\/5,2':1,2,...,77@}, (10)

5



where x,x;,7 = 1,2,...,m are i.i.d. U(0,1) distributed and Z; have an approximate multi-
variate normal distribution MV N (0, ). The third step follows from the preceding analysis
with m = 1. We now claim that Z;’s are positively correlated. We first note that the

sign of Cov <Z§):1(ui,dwd —1/2u3 ), S awa — 1/2%2',(1')) is the same as the sign of
Cov(Z;, Z;) for any i,j € {1,2,..., D}. After some manipulations, we can write the covari-
ance as

D D
Cov <Z Ui qwg — 1/2 - u ,Z (ujqwg —1/2 - uid,)) =
d=1

d=1
D D D D
E g Cov (u; qwa, wjgwae) — E g Cov Zd/2 ujd/wd/) —
d=1 d'—1 d=1 d'=1
D D D D
Cov (u;qwa, u5 4 /2) + /2,45 4 /2)
1,dWd; Wj q/ z,d » Wid :
d=1d'=1 d=1 d'=1

It is straightforward to verify that Cov (u; qwq, ujews) = 0if d # d'and Cov (u; qwg, ujgwae) =
E(w?)E(u;a)E(ujq) — E(wg)*E(u; 4)E(ujq) = 1/48 > 0 when d = d’. The last three terms are
all 0 due to the independence between all random variables involved. So Cov(Z;, Z;) > 0.
By Slepian’s inequality (Tong 1980), we have (10) > ®(—0.49v/D)™ asymptotically. O

Derivation of (9): We follow the previous proof procedure for Equation (8). First,

x, %', . .., Xy now are i.i.d. U(—1/2,1/2)P random variables, and thus u;, w; arei.i.d. U(—1/2,1/2).
We then have E(u;w; — 1/2u?) = —1/24 and Var(u;w; — 1/2u?) = 1/120. So for m = 1,

12; 1(uzwz_2 ) 1/24 1/24 >

V/1/(120D) \/1/ 120D

U L
~ c1>< 1/(120D>> — ®(0.46VD).

Eo(V) = P<

For m > 1, the difference now is Cov(Z;, Z;) = 0. This is because Cov (u; qwq, ujawa) =
E(w3)E(u;q)E(ujq) — E(wg)*E(u; q)E(ujq) = 0 as a result of E(u; 4) = E(uj ) = 0. There-
fore, we can still apply Slepian’s inequality and obtain E(V) > ®(0.46v/D)™. O
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Figure 4: Performance plot for the singular function
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