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Problem Definition
Optimization via simulation (OvS) problems can be 
formulated as

x is the vector of decision variables
g(x) is not directly observable, only Y(x) may be 
observed from running simulation experiments
Little is known about the structure of the problem, e.g., 
convexity…
We assume that Θ is explicit 
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Example: Highly reliable system
A system works only if all 
subsystems work

All subsystem components 
have their own time-to-failure 
and repair-time distributions

Decide how many and what 
redundant components to 
use

Goal is to minimize steady-
state system unavailability
given budget constraints

Few enough feasible 
alternatives that we can 
simulate them all



6

Example: Traffic signal sequencing

Set the length of the 
red, green and green-
turn-arrow signals along 
a network of road and 
intersections 
Goal is to minimize 
mean aggregate driver 
delay
Cycle lengths are 
naturally treated as 
continuous-valued 
decision variables
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Example: Inventory management with 
dynamic customer substitution

Single-period decision: how 
many of each product variant 
to stock?
Goal is to maximize 
expected profit.
Exogenous prices; consumer 
choice by MNL model, 
including no-purchase option
Mahajan and Van Ryzin
(2001)
Decision variables are 
naturally treated as 
integers (e.g., how many 
purple shirts)
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Classification

Based on the structure of the feasible region Θ, we 
may divide OvS problems into three categories

Section of the best: Θ has a small number of solutions 
(often less than 100). We may simulate all of them and 
select the best THIS IS OFTEN THE CASE

Continuous OvS (COvS): Θ is a (convex) subset of Rd, 
and x is a vector of continuous decision variables

Discrete OvS (DOvS): Θ is a subset of d-dimensional 
integers, x is a vector of integer-ordered decision 
variables

This classification is not exhaustive…
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Do these things fit?
Find the strategy with the highest probability of 
delivering all orders on time

Yes, because a probability is the expected value of 
{0, 1} outputs

Find the design that is most likely to survive the 
longest

No, because the performance of a design can only be 
judged relative to the competitors, not in isolation

Maximize the actual profit that we will achieve next 
year

No, in fact this is impossible when there is uncertainty; 
we have to settle on a performance measure that can 
be averaged over the possible futures
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Selection of the Best

Problem definition

Θ = { x1, x2, …, xk }

Let μi= g(xi), Yi = Y(xi) ~ N(μi ,σi
2) with unknown μi and 

σi
2

Suppose that μ1 ≤ μ2 ≤ … ≤ μk-1 ≤ μk

The goal is to identify which solution is x1 by 
conducting simulation experiments

The problem is to decide the sample sizes of all 
solutions so that the solution with the smallest sample 
mean is the best solution

Reminder: x is a selection of 
redundant components; μ is 
long-run unavailability
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The difficulties

Output randomness makes the decision difficult. We 
can only soften the goal to select the best solution 
with a high probability (1-α)x100%, say 95%

The unknown difference between μ1 and μ2 can be 
arbitrarily small, making the decision very difficult, 
even just to achieve a given high probability

Variances of the solutions may be unknown. They 
have to be estimated

Question: When is the “normal” assumption 
reasonable?
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The Indifference-zone formulation

Suppose that μ2-μ1 ≥ δ, where δ > 0 is called an 
indifference-zone parameter. Basically, we only care 
about the difference between two solutions if it is 
more than δ; otherwise, they are indifferent.

Example: δ = 0.5% in system availability

The goal is to design procedures that assure
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Bechhofer’s Procedure
Assume all solutions have the same known variance σ2.
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Unknown and Unequal Variances
Two-stage procedures are often used

Stage I
All solutions are allocated n0 observations to calculate 
their sample variances. 
The sample variances are used to determine the 
sample size Ni for each xi

Stage II
max{Ni - n0, 0} observations are taken for each solution
Calculate the sample means of all solutions based 
using all observations taken in Stage I and II
Select the solution with the smallest sample mean.
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When # of Solutions is Large

Two-stage procedures are often conservative (i.e., 
allocating more observations than necessary)

Indifference-zone formulation

Bonferroni inequality

Especially when # of solutions is large

NSGS Procedure (Nelson et al. 2001)
uses subset selection to screen out clearly inferior 
solutions after Stage I

much more efficient than two-stage procedures when # 
of solution is large
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Embedding Selection Procedure in 
Other Optimization Algorithms

Selection-of-best procedures can also be embedded in 
other OvS algorithms (e.g., random search algorithms) 
to improve their efficiency and correctness

Clean-up at the end of optimization process (Boesel et al. 
2003) More later in the talk

Neighborhood selection (Pichitlamken et al. 2006)

Guarantee an overall probability of correct selection at 
any time when solutions are generated sequentially 
(Hong and Nelson 2007)

Checking local optimality (Xu et al. 2010)
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Other Procedures

In addition to two-stage procedures, there are also 
many sequential procedures

Brownian motion approximation
Let

It can be approximated by a Brownian motion process with 
drift μi-μj

Results on Brownian motion can be used to design 
sequential selection procedures, e.g., Paulson’s procedure 
(Paulson 1964) and KN procedure (Kim and Nelson 2001)
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Other Procedures

In addition frequentist “PCS” procedures, there are 
also many Bayesian procedures

The expected-value-of-information (EVI) procedures, e.g., 
Chick and Inoue (2001)

The optimal-computing-budget-allocation (OCBA) 
procedures, e.g., Chen et al. (2000)

Branke et al. (2007) compared frequentist’s and Bayesian 
procedures through comprehensive numerical studies. They 
conclude that 

No procedure dominates all others

Bayesian procedures appear to be more efficient
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Stochastic Root Finding

Problem: Finding x such that E[H(x)] = 0

Robbins and Monro (1951) proposed the stochastic 
approximation algorithm

They showed that xn converges to a root if
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Problem: minimize g(x) = E[Y(x)]

Assuming g(x) is continuously differentiable

It is equivalent to find a root of 

If  , then we may use Robbins-
Monro SA algorithm to find a root

Continuous OvS Reminder: x is a setting of 
traffic light timings; g(x) is 
mean aggregate delay
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More on Robbins-Monro SA

If , then

The algorithm may be viewed as a stochastic version 
of the steepest descent algorithm

To apply Robbins-Monro SA, the key is to find an 
unbiased estimate of the gradient
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Infinitesimal Perturbation Analysis

IPA (Ho and Cao 1983, Glasserman 1991) 
interchanges the order of differentiation and 
expectation

If Y is the system time of a queueing network and x is 
service rate, IPA can be applied

If Y is discontinuous, e.g., Y is an indicator function, 
then IPA cannot be applied
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The Likelihood Ratio Method

The LR method differentiates its probability density 
(Reiman and Weiss 1989, Glynn 1990)

Let f(y,x) denote the density of Y(x). Then,

Note that the decision variable x is a parameter of an input distribution; this 
is not always natural and may require some mathematical trickery
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Finite-Difference SA

If Y(x) is a black box, finite-difference may be used to 
estimate the gradient (but with bias)

Run simulations at x and x + Δx then estimate 
derivative by [Y(x+ Δx) – Y(x)]/ Δx

Need d+1 simulations (forward difference) or 2d
simulations (central difference) if you have d decision 
variables
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Kiefer-Wolfowitz SA

Kiefer-Wolfowitz SA algorithm (1952)

where

KW SA converges if cn satisfies certain conditions
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Simultaneous Perturbation SA
Kiefer-Wolfowitz needs 2d simulation runs to estimate 
a gradient. 
Spall (1992) proposed the SPSA, which uses

where 

SPSA only uses 2 simulation runs (but many 
replications of each in practice) to estimate a gradient 
no matter what d is.
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Other COvS Algorithms

There are also other convergent algorithms for COvS
problems, including

Model reference adaptive search (MRAS, Hu et al. 
2007) for global optimization

Grid search (e.g., Yakowitz et al. 2000) for global 
optimization

Stochastic trust region method (e.g., STRONG, Chang 
et al. 2007) for local optimization

There are also many meta-model based algorithms 
(e.g., Barton and Meckesheimer 2006)
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Time out: Why not meta-models?
Design of experiments and regression 
analysis are well known and supported 
by software; why not do that?

Ok, but rarely effective to fit a single 
global meta-model that is a low-order 
polynomial due to lack of fit 

need a sequential procedure

A lot of design points may be needed 
to support each meta-model when 
the dimension of x is large

Interpolation-based meta-models are 
just being developed for stochastic 
simulation
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Discrete OvS

DOvS problems:

where Ω is a convex, closed and bounded subset of 
Rd and Zd is the set of d-dimensional integers

Algorithms that relax integrality constraints, e.g., 
branch and bound, cannot be applied (e.g., it is not 
clear how to simulate an inventory with 12.3 shirts)

Adaptive random search algorithms are often used

Reminder: x is the 
number of shirts of 
each type to order; g(x) 
is – expected profit
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Generic random search algorithm
1. Randomly sample some solutions from Θ to get started; 

simulate them a little bit. Pick the sample best solution as your 
current optimal.

2. Randomly sample some additional solutions, perhaps favoring 
(but not exclusively) areas of Θ where you have already seen 
some (apparently) good solutions.

3. Simulate the newly sampled solutions a bit more than solutions 
in previous iterations.

4. Pick the sample best of the new solutions as your current 
optimal.

5. If out of time, stop and report your current optimal; otherwise go 
to 2.
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Global Convergence

There are many globally convergent random-search 
algorithms, e.g., 

Stochastic ruler method (Yan and Mukai 1992)

Simulated annealing (Alrefaei and Andradottir 1999)

Nested partitions (Shi and Olafsson 2000)

As simulation effort goes to infinity…
All solutions are sampled

All solutions are simulated an infinite number of times

Different schemes are used to insure the two requirements
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Improving Finite-Time Performance

Andradottir (1999) suggested using cumulative 
sample means to estimate the value of the solutions

Finite-time performance becomes much better

Almost-sure convergence becomes easier to prove (all 
solutions are simulated infinitely often)

Asymptotic normality may be established.
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Drawbacks of Global Convergence

A good convergence result…
assures the correctness of the algorithm if it runs long 
enough

helps in determining when to stop the algorithm in a 
finite amount of time

Global convergence…
achieves the former, but gives little information on the 
latter (because it requires all solutions to be sampled)

provides little information when the algorithm stops in a 
finite amount of time
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Local Convergence

Definition of the local neighborhood of x:

N(x) = { y : y in Θ and || y – x || = 1 }

x is a local optimal solution if

g(x) ≤ g(y) for all y in N(x), or N(x) = Φ

x x
Example: 
Increase or 
decrease the 
number of 
purple shirts 
by 1
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COMPASS Algorithm

Convergent Optimization via Most Promising Area 
Stochastic Search (Hong and Nelson 2006)
1. Build the most promising area in each iteration around 

the current sample best solution based on geometry.

2. Sample new solutions from the most promising area
in each iteration.

3. Simulate all sampled solutions a little bit more.

4. Calculate the cumulative sample mean for each 
solution, and choose the solution with the best 
cumulative sample mean.
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Framework for LCRS Algorithms

COMPASS is a specific instance of a general 
framework for locally convergent random search 
(LCRS) algorithms (Hong and Nelson 2007)

The framework provides conditions on…
Sampling solutions: solutions in the neighborhood of 
the sample best must have a chance

Simulating solutions: the current best, its visited 
neighbors and all newly sampled solutions must 
continue to get more simulation

Speed ups and smart heuristics can be embedded 
within the framework without spoiling convergence
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Properties of Local Convergence

LCRS algorithms often converge fast

They can be used to design stopping criterion
When all solutions in the local neighborhood of a 
solution are visited and the solution appears to be 
better than its neighbors

Xu et al. (2010) designed a selection procedure to 
test the local optimality

Of course: the algorithms may only find local optimal 
solutions that are much worse than global optimal 
solutions
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Industrial Strength COMPASS

Global Phase: explore the feasible region with a 
globally convergent algorithm looking for promising 
subregions

Transition based on effort and quality rules

Local Phase: take the promising regions as input to 
a locally convergent algorithm

Transition when locals found with high confidence

Clean-Up Phase: Select & estimate the best
Sample more to guarantee PCS and ±δ error
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Selected as 
the best of the 

local mins



44www.iscompass.net
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Status of Commercial OvS Solvers
Many simulation products have integrated OvS
software

OptQuest is in Arena, Flexsim, SIMUL8, etc.
ProModel uses SimRunner
AutoMod uses AutoStat

Robust heuristics are commonly used
OptQuest uses scatter search, neural network, tabu search
SimRunner and AutoStat both use evolutionary, genetic 
algorithms

Easy to use on real, complex simulations
No statistical guarantees on OvS problems
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Suggestions on Using OvS Solvers

Controlling sampling variability
Simulation experiments are random
Use a preliminary experiment to decide an appropriate 
sample size for each solution

Restarting the optimization
Heuristic algorithms may find different solutions on different 
runs because they have no provable convergence
Run the algorithms multiple times from different starting 
solutions and using different random number streams

Statistical clean up
Perform a second set of experiments on top solutions
Better selects the best solution and estimates its value
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Conclusions

A lot of work has been done in the research 
community with a focus on…

Convergence properties

Statistical guarantees

Designing simple algorithms

Commercial solvers mainly use heuristics having
Robust performance

No statistical or convergence guarantees

ISC is an early attempt to bridge that gap
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