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1. INTRODUCTION

Optimization via simulation (OvS) refers to optimization problems where the
objective function value is the expected value of performance from a stochastic
computer simulation. OvS applications have been increasing in areas such as
manufacturing (e.g., Vogt [2004]), supply-chain management (e.g., Truong and
Azadivar [2003]), logistics (e.g., Wieland and Holden [2003]), telecommunica-
tions (e.g., Baras [2003]), and project management (e.g., April et al. [2004]).

The burst of OvS applications creates a demand for efficient OvS algorithms.
Many algorithms have been designed in the past ten years (see Fu [2002] for
a thorough review). Typically, algorithms reported in the simulation litera-
ture are simple with nice mathematical properties, including guaranteed con-
vergence and known rate of convergence, but they are often not sophisticated
enough to solve some practical problems. Algorithms used in commercial soft-
ware work well for many practical problems, but typically provide no provable
convergence and can be misled by noise in the simulation experiment. One rea-
son for the gap between academic research and software practice is the nature
of OvS problems. To solve OvS problems correctly and efficiently, one needs to
consider both the stochastic side and the algorithmic side of the problem, but
few researchers are experts in both fields. The algorithms in the simulation
literature are often developed by experts in statistics and stochastic processes,
while those used in commercial software are typically developed by experts in
(deterministic) optimization and computer science (see, e.g., April et al. [2004]).

To bridge the gap, the most important task, from our point of view, is to cre-
ate frameworks for different types of OvS problems; frameworks that provide
a set of conditions so that all algorithms designed according to a particular
framework are guaranteed to have certain asymptotic properties, such as, con-
vergence to an optimal solution at a known rate. The conditions should be mild
enough that they impose few constraints on the design of algorithms. This will
allow researchers in optimization and computer science to design efficient al-
gorithms that conform to one of the frameworks and thereby guarantee to also
have the desired statistical properties.

At this point, it is worthwhile to discuss the importance of convergence prop-
erties. Such properties guarantee an algorithm converges to the desired solu-
tions at an acceptable rate when the number of simulation observations goes
to infinity. In practice, however, all algorithms stop in a finite amount of time,
so why are convergence properties desirable? The following statement from
Andradóttir [2002] answers this question.

Although this [convergence] performance guarantee does not assure that the
algorithm will return a “good” estimated optimal solution (because additional
computational effort may be required), it is certainly a reassuring property to
have. From a different perspective, it is worrisome to use a simulation opti-
mization algorithm in practice that is not known to converge even if an infinite
amount of computational effort is expended!

Therefore, it is important to design useful frameworks and to develop efficient
algorithms within them. The resulting algorithms will have not only good finite-
time performance, but also “reassuring” asymptotic properties.
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In this article, we propose such a framework to solve OvS problems with
integer-ordered decision variables, also called discrete OvS or DOvS problems.
DOvS problems are very common in practice where decisions are related to
items that come in discrete units, for example, products, machines, or vehicles.
Our framework guarantees that algorithms that conform to it converge with
probability 1 to the set of local optimal solutions for DOvS problems with either
a finite or countably infinite number of feasible solutions.

Optimization with integer-ordered decision variables is also studied in the
integer programming (IP) literature (see, e.g., Wolsey [1998]). A typical IP prob-
lem has a closed-form objective function that can be evaluated even when inte-
grality constraints on the decision variables are violated. Therefore, algorithms
that depend on the relaxation of integrality constraints, such as branch-and-
bound, are often used to solve IP problems. The objective function of a DOvS
problem, however, is embedded in a simulation model and typically cannot be
evaluated at fractional values of the decision variables. For instance, it is typi-
cally not possible to evaluate a manufacturing station with 3.5 machines. There-
fore, algorithms that depend on the relaxation of integrality constraints cannot
be applied directly. Moreover, the objective functions of DOvS problems can
only be estimated with noise when the output from the simulation is stochas-
tic. Therefore, the allocation of simulation effort to each function evaluation
also needs to be considered. These properties make DOvS problems drastically
different from typical IP problems.

Many methods have been proposed to solve DOvS problems. When the num-
ber of feasible solutions is small, we can simulate all feasible ones and select
the best. Several approaches have been proposed in the literature: mutiple
comparisons (see, e.g., Bechhofer et al. [1995]), ranking and selection (R&S),
(see, e.g., Nelson et al. [2001] and Chick and Inoue [2001]), and optimal com-
putational budget allocation (OCBA) (see, e.g., Chen et al. [2000]). When the
number of feasible solutions becomes large, there are a number of approaches
to solving the problem, including sample-path approximation [Kleywegt et al.
2001] and random-search algorithms (see, e.g., the stochastic ruler method
of Yan and Mukai [1992], the simulated annealing method of Alrefaei and
Andradóttir [1999], the stochastic comparison method of Gong et al. [1999],
the nested partitions method of Shi and Ólafsson [2000], and the COMPASS
algorithm of Hong and Nelson [2006]).

Among random-search algorithms, the stochastic ruler, simulated annealing,
stochastic comparison, and nested partitions methods are all globally conver-
gent; that is, they can be shown to converge to the set of global optimal solutions
as the simulation effort goes to infinity. However, global convergence is typically
achieved by allocating an infinite number of simulation observations to all fea-
sible solutions in the limit (an exception is Andradóttir [2006]). COMPASS, on
the other hand, is locally convergent. On each iteration COMPASS samples a
collection of new solutions and allocates simulation observations to all sam-
pled solutions using a simulation-allocation rule. The convergence is achieved
by showing that all sampled solutions obtain an infinite number of simula-
tion observations in the limit. Since only a small fraction of feasible solutions
is typically sampled, COMPASS is efficient in finding local optimal solutions.
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Furthermore, most globally convergent algorithms in the literature can only
solve problems with a finite number of feasible solutions, but COMPASS can
solve those with both a finite or countably infinite number.

For globally convergent random-search algorithms, Andradóttir [1999] pro-
vides a unified scheme to estimate the optimal objective function value and
shows that the resulting algorithms satisfy a central limit theorem. This scheme
may be viewed as a framework for globally convergent random-search algo-
rithms for DOvS problems. In this article we develop a framework for solving
DOvS problems using locally convergent random-search (LCRS) algorithms.
The framework ensures that the algorithms that conform to it have desirable
asymptotic properties. Moreover, it separates the algorithmic and statistical
sides of the algorithm design and allows experts in both fields to contribute.

Though our work focuses on asymptotic guarantees, it is worthwhile to notice
that there also exist other finite-time statistical guarantees in the OvS litera-
ture. Boesel et al. [2003] implement an R&S procedure when the optimization
process stops, to ensure that the reported optimal solution is at least the best
among all sampled solutions with certain statistical confidence. Hong and Nel-
son [2007] imbed R&S procedures in the optimization process to achieve the
same goal whenever the optimization stops. The OCBA procedure of Chen et
al. [2000] can also be used for the same purposes. These statistical guaran-
tees typically do not ensure optimality of solution as do asymptotic guarantees.
They can be easily incorporated in our frameworks to improve the algorithms’
finite-time performances.

The remainder of the article is organized as follows: In Section 2 we present
a framework for LCRS algorithms. The local convergence and asymptotic nor-
mality of the framework are established in Sections 3 and 4. In Section 5, we
discuss a specific algorithm design issue for problems with a countably infinite
number of feasible solutions. As an application of the framework, we revise the
COMPASS algorithm of Hong and Nelson [2006] and provide some numerical
results to compare the two algorithms in Section 6.

2. A FRAMEWORK FOR LCRS ALGORITHMS

Consider the DOvS problem

min
x∈�

Eψ [G (x, ψ)] , (1)

where � ⊂ Zd andZd is the set of d -dimensional vectors with integer elements.
To avoid triviality, we assume that |�| > 0, where | · | denotes the cardinality
of a set. The quantity ψ represents the stochastic input to the simulation, and
its distribution may depend on x. We assume that G(x, ψ) is measurable and
integrable with respect to the distribution of ψ for all x ∈ �. Furthermore, we
let g (x) = Eψ [G (x, ψ)] and assume that g (x) cannot be evaluated easily (or
at all), but that the random variable G(x, ψ) can be observed via a simulation
experiment at x. The ith observation of G(x, ψ) is denoted by Gi(x).

To design locally convergent algorithms, we first need to define local opti-
mality. We adopt the definition of Hong and Nelson [2006]. Let

LN (x) = {
y : y ∈ � and ‖x − y‖ ≤ 1

}
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be the local neighborhood of x ∈ �, where ‖x−y‖ denotes the Euclidean distance
between x and y. Notice that |LN (x)| ≤ 2d +1. We define x as a local minimizer
if x ∈ � and g (x) ≤ g (y) for all y ∈ LN (x). Let M denote the set of local
minimizers of the function g in �; locally convergent algorithms guarantee to
converge to solutions in M.

Throughout this work, we use “sampling” to mean choosing a feasible solu-
tion x (typically randomly), and use “estimation” to mean generating simulation
observations G(x) to evaluate the value of a solution. Any random-search algo-
rithm for DOvS problems has two critical elements: a sampling scheme and an
estimation scheme. On each iteration, the sampling scheme determines what
solutions to sample and the estimation scheme determines what solutions to
simulate and how many observations to allocate to each solution. Specially, on
iteration k, the sampling scheme determines a neighborhood Ck from which the
solutions are sampled, a sampling distribution Fk which is defined on Ck and
may depend on all past information, and mk , which is the number of solutions
to sample. Typically, the solutions are sampled independently of both previous
iterations and of each other, so it is possible that the sampled solutions may
include duplicates. On iteration k, the estimation scheme determines an esti-
mation set Ek which includes all solutions that could be simulated on iteration
k, and ak(x), which is the additional number of simulation observations allo-
cated to x on iteration k for all x ∈ Ek . Notice that it is possible that ak(x) = 0
if x already has enough observations.

Let ak(x) = 0 if x /∈ Ek , and let Nk(x) = ∑k
i=0 ai(x) for all x ∈ �. Then Nk(x)

is the total number of simulation observations allocated to x through iteration
k. We also let Ḡk(x) = ∑Nk (x)

i=1 Gi(x)/Nk(x) if Nk(x) > 0 and let Ḡk(x) = 0 if
Nk(x) = 0 for all k = 1, 2, . . . . Then the following is our framework for LCRS
algorithms.

The Generic Algorithm

Step 0. Let x0 ∈ � be the starting solution provided by the user. Set the iteration
count k = 0. Let N0(x) = 0 and Ḡ0(x) = 0 for all x ∈ �, and let E0 = ∅. Moreover, let the
current sample-best solution be x̂∗

0 = x0, let the set of sampled solutions be S0 = {x0},
and let S(0) = S0.

Step 1. Let k = k + 1. Determine Ck and Fk according to the sampling scheme.
Independently of all previous iterations, sample a set of mk solutions from Ck using the
sampling distribution Fk . Let Sk be the set of unique solutions (i.e., remove the duplicate
solutions) from the mk newly sampled solutions, and let S(k) = S(k − 1) ∪ Sk .

Step 2. Determine Ek ⊂ S(k) and ak(x) for all x ∈ Ek according to the estimation
scheme. For all x ∈ Ek , take ak(x) simulation observations and update Nk(x) and Ḡk(x).
For all x /∈ Ek , let Nk(x) = Nk−1(x) and Ḡk(x) = Ḡk−1(x).

Step 3. Let x̂∗
k = argminx∈Ek

Ḡk(x). If there is more than one solution having the small-
est sample mean minx∈Ek Ḡk(x), then any such solution can be chosen as x̂∗

k . Go to Step 1.

Remark. Step 1 permits the solutions in Sk to have been sampled in previous
iterations.

Note that S(k) = ⋃k
i=0 Si. This is the set of solutions sampled through iter-

ation k. Let E(k) = ⋃k
i=0 Ei be the set of solutions estimated through iteration
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k. Let S(∞) = ⋃∞
i=0 Si and E(∞) = ⋃∞

i=0 Ei. We require the algorithm to satisfy
the following conditions.

Condition 1. The sampling scheme satisfies the following requirements:

(1) There exists a deterministic sequence of finite sets, denoted by B1, B2, . . . ,
such that Ck ⊂ Bk for all k = 1, 2, . . . , B1 ⊂ B2 ⊂ · · · , and � ⊂ ⋃∞

k=1 Bk ; and
(2) the sampling distribution Fk guarantees that Pr{x ∈ Sk} ≥ ε for all x ∈

[LN (̂x∗
k−1) \ E(k − 1)] for some ε > 0 that is independent of k.

Condition 1 is on the sampling scheme. The first requirement ensures that
Ck can be bounded by a sequence of sets Bk . The sets Bk , k = 1, 2, . . . , are
nested and deterministic. Moreover, Bk is finite for each k, but

⋃∞
k=1 Bk may be

an infinite set which contains all feasible solutions. When � is a finite set, then
we may let Bk = � for all k = 1, 2, . . . and the requirement is easily satisfied.

When � is countably infinite, this requirement prevents the sampling scheme
from sampling points that are arbitrarily far away. We must design Ck carefully
to satisfy this requirement. For instance, Hong and Nelson [2006] start with
C0 in a predetermined hyperbox that includes x0. Then on each iteration k,
if x̂∗

k is within a certain distance from a boundary of the hyperbox, then the
boundary will be extended by a value of � in the next iteration. Suppose that
the initial hyperbox is

∏d
j=1[� j , u j ]. Then we may let Bk = Zd ∩ ∏d

j=1[� j −
k�, u j + k�] and Ck ⊂ Bk for all k = 1, 2, . . . . Notice that |Bk| ≤ (c + 2k�)d for
some c > 0.

Another approach to satisfying the first requirement is to mandate that any
solution x ∈ Ck satisfies ‖x − x̂∗

k−1‖ ≤ � for some � > 0, which means that
only those solutions that are within � distance from the current sample-best
solution can be sampled. Then we may let Bk = {x ∈ Zd : ‖x − x0‖ ≤ k�} and
|Bk| ≤ (1 + 2k�)d .

The second requirement of Condition 1 ensures that all local neighbors
of x̂∗

k−1 that have not been estimated through iteration k − 1 are included in
the sampling neighborhood Ck and have a probability of being chosen that is
bounded away from zero. Therefore, if x̂∗

k equals x infinitely often (i.o.), all local
neighbors of x will be estimated in the limit with probability 1 (w.p.1). A more
precise statement of this property is given in Lemma 3.1 to follow.

Condition 2. The estimation scheme satisfies the following requirements:

(1) Ek is a subset of S(k);
(2) Ek contains x0, LN (̂x∗

k−1) ∩ E(k − 1) and Sk ;
(3) ak(x) is allocated such that minx∈Ek Nk(x) ≥ 1 for all k = 1, 2, . . . and

minx∈Ek Nk(x) → ∞ w.p.1 as k → ∞; and
(4) |E(∞)| < ∞ w.p.1.

Condition 2 is on the estimation scheme. The first two requirements are
that Ek contains only solutions that have been sampled through iteration k,
and that it contains at least x0, that is, all local neighbors of x̂∗

k−1 that have
been estimated through iteration k − 1 (including x̂∗

k−1), and all newly sampled
solutions.
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The third requirement of Condition 2 is that all solutions in Ek have at least
one simulation observation so that the solution can be estimated, and the num-
bers of simulation observations allocated to solutions in Ek go to infinity, with
probability 1 as k → ∞ so that the solutions can be estimated without noise in
the limit.

The fourth requirement of Condition 2 is that only a finite number of solu-
tions are estimated in the limit. If |�| < ∞, then this requirement is satisfied
since E(∞) ⊂ �. If � is countably infinite, then the algorithm needs to be de-
signed more carefully to satisfy the condition. In Section 5, we present a design
approach ensuring that |E(∞)| < ∞ w.p.1 when � is countably infinite.

In the generic algorithm, Condition 1 is on the sampling scheme, and Condi-
tion 2 on the estimation scheme. They are both mild conditions, and leave plenty
of room for algorithm designers to produce efficient algorithms. Although the
OvS literature focuses on general-purpose optimization algorithms which re-
quire few assumptions on the structure of the problem, our framework may
also be used to design special-purpose algorithms that solve a particular class
of DOvS problems.

The generic algorithm intentionally separates the sampling scheme and esti-
mation scheme. The sampling scheme is more related to algorithm design, while
the estimation scheme is more related to statistical design. This separation al-
lows experts from different fields to cooperate to develop efficient algorithms.
For instance, experts in deterministic optimization may use sophisticated meth-
ods, such as, neural networks or efficient metaheuristics, to guide the sampling
process, while experts in statistics may design procedures based on techniques
like R&S or OCBA to estimate solutions. Through the framework they can be
combined to generate efficient DOvS algorithms.

Both Conditions 1 and 2 involve E(k), which is the set of solutions estimated
through iteration k. Notice that the use of E(k) in Condition 1 is very limited: It
only requires that local neighbors not yet sampled have a positive probability
of being sampled. Many algorithms allow all local neighbors to be sampled, so
clearly satisfy this condition. But the role of E(k) in Condition 2 is critical, and
requires the algorithm to retain information on all solutions that have been
estimated, which may become a very large set when the solution space is large.
While this requirement would seem unreasonable for a deterministic random-
search algorithm, it is reasonable for the design of convergent DOvS algorithms
because the simulation outputs are noisy. If data is not retained, then to obtain
convergence more and more observations must be acquired from solutions each
time they are sampled to overcome the noise. Since simulation experiments are
often more time consuming than retaining and searching past information, it
makes sense to accumulate past observations (but it is important that they be
stored and searched efficiently).

The framework can be used not only to design new algorithms, but also to
simplify existing ones. We may check the conditions of an LCRS algorithm to see
which are unnecessary compared to Conditions 1 and 2, and think about ways
to remove them. One example is the COMPASS algorithm of Hong and Nelson
[2006] which estimates all solutions that have ever been sampled on each itera-
tion. According to Condition 2, however, only a portion of the sampled solutions
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need be estimated to guarantee convergence. Therefore, we may reduce the
number of solutions that are estimated on each iteration to make COMPASS
more efficient. This revision of the COMPASS algorithm will be discussed in
Section 6.

3. LOCAL CONVERGENCE OF THE GENERIC ALGORITHM

To establish local convergence of the generic algorithm, we make following
assumptions on g (x) and Gi(x):

Assumption 1. There exists a positive constant δ0 such that the level set
L = {x ∈ � : g (x) ≤ g (x0) + δ0} is finite.

Notice that L ⊂ �. When � is finite, Assumption 1 always holds. When �

is countably infinite, Assumption 1 requires that there exists a good starting
solution such that there are only finitely many better ones. Assumption 1 often
holds, since a simulation study has a benchmark system configuration which
may be the current one, and solutions that are far from the benchmark are typ-
ically inferior to the benchmark. Though the assumption often holds, verifying
it when � is countably infinite is difficult.

Assumption 2. For every x ∈ �,

lim
r→∞

1
r

r∑
i=1

Gi(x) = g (x) w.p.1.

Assumption 2 implies that the sample mean of G(x, ψ) is an appropriate es-
timator of g (x). In the case of terminating simulation, Gi(x), i = 1, 2, . . . , are
independent and identically distributed and Assumption 2 is satisfied accord-
ing to the strong law of large numbers [Durrett 1995]. In the case of steady-state
simulation, Gi(x), i = 1, 2, . . . , are observations from a long simulation run of a
process with a limiting distribution and g (x) is the steady-state mean response
of the system at x. Under certain conditions, Assumption 2 is satisfied in this
setting as well (e.g., Law and Kelton [2000]).

To establish local convergence for the generic LCRS algorithm, we need sev-
eral lemmas. In Lemma 3.1 we show that all local neighbors of x will be evalu-
ated in the limit if x̂∗

k = x i.o.

LEMMA 3.1. When the generic algorithm is applied to Problem (1), if Condi-
tions 1 and 2 hold and x̂∗

k = x i.o., then

Pr{LN (x) �⊂ E(k) i.o.} = 0.

PROOF. By Condition 1, if x ∈ [LN (̂x∗
k−1) \ E(k − 1)], then Pr{x ∈ Sk} ≥ ε for

some ε > 0 for all k = 1, 2, . . . . Let Mk = ∑k
i=0 I (̂x∗

i = x) be the number of times
that x̂∗

i = x through iteration k, where I(·) is the indicator function. Then for
any y ∈ LN (x) and any k = 1, 2, . . . ,

Pr{y /∈ E(k)} ≤ (1 − ε)Mk−1 . (2)

Since x̂∗
k = x i.o., then Mk → ∞. Therefore

lim
k→∞

Pr{y /∈ E(k)} = 0.
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Notice that

Pr{LN (x) �⊂ E(k)} ≤
∑

all y∈LN (x)

Pr{y /∈ E(k)}.

Since |LN (x)| ≤ 2d + 1 < ∞, where d is the dimension of x, then by Eq. (2),

lim
k→∞

Pr{LN (x) �⊂ E(k)} = 0. (3)

Furthermore, since E(i) = ∪i
j=1E j , we know that E(i) ⊂ E(k) for all k ≥ i. Thus

LN (x) ⊂ E(i) implies LN (x) ⊂ E(k) for all k ≥ i. Then LN (x) �⊂ E(k) i.o. implies
that LN (x) �⊂ E(i) for all i = 1, 2, . . . . Therefore

Pr{LN (x) �⊂ E(k) i.o.} ≤ Pr{LN (x) �⊂ E(i)}
for every i = 1, 2, . . . . Then by Eq. (3),

Pr{LN (x) �⊂ E(k) i.o.} ≤ lim
i→∞

Pr{LN (x) �⊂ E(i)} = 0.

This concludes the proof of the lemma.

The next lemma shows that the sample-best solution x̂∗
k will become the best

solution in Ek as k → ∞.

LEMMA 3.2. Let x̂∗
k, k = 0, 1, 2, . . . , be the sequence of solutions generated by

the generic algorithm when applied to Problem (1). Suppose that Assumptions
1 and 2 are satisfied. If Conditions 1 and 2 hold, then

lim
k→∞

[
g (̂x∗

k) − min
y∈Ek

g (y)
]

= 0 w.p.1.

PROOF. For any δ > 0,

Pr
{∣∣∣g (̂x∗

k) − min
y∈Ek

g (y)
∣∣∣ > δ i.o.

}
≤ Pr

{∣∣g (̂x∗
k) − Ḡk (̂x∗

k)
∣∣ >

δ

2
i.o.

}
+ Pr

{∣∣∣∣Ḡk (̂x∗
k) − min

y∈Ek

g (y)
∣∣∣∣ >

δ

2
i.o.

}
= Pr

{∣∣g (̂x∗
k) − Ḡk (̂x∗

k)
∣∣ >

δ

2
i.o.

}
+ Pr

{∣∣∣∣min
y∈Ek

Ḡk(y) − min
y∈Ek

g (y)
∣∣∣∣ >

δ

2
i.o.

}
≤ Pr

{∣∣g (̂x∗
k) − Ḡk (̂x∗

k)
∣∣ >

δ

2
i.o.

}
+ Pr

{
max
y∈Ek

∣∣Ḡk(y) − g (y)
∣∣ >

δ

2
i.o.

}
(4)

≤ 2 Pr
{∣∣Ḡk(y) − g (y)

∣∣ >
δ

2
for some y ∈ Ek i.o.

}
, (5)

where Eq. (4) holds according to Lemma 1 of Hong and Nelson [2006]. Notice
that E(k) ⊂ E(∞) for all k = 1, 2, . . . . Therefore

Eq. (5) ≤ 2 Pr
{
I(y ∈ Ek)

∣∣Ḡk(y) − g (y)
∣∣ >

δ

2
for some y ∈ E(∞) i.o.

}
. (6)

Since |E(∞)| < ∞ w.p.1 by Condition 2, |E(k)| is nondecreasing in k and the
increment is at least 1 if it increases, there exists an integer random variable
K such that E(K ) = E(∞) and K < ∞ w.p.1. Since K < ∞ w.p.1, we have that
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for any ε > 0, there exists a constant positive integer Kε such that Pr{K ≤
Kε} ≥ 1 − ε. Therefore

Pr{E(Kε) = E(∞)} ≥ 1 − ε.

Then,

Eq. (6)

≤ 2 Pr
{
I(y ∈ Ek)

∣∣Ḡk(y) − g (y)
∣∣

>
δ

2
for some y ∈ E(∞) i.o. and E(Kε) = E(∞)

}
+ 2ε

≤ 2 Pr
{
I(y ∈ Ek)

∣∣Ḡk(y) − g (y)
∣∣ >

δ

2
for some y ∈ E(Kε) i.o.

}
+ 2ε. (7)

Let ḠKε+1:k(y) denote the sample mean of G(y, ψ) calculated with the samples
obtained from iteration Kε + 1 to k for any k > Kε , namely,

ḠKε+1:k(y) =
{ ∑Nk (y)

i=NKε (y)+1 Gi(y)/
[
Nk(y) − NKε

(y)
]

, if Nk(y) > NKε
(y)

0, if Nk(y) = NKε
(y)

.

Then∣∣Ḡk(y) − g (y)
∣∣ ≤ NKε

(y)
Nk(y)

∣∣ḠKε
(y) − g (y)

∣∣ + Nk(y) − NKε
(y)

Nk(y)

∣∣ḠKε+1:k(y) − g (y)
∣∣ .

Since E(Kε) depends only on the observations obtained through iteration Kε ,
and Nk(y) → ∞ if y ∈ Ek i.o. by Condition 2, then, as k → ∞,

NKε
(y)

Nk(y)

∣∣ḠKε
(y) − g (y)

∣∣ → 0.

Therefore

Eq. (7)

≤ 2 Pr
{
I(y ∈ Ek)

Nk(y) − NKε
(y)

Nk(y)

∣∣ḠKε+1:k(y) − g (y)
∣∣

>
δ

4
for some y ∈ E(Kε) i.o.

}
+ 2ε.

(8)

Notice that when k > Kε , 0 ≤ [Nk(y) − NKε
(y)]/Nk(y) ≤ 1. Thus,

Eq. (8)

≤ 2 Pr
{
I(y ∈ Ek)

∣∣ḠKε+1:k(y) − g (y)
∣∣ >

δ

4
for some y ∈ E(Kε) i.o.

}
+ 2ε. (9)

By Condition 1,
⋃k

i=1 Ck ⊂ Bk . Then E(Kε) ⊂ BKε
and BKε

is a finite and deter-
ministic set. Since ḠKε+1:k(y) is independent of E(Kε), by Boole’s inequality and

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 19, Pub. date: Sept. 2007.



A Framework for Locally Convergent Random-Search Algorithms • Article 19 / 11

Assumption 2,

Eq. (9) ≤ 2|BKε
| sup

y∈BKε

Pr
{
I(y ∈ Ek)

∣∣ḠKε+1:k(y) − g (y)
∣∣ >

δ

8
i.o.

}
+ 2ε

= 2ε.

Since ε is arbitrary,

Pr
{∣∣∣g (̂x∗

k) − min
y∈Ek

g (y)
∣∣∣ > δ i.o.

}
= 0

for any δ > 0, which implies the conclusion of the lemma.

The next lemma states that g (̂x∗
k) converges w.p.1 as k → ∞. In other words,

for almost all realizations of the algorithm, g (̂x∗
k) converges to a limit as k → ∞.

LEMMA 3.3. Let x̂∗
k, k = 0, 1, 2, . . . , be a sequence of solutions generated by

the generic algorithm when applied to Problem (1). Suppose that Assumptions
1 and 2 are satisfied. If Conditions 1 and 2 hold, then g (̂x∗

k), k = 0, 1, 2, . . . ,
converges w.p.1.

PROOF. By Condition 2, x0 ∈ Ek for all k ≥ 1. Then by Lemma 3.2,

Pr
{

g (̂x∗
k) > g (x0) + δ i.o.

} = 0

for all δ > 0. Therefore by taking δ = δ0, Assumption 1 implies that

Pr{̂x∗
k /∈ L i.o.} = 0. (10)

If g (x) = g (x0) for all x ∈ L, then Eq. (10) implies that g (̂x∗
k) converges to

g (x0) w.p.1. The conclusion of the lemma holds.
If g (x) �= g (x0) for some x ∈ L, then let ξ = inf{g (x) − g (y) : x, y ∈

L and g (x) − g (y) > 0}. Since L is a finite set by Assumption 1, then ξ > 0. Let
0 < δ < ξ . By Lemma 3.2, we have

Pr
{

g (̂x∗
k) > g (̂x∗

k−1) + δ i.o.
} = 0. (11)

Notice that for any x, y ∈ L, g (x) > g (y) implies g (x) > g (y)+δ when 0 < δ < ξ .
Then, by Eqs. (10) and (11),

Pr{g (̂x∗
k) > g (̂x∗

k−1) i.o.} = 0. (12)

Also notice that for each realization of the algorithm where g (̂x∗
k) is not greater

than g (̂x∗
k+1) i.o., we have g (̂x∗

k) ≤ g (̂x∗
k+1) for all k ≥ K , for some finite K . Since

g (̂x∗
k) is bounded below (L is finite), g (̂x∗

k) converges for such a realization. By
Eq. (12) this type of realization happens w.p.1. This concludes the proof of the
lemma.

Now we are ready to state and prove the local convergence of the generic
algorithm.

THEOREM 3.4. Let x̂∗
k, k = 0, 1, 2, . . . , be a sequence of solutions generated by

the generic algorithm when applied to Problem (1). Suppose that Assumptions
1 and 2 are satisfied. If Conditions 1 and 2 hold, then Pr{̂x∗

k /∈ M i.o.} = 0.
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PROOF. In the proof of Lemma 3.3 we have shown that Pr{̂x∗
k /∈ L i.o.} = 0.

Since L is a finite set by Assumption 1, every subsequence of x̂∗
k has a further

subsequence converging to a solution in L w.p.1. Therefore, proving Theorem
3.4 is equivalent to proving that x ∈ M w.p.1 whenever x̂∗

k = x i.o.
On all sample paths for which x̂∗

k = x i.o., there exists an infinite subsequence
x̂∗

ki
, i = 1, 2, . . . , such that x̂∗

ki
= x for all i. Then Lemmas 3.2 and 3.3 ensure

that

lim
i→∞

[
g (̂x∗

ki+1) − min
y∈Eki+1

g (y)
]

= 0 w.p.1

and limi→∞ g (̂x∗
ki+1) = g (x). Therefore

lim
i→∞

{
min

y∈Eki+1

g (y)
}

= g (x) w.p.1. (13)

If x̂∗
k = x i.o., then Pr{LN (x) �⊂ E(k) i.o.} = 0 by Lemma 3.1. Then Condition

2 guarantees that Pr{LN (x) �⊂ Eki+1 i.o.} = 0. Notice that miny∈LN (x) g (y) ≥
miny∈Eki+1 g (y) when LN (x) ⊂ Eki+1. Therefore

min
y∈LN (x)

g (y) ≥ lim
i→∞

{
min

y∈Eki+1

g (y)
}

w.p.1. (14)

Combining Eqs. (13) and (14) we have g (x) ≤ miny∈LN (x) g (y) w.p.1. Therefore,
x ∈ M w.p.1.

4. ASYMPTOTIC NORMALITY OF THE GENERIC ALGORITHM

In this section we analyze the limiting distribution of the estimated optimal
objective function values generated by the generic algorithm. We show that
they satisfy a central limit theorem under certain conditions.

To analyze the limiting distribution of the generic algorithm, we make the
following additional assumptions.

Assumption 3. For any x ∈ �, the simulation observations G1(x), G2(x), . . .

are independent and identically distributed with mean g (x) and variance
σ 2(x) < ∞.

Notice that Assumption 3 implies Assumption 2. This assumption enables
us to apply the standard central limit theorem for Gi(x), i = 1, 2, . . . , for all
x ∈ �.

Assumption 4. Problem (1) has only one local minimizer denoted as x∗.

If there is more than a single local minimizer, the generic algorithm may
converge to any one of them, and it is difficult to characterize the probability of
converging to one in particular. When there is only one local minimizer, however,
the algorithm will converge to it w.p.1. Although Assumption 4 is restrictive,
the results we obtain in this section provide insights for problems with more
than one local minimizer.

We will use the following notation: The symbol ⇒ denotes “converges in
distribution,” the symbol ∼ denotes “has distribution,” and N (μ, σ 2) denotes a
normal random variable with mean μ and variance σ 2.
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THEOREM 4.1. Let x̂∗
k, k = 0, 1, 2, . . . , be a sequence of solutions generated

by the generic algorithm when applied to Problem (1). Suppose that Assump-
tions 1, 3, and 4 are satisfied. If Conditions 1 and 2 hold, and if there exists a
deterministic sequence ck, k = 1, 2, . . . , such that Nk (̂x∗

k)/ck → 1 in probability
as k → ∞, then√

Nk (̂x∗
k) · [

Ḡk (̂x∗
k) − g (x∗)

] ⇒ σ (x∗) · N (0, 1) as k → ∞.

PROOF. Let Yk = √
Nk (̂x∗

k) · [
Ḡk (̂x∗

k) − g (x∗)
]
. Then

Yk = I (̂x∗
k = x∗)

√
Nk(x∗) · [

Ḡk(x∗) − g (x∗)
]

+ (
1 − I (̂x∗

k = x∗)
) √

Nk (̂x∗
k) · [

Ḡk (̂x∗
k) − g (x∗)

]
. (15)

Since M = {x∗} by Assumption 4, Theorem 3.4 implies that Pr{̂x∗
k �= x∗ i.o.} = 0.

Therefore, I (̂x∗
k = x∗) → 1 w.p.1. By the continuous mapping theorem and the

converging together lemma [Durrett 1995], it suffices to show that√
Nk(x∗) · [

Ḡk(x∗) − g (x∗)
] ⇒ σ (x∗) · N (0, 1) as k → ∞. (16)

Since Pr{̂x∗
k �= x∗ i.o.} = 0, we have Nk (̂x∗

k)/Nk(x∗) → 1 w.p.1, and Nk(x∗)/ck →
1 in probability. Then Eq. (16) follows directly from the random index central
limit theorem [Durrett 1995].

Remarks.

(1) Theorem 4.1 and its proof are similar to Theorem 4.1 of Andradóttir [1999],
which analyzes the limiting distribution of globally convergent random-
search algorithms. However, her result only applies to problems with finite
�, while Theorem 4.1 applies to problems with finite and countably infinite
�.

(2) Theorem 4.1 requires that Nk (̂x∗
k)/ck → 1 in probability, which is often

satisfied. Many random-search algorithms use a prespecified deterministic
sequence to determine the sample size of the current sample-best solution.
For instance, Hong and Nelson [2006] suggest using an equal simulation-
allocation rule, namely, Nk(x) = Nk for all x ∈ Ek , to take advantage of
common random numbers. Then Nk (̂x∗

k)/Nk = 1 for all k ≥ 1.

Theorem 4.1 provides a means to compare different DOvS algorithms. Since
the rate of convergence of the algorithm depends only on Nk (̂x∗

k), the percentage
of the total number of observations allocated to x̂∗

k provides a natural measure of
the efficiency of the algorithms. Let Tk be the total number of simulation obser-
vations used by the algorithm through iteration k. Notice that Tk is often a ran-
dom variable, since it is determined by how many solutions are sampled through
iteration k. The ratio γk = Nk (̂x∗

k)/Tk measures the fraction of effort spent on the
sample-best solution through iteration k. Let γ∞ = limk→∞ Nk (̂x∗

k)/Tk be the
asymptotic ratio. Notice that higher γ∞ means that the algorithm is asymp-
totically more efficient in estimating the optimal objective value. If γ∞ exists,
then we may use it compare the asymptotic efficiency of algorithms. One such
instance is presented in Section 6.

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 19, Pub. date: Sept. 2007.



Article 19 / 14 • L. J. Hong and B. L. Nelson

5. DESIGNING ESTIMATION SCHEMES WHEN � IS COUNTABLY INFINITE

Condition 2 requires that |E(∞)| < ∞ w.p.1., which is satisfied if � is a finite
set, since E(∞) is a subset of �. However, when � is countably infinite, this
requirement needs some additional care. In this section, we introduce a general
approach that guarantees |E(∞)| < ∞ w.p.1.

We make the following additional assumption on Gi(x).

Assumption 5. For any positive constant δ and any x ∈ � there exist posi-
tive numbers r∗ and δ∗ such that for all r ≥ r∗ and for all 0 < δ ≤ δ∗

P

[∣∣∣∣∣1
r

r∑
i=1

Gi(x) − g (x)

∣∣∣∣∣ > δ

]
≤ λ(r, δ),

where λ(r, δ) is a strictly decreasing function of r and λ(r, δ) → 0 as r → ∞.

Assumption 5 has also been used in Hong and Nelson [2006] to design the
COMPASS algorithm for solving DOvS problems with countably infinite feasi-
ble regions. They showed that λ(r, δ) = c/rδ2 for some constant c > 0 if Gi(x)
has a uniformly bounded asymptotic variance for all x ∈ �, and λ(r, δ) = e−Iδr

for some constant Iδ > 0 if Gi(x) has a uniformly bounded large-deviation rate
function for all x ∈ �.

We substitute the following for Condition 2 on the estimation scheme.

Condition 3. The estimation scheme satisfies the following requirements:

(1) Ek is a subset of S(k),
(2) Ek contains at least x0, LN (̂x∗

k−1) ∩ E(k − 1) and Sk ,
(3) ak(x) is allocated such that minx∈Ek Nk(x) ≥ rk for all k = 1, 2, . . . , where

rk is a deterministic sequence satisfying rk ≥ 1 for all k = 1, 2, . . . and∑∞
k=1 |Bk|λ(rk , δ) < ∞ for any 0 < δ ≤ δ∗, and

(4) if
⋃∞

k=0{̂x∗
k} is a finite set, then

⋃∞
k=1 Ck is also a finite set.

The two approaches to constructing Ck and Bk , introduced in Section 2, both
satisfy the third and fourth requirements of Condition 3. In particular, in both
approaches, |Bk| ≤ (c + 2k�)d for some positive constant c. Then the third
requirement of Condition 3 can be satisfied if kd+1λ(rk , δ) → 0 as n → ∞.

Compared to Condition 2, Condition 3 does not directly require |E(∞)| < ∞
w.p.1. However, it dictates more about how the simulation observations are
allocated in each iteration. In the next lemma, we show that Condition 3 implies
Condition 2 if Assumption 5 is satisfied.

LEMMA 5.1. Suppose that the generic algorithm is applied to solve Problem
(1) and Assumptions 1 and 5 are satisfied. If Conditions 1 and 3 hold, then
Condition 2 holds as well.
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PROOF. Comparing Conditions 2 and 3, we only need to prove |E(∞)| < ∞
w.p.1. By the proof of Eq. (5), for any δ > 0,

Pr
{∣∣∣∣g (̂x∗

k) − min
y∈Ek

g (y)
∣∣∣∣ > δ

}
≤ 2 Pr

{∣∣Ḡk(y) − g (y)
∣∣ >

δ

2
for some y ∈ Ek

}
.

(17)

By Condition 1,
⋃k

i=1 Ck ⊂ Bk . Therefore
⋃k

i=0 Sk ⊂ Bk , which implies that
Ek ⊂ Bk . Now suppose that on iteration k, all solutions in Bk have at least rk

observations, not just those in the estimation set. Then for any δ < min(δ0, δ∗),
where δ0 and δ∗ are defined in Assumptions 1 and 5 respectively, by Eq. (17),

Pr
{∣∣∣g (̂x∗

k) − min
y∈Ek

g (y)
∣∣∣ > δ

}
≤ 2 Pr

{∣∣Ḡk(y) − g (y)
∣∣ >

δ

2
for some y ∈ Bk

}
≤ 2|Bk| sup

y∈Bk

Pr
{∣∣Ḡk(y) − g (y)

∣∣ >
δ

2

}
≤ 2|Bk|λ(rk , δ/2),

where the last equation follows from Assumption 5. Then, by Condition 3
∞∑

k=0

Pr
{∣∣∣g (x̂∗

k) − min
y∈Ek

g (y)
∣∣∣ > δ

}
≤

∞∑
k=0

|Bk|λ (
rk , δ/2

)
< ∞.

Thus, the first Borel-Cantelli lemma Billingsley [1995] implies that

Pr
{∣∣∣g (x̂∗

k) − min
y∈Ek

g (y)
∣∣∣ > δ i.o.

}
= 0. (18)

Since x0 ∈ Ek for all k = 1, 2, . . . and g (x0) ≥ miny∈Ek g (y), Eq. (18) implies that

Pr
{

g (x̂∗
k) > g (x0) + δ i.o.

} = 0.

Therefore Pr{x̂∗
k /∈ L i.o.} = 0. Notice that L is a finite set by Assumption 1. Then⋃∞

k=0{̂x∗
k} is a finite set w.p.1, which implies that

⋃∞
k=1 Ck is a finite set w.p.1 by

the fourth requirement of Condition 3. Since E(k) ⊂ S(k) and S(k) ⊂ ⋃k
i=1 Ci,

then E(∞) ⊂ ⋃∞
k=1 Ck . Therefore |E(∞)| < ∞ w.p.1.

6. REVISED COMPASS ALGORITHM

In this section we apply the conditions developed in the article to revise the
COMPASS algorithm of Hong and Nelson [2006]. We show that the efficiency
of the algorithm can be further improved.

On each iteration, COMPASS creates a most promising area Ck , which is
the sampling neighborhood on iteration k based on the location of the current
sample-best solution and all other previously sampled solutions, and then sam-
ples a new set of solutions from Ck uniformly. All the solutions sampled through
this iteration are estimated, that is, Ek = S(k), according to a simulation-
allocation rule. One can easily check that Conditions 1 and 2 are both satisfied
by the COMPASS algorithm. Therefore, it is locally convergent.
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As discussed in Hong and Nelson [2006], one of the advantages of COM-
PASS is the flexibility of Ck : It is large at the beginning of the search, which
enables COMPASS to explore a large area, and becomes smaller and smaller as
more and more solutions are sampled, enabling COMPASS to concentrate on
local comparisons. Notice that this advantage is only related to the sampling
scheme of COMPASS. Its estimation scheme, which is to evaluate all sampled
solutions, may be improved. According to Condition 2, only a subset of the
sampled solutions are required to be estimated on each iteration to guarantee
convergence; estimating all sampled solutions is certainly not necessary. In this
section we revise the COMPASS algorithm, showing that the revised version
satisfies Conditions 1 and 2, and thus has the desired asymptotic properties.
We then compare the asymptotic efficiencies and numerical performances of
the original COMPASS and the revised one.

6.1 The Algorithm

Let �k be the set of feasible solutions in consideration on iteration k of COM-
PASS. Then �k = � if � is finite, and �k=� ∩ Hk if � is countably infinite,
where Hk is a bounding hyperbox on iteration k (see Hong and Nelson [2006]
for the definition of Hk). The most promising area Ck is defined as

Ck = {
x ∈ �k : ‖x − x̂∗

k−1‖ ≤ ‖x − y‖, ∀ y ∈ S(k − 1)
}
.

It includes all solutions that are closer to the current sample-best solution
x̂∗

k−1 than to other previously sampled solutions through iteration k − 1. It is
equivalent to the definition

Ck =
{

x ∈ �k : (̂x∗
k−1 − y)′

(
x − x̂∗

k−1 + y
2

)
≥ 0, ∀ y ∈ S(k − 1)

}
. (19)

Notice that some of the previously sampled solutions in S(k − 1) may be redun-
dant in the sense that Ck remains the same if those solutions are removed from
S(k − 1). For example, if all solutions in LN (̂x∗

k−1) have been sampled, then the
set Ck , determined by S(k − 1), and x̂∗

k−1 is the same as the set{
x ∈ �k : (̂x∗

k−1 − y)′
(

x − x̂∗
k−1 + y

2

)
≥ 0, ∀ y ∈ LN (̂x∗

k−1)
}

.

In this case all sampled solutions that are not in LN (̂x∗
k−1) are redundant for

determining Ck . Let Pk be the set of previously sampled solutions that actually
form Ck , including x̂∗

k−1. Then

Ck =
{

x ∈ �k : (̂x∗
k−1 − y)′

(
x − x̂∗

k−1 + y
2

)
≥ 0, ∀ y ∈ Pk

}
.

Notice that LN (̂x∗
k−1) ∩ S(k − 1) is a subset of Pk . Then, by Condition 2,

instead of estimating all sampled solutions on each iteration of COMPASS, we
need only estimate newly sampled solutions, x0, and solutions in Pk , namely,
Ek = S(k) ∪ {x0} ∪ Pk .

In practice, however, Pk is difficult to find when the dimension of the problem
is larger than two. To solve this problem we design a simple algorithm to find a
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Fig. 1. Constructing P ′
k from Ck .

set P ′
k that approximates Pk and still guarantees that [LN (̂x∗

k−1) ∩ S(k − 1)] ⊂
P ′

k .
As noted in Hong and Nelson [2006], if � is a set of d -dimensional integer so-

lutions in a convex set �, then Ck is also a set of d -dimensional integer solutions
in a convex and compact set C̃k , where

C̃k =
{

x ∈ �k : (̂x∗
k−1 − y)′

(
x − x̂∗

k−1 + y
2

)
≥ 0, ∀ y ∈ S(k − 1)

}

and �k = � if � is finite and �k = � ∩ Hk if � is countably infinite. Then we
use the following algorithm to find P ′

k .

Algorithm Construction of P ′
k

Step 1. Construct C̃k using x̂∗
k−1 and S(k − 1).

Step 2. For every i = 1, 2, . . . , d draw a line passing through x̂∗
k−1 and parallel to the

xi axis. The line intersects with the boundary of C̃k at two points xi1 and xi2 since C̃k is
convex and compact. Then

P ′
k =

d⋃
i=1

{
y ∈ S(k − 1) :

(̂
x∗

k−1 − y
)′

(
xi j − x̂∗

k−1 + y
2

)
= 0 for either j = 1 or 2

}
.

Step 3. Let P ′
k = P ′

k ∪ {̂x∗
k−1}.

Notice that P ′
k is a subset of Pk and LN (̂x∗

k−1) ∩ S(k − 1) ⊂ P ′
k . Therefore, if

we let Ek = Sk ∪ {x0} ∪ P ′
k , Condition 2 is still satisfied. Figure 1 is an example

of applying the construction algorithm to a two-dimensional problem. In the
example, the most promising area Ck is formed by the current sample-best
solution, and five sampled solutions which form Pk in the left panel of Figure 1.
Redundant solutions and constraints are not plotted. The right panel shows
how to construct P ′

k . Notice that only four points from Pk are identified in this
example.
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This leads to the following revised COMPASS algorithm.

Algorithm Revised COMPASS

Step 0. Let x0 ∈ � be the starting solution provided by the user. Set the iteration
count k = 0. Let N0(x) = 0 and Ḡ0(x) = 0 for all x ∈ �, let the current sample-best
solution be x̂∗

0 = x0 and let the set of sampled solutions be S0 = {x0}.
Step 1. Let k = k + 1. Construct the most promising area Ck of x̂∗

k−1 according to Eq.
(19). Sample a set of mk solutions, Sk , uniformly from Ck .

Step 2. Construct P ′
k and let Ek = Sk ∪ {x0} ∪ P ′

k . For every x ∈ Ek , allocate ak(x)
observations based on the simulation-allocation rule of COMPASS and Ḡk(x). For all
x /∈ Ek , let Nk(x) = Nk−1(x) and Ḡk(x) = Ḡk−1(x).

Step 3. Let x̂∗
k = argminx∈Ek

Ḡk(x). If there is more than one solution having the
smallest sample mean minx∈Ek Ḡk(x), then any such solution can be chosen as x̂∗

k . Go to
Step 1.

If � is a finite set and Assumptions 1 and 2 are satisfied, then the local con-
vergence of the revised COMPASS algorithm is a direct result of Theorem 3.4.
If � is countably infinite and Assumptions 1, 2, and 5 are satisfied, then the
local convergence of the algorithm follows from Lemma 5.1 and Theorem 3.4.

As pointed out in Section 4, the asymptotic efficiencies of random-search al-
gorithms can be compared by γ∞ = limk→∞ Nk (̂x∗

k)/Tk , which is the asymptotic
percentage of the simulation effort allocated to the sample-best solution. Sup-
pose that there exists only one local minimizer. Then both algorithms converge
to the same optimal solution w.p.1. We further assume that both algorithms use
the equal simulation-allocation rule, which allocates simulation observations
such that all solutions in Ek have Nk observations to take advantage of common
random numbers.

Let E∞ = limk→∞ Ek if the limit exits. Then |E∞| < ∞ w.p.1, since |E(∞)| < ∞
w.p.1 by Condition 2, and E∞ contains all solutions that are estimated infinitely
often. Under the equal simulation-allocation rule, all solutions in E∞ have the
same number of observations and all solutions that are not in E∞ have only a
finite number of observations in the limit. Therefore, γ∞ = 1/|E∞|.

For the revised COMPASS algorithm, it is clear that E∞ = {x0}∪LN (x∗) w.p.1.
Therefore |E∞| = 1 + |LN (x∗)| w.p.1. For the COMPASS algorithm, E∞ = S(∞),
whereS(∞) is a random set. However,S(∞) contains at least x0 and all solutions
in LN (x∗), namely, |S(∞)| ≥ 1 + |LN (x∗)|. Therefore, the revised COMPASS
algorithm is asymptotically more efficient than COMPASS.

6.2 Numerical Example

In this subsection, we use an example to compare the numerical performances
of COMPASS and revised COMPASS. The numerical example shows that re-
vised COMPASS is indeed more efficient than COMPASS in finding a local
minimizer.

The following is a practical problem from one of the largest air cargo termi-
nals in the world. One of the terminal’s critical resources is shipping/receiving
docks. Export/import cargos are delivered/picked up by trucks of freight for-
warders at the docks. There are four main types of cargo that are deliv-
ered/picked up at the docks: pallet bulk cargo, general bulk cargo, perishable
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Table I. Arrival and Service Rates

Cargo Type Arrival Rate (/hour) Average Service Time (minutes)
pallet bulk λ1 = 52.8 1/μ1 = 67
general bulk λ2 = 11.7 1/μ2 = 46
perishable λ3 = 13.0 1/μ3 = 92
prepacked λ4 = 22.5 1/μ1 = 34

cargo, and prepacked cargo. Different types of cargo use various material han-
dling systems and require different operations. Therefore, the terminal needs
to decide how to allocate a limited number of docks to these four types of cargo
to minimize the average waiting time of trucks. This problem is especially im-
portant during the peak season (the months prior to Christmas and New Year),
since the terminal is operated near designed capacity. The current allocation
scheme was based on workload balancing. Basically, docks were allocated such
that the average workload of each is about the same. We are interested in veri-
fying if the current scheme is optimal and finding the optimal allocation scheme
if not.

In practice, we use historical data to construct the arrival processes and
service-time distributions of trucks, and they are time dependent. But to illus-
trate the revised COMPASS algorithm for this problem, we use the following
simple model: We assume that there are totally M docks, the arrival processes of
trucks for pallet bulk cargo, general bulk cargo, perishable cargo, and prepacked
cargo are stationary Poisson processes with rates λ1, λ2, λ3, and λ4, the service
times of all four types of cargo are exponentially distributed with rates μ1, μ2,
μ3, and μ4, and we minimize the long-run average waiting time of trucks. We
let x1, x2, x3, and x4 denote the number of docks assigned to the four types
of cargos. Notice that we can write x4 = M − x1 − x2 − x3. Therefore, it is a
three-dimensional optimization problem. To ensure stability of queues, we re-
quire that λi < xiμi for all i = 1, 2, and, 3. We can build a model to simulate
the system, given x1, x2, and x3, and find the long-run average waiting time.
Therefore, this issue can be solved as a DOvS problem.

There are two reasons why we solve the simplified problem instead of the
more realistic one: First, the complexities for solving this problem and solv-
ing that with realistic data are similar. If revised COMPASS can solve this
problem well, then we believe it can also solve the more realistic problem
well. Second, the long-run average waiting time of trucks, given x1, x2, and
x3, can be calculated explicitly in this simpler model. Therefore, we know the
actual performance of the revised COMPASS algorithm. In the following ex-
periments, we set M = 111. The arrival and service rates are set according to
Table I.

For each simulation replication we set the warm-up period as 100 hours,
then simulate the system for 50 hours after warm-up and calculate the average
waiting time of trucks. We use the equal simulation-allocation rule and let
Nk = min{5, �5(log k)1.01�}, which is the same rule used in Hong and Nelson
[2006]. We set the number of solutions sampled on each iteration as 5. We run
COMPASS and revised COMPASS 100 times for this problem and record all
the information. The results are summarized next.
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Table II. Local Minimizers

Solutions x1 x2 x3 Average Waiting Time (minutes)
1 63 11 22 10.24
2 63 10 23 10.93
3 64 10 22 11.09

Fig. 2. Performance of COMPASS and revised COMPASS.

The algorithms find 3 local minimizers to the problem. They are listed in
Table II. If we use the terminal’s approach to balancing the workload, we have
x1 = 65, x2 = 10, and x3 = 22 with an average waiting time of 12.64 minutes.
We see that all 3 local minimizers are significantly better than this solution.
The optimal solutions show that it is advantageous to let the average workload
per dock of pallet bulk cargo be slightly higher than the overall average. The
result is also consistent with our experiments with real data.

To compare the performance of COMPASS and revised COMPASS, we look at
two plots. In Figure 2 we compare how good the two algorithms are at finding
local minimizers. Any point on the two curves represents the number out of
100 trials that the current sample-best solution x̂∗

k is a local minimizer at a
given total number of simulation observations consumed. From Figure 2 we
see clearly that revised COMPASS has a higher probability of finding local
minimizers than COMPASS when given the same amount of simulation effort.
Therefore revised COMPASS has better performance.

The major difference between COMPASS and revised COMPASS is that the
former allocates simulation observations to all sampled solutions on each it-
eration, while the latter only allocates to a selected subset of sampled solu-
tions. Therefore, compared to COMPASS, revised COMPASS allocates more

ACM Transactions on Modeling and Computer Simulation, Vol. 17, No. 4, Article 19, Pub. date: Sept. 2007.



A Framework for Locally Convergent Random-Search Algorithms • Article 19 / 21

Fig. 3. Number of observations taken of the current sample-best solution.

simulation observations to the current sample-best solution and its local neigh-
bors to ensure a better comparison in the local neighborhood. To see this effect
we plot in Figure 3 the average number of simulation observations allocated to
the current sample-best solution for both algorithms when the total number of
simulation observations is given. We can see that as the total number of sim-
ulation observations increases, the difference between the two curves becomes
more significant. Therefore, the noise level in function evaluations in revised
COMPASS becomes significantly lower than in COMPASS. This in turn in-
creases the probability that the current sample-best solution is a local optimal
solution.
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CHEN, C.-H., LIN, J., YÜCESAN, E., AND CHICK, S. E. 2000. Simulation budget allocation for further

enhancing the efficiency of ordinal optimization. Discrete Event Dynam. Syst. Theory Appl. 10,
251–270.

CHICK, S. E. AND INOUE, K. 2001. New two-stage and sequential procedures for selecting the best
simulated system. Oper. Res. 49, 732–743.

DURRETT, R. 1995. Probability: Theory and Examples, 2nd ed. Duxbury Press, Belmont, CA.
FU, M. C. 2002. Optimization for simulation: Theory vs. practice. INFORMS J. Comput. 14,

192–215.
GONG, W.-B., HO, Y.-C., AND ZHAI, W. 1999. Stochastic comparison algorithm for discrete optimiza-

tion with estimation. SIAM J. Optim. 10, 384–404.
HONG, L. J. AND NELSON, B. L. 2006. Discrete optimization via simulation using COMPASS. Oper.

Res. 54, 115–129.
HONG, L. J. AND NELSON, B. L. 2007. Selecting the best system when systems are revealed sequen-

tially. IIE Trans. 39, 723–734.
KLEYWEGT, A., SHAPIRO, A., AND HOMEM-DE-MELLO, T. 2001. The sample average approximation

method for stochastic discrete optimization. SIAM J. Opt. 12, 479–502.
LAW, A. M. AND KELTON, W. D. 2000. Simulation Modeling and Analysis, 3rd ed. McGraw-Hill,

New York.
NELSON, B. L., SWANN, J., GOLDSMAN, D., AND SONG, W. 2001. Simple procedures for selecting the

best simulated system when the number of alternatives is large. Oper. Res. 49, 950–963.
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