IIE Transactions (2003) 35, 221-229
Copyright © 2003 “1IE”
0740-817X/03 $12.00 + .00

DOI: 10.1080/07408170390175459

A framework for simulation—optimization software

JUSTIN BOESEL!, BARRY L. NELSON?** and NOBUAKI ISHII?

Ynformation and Technology Center, The MITRE Corporation, 1820 Dolley Madison Blvd. McClean, VA 22102, USA
2Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL 60208-3119, USA
E-mail: nelsonb@nwu.edu

3JGC Corporation, Yokohama World Operation Center, 3-1, Minato Mirai 2-chime, Nishi-ku, Yokohama 220-60, Japan

Received May 1999 and accepted March 2000

Research on the optimization of stochastic systems via simulation often centers on the development of algorithms for which global
convergence can be guaranteed. On the other hand, commercial software applications that perform optimization via simulation
typically employ search heuristics that have been successful in deterministic settings. Such search heuristics give up on global
convergence in order to be more generally applicable and to yield rapid progress towards good solutions. Unfortunately,
commercial applications do not always formally account for the randomness in simulation responses, meaning that their progress
may be no better than a random search if the variability of the outputs is high. In addition, they do not provide statistical
guarantees about the “goodness” of the final results. In practice, simulation studies often rely heavily on engineers who, in
addition to developing the simulation model and generating the alternatives to be compared, must also perform the statistical
analyses off-line. This is a time- and labor-consuming process. In this paper, we report on the work we have done to implement
statistical error control within a heuristic search procedure, and on our automated procedure to deliver a statistical guarantee after
the search procedure is finished. We describe how we implemented these techniques in software developed for JGC Corporation

of Japan.
1. The problem

Like many organizations, JGC, a Japanese construction
management company, uses simulation to evaluate and
compare proposed designs for facilities such as pharma-
ceutical plants, chemical refineries and automobile manu-
facturing plants. Simulation is especially important to
firms like JGC who must propose designs that satisfy
client requirements within a limited time and budget. In
an effort to optimize, or at least improve, the design of
facilities, these firms use simulation to evaluate and
compare alternative designs.

At JGC, many different simulation studies are con-
ducted simultaneously. Some examples of such studies are
described below:

Design of Material Handling System (MHS) in a
pharmaceuticals plant: The MHS consists of a large
Automated Storage and Retrieval System, Automated
Guided Vehicles (AGVs), AGYV stations, lifters and con-
veyors. The design variables include the number of
AGVs, load-per-AGV and the AGV routings. The per-
formance criterion is a single-dimension function based
upon AGYV utilization, waiting time of each transporta-
tion order, and the overall investment cost.

*Corresponding author

0740-817X © 2003 “IIE”

Design of Liquefied Natural Gas (LNG) tanker transpor-
tation system: An LNG transportation system consists of
LNG tankers, LNG loading and unloading facilities and
LNG storage facilities. Design variables include LNG
tanker size, number of LNG tankers required, capacity of
loading and unloading facilities (including the number of
jetties) and LNG tank capacity in the shipping and re-
ceiving sites. Simulation is used to evaluate a cost-based
performance criterion for each alternative design.

Buffer allocation in an automobile engine assembly line:
In an auto assembly line, a larger buffer (queue) between
work stations can increase workstation utilization, but
may also drive up space requirements. Simulation eval-
uates each alternative design using a cost function that
weighs these competing factors.

Despite the availability of simulation modeling soft-
ware—which allows engineers to build models quickly
—and powerful computers—which allow even large
complicated models to run relatively quickly—optimiza-
tion via simulation is still a time- and labor-consuming
process. For complicated facilities, like the ones described
above, an analyst may encounter a large number of de-
sign alternatives. Furthermore, an analyst may spend a
great deal of time on the analysis of simulation outputs,
such as ensuring that simulations have reached a steady
state and determining whether observed differences be-
tween systems are statistically significant. As a result, it

222

usually takes firms like JGC several months to complete a
simulation study. This time is critical for engineering
firms because they must propose a good design to their
clients at an early phase of each project.

JGC wanted to reduce the amount of time required to
complete a simulation study and wanted its simulation
analysts to spend more of their time on model develop-
ment, rather than on trial-and-error search. JGC ap-
proached Northwestern University asking for research
and development of simulation-optimization software
that could provide good results on a broad range of
problems in a reasonable amount of computer time,
and could also provide statistical guarantees on those
results.

From an optimization viewpoint, projects like the ones
described above present several difficulties. First, the opt-
imization approach needs to handle simulation models
that combine integer decision variables (such as the
number of AGVs), continuous decision variables (such as
LNG tank capacity) and categorical decision variables
(such as AGYV routes or scheduling rules). This means
that simulation—optimization techniques designed for
problems with continuous decision variables, such as
gradient-search methods, cannot always be applied.

Second, the response properties of the problems are
unknown. That is, no exploitable structure, such as
convexity or even continuity, is known to exist. Not
surprisingly, this makes the task of finding the best system
much more difficult, because it prevents one from saying
or inferring anything about systems that are not explicitly
evaluated.

Third, the responses are stochastic, so one needs mul-
tiple (and perhaps very many) replications (or batch
means, in a non-terminating simulation) to get reliable
information on a single system.

Broadly speaking, two general approaches have been
developed to search the solution space in simulation—
optimization problems that include discrete variables.
The first approach guarantees convergence to a global
optimum as the number of iterations approaches infinity.
These rigorous procedures typically do not seek rapid
improvement in the early stages of the algorithm, and
provide no statistical guarantees for a finite number of
replications (or batch means). See, for instance, And-
radottir (1998) for an overview of these techniques.

The second approach, employed in most commercial
simulation—optimization packages, uses heuristic optimi-
zation procedures—such as genetic algorithms, tabu
search, or neural nets—that were designed for use in a
deterministic setting. Typically, the number of replica-
tions taken at each system is pre-set by the user. While
these approaches often find good systems quickly, they
may also devolve into a random search if the level of
output variability is high or if the user has set the number
of replications too low. On the other hand, these proce-
dures may be overly conservative and slow if the user sets

Boesel et al.

the number of replications too high or if the level
of output variability is low. Furthermore, these ap-
proaches do not provide statistical guarantees about the
“goodness” of the observed best system. In other words,
one does not know the probability that the system
with the best observed value is truly the best system vis-
ited.

Our approach works in three phases:

1. Problem Definition: In this phase, the user defines the
problem by providing the simulation model to evaluate,
as well as the output measure to be optimized and the
objective (maximization or minimization). Furthermore,
the user must define the design variables, specify the al-
lowable range for each variable, and choose the incre-
ments into which to divide the range of each variable.
Because the software discretizes continuous variables, the
user must choose increments for both discrete and con-
tinuous variables. The user must also choose the amount
of clock time available for the alternative-generation-and-
search phase (described below) and the required confi-
dence level, 1 — «, for the selection-of-the-best phase (also
described below). Finally, the wuser must select the
smallest practically significant difference worth detecting,
¢. For instance, if a facility produces $1 000000 worth
of output per day, a difference of $500 is relatively
small. Thus, one could set the indifference amount, J, to
$500.

2. Alternative-generation-and-search: In this phase, new
systems are generated by a search procedure or other
means. Our software has several “non-search” genera-
tors, including one that allows the user to input alterna-
tives manually, so that if the user has an idea as to which
systems might be good, then those systems can be eval-
uvated early in the process. Like some commercially
available packages, our software employs a heuristic
search procedure (genetic algorithm) to seek out better
systems. Unlike any commercially available package, our
algorithm uses variance information to adjust the number
of replications taken at each system during the search.
This provides adequate (but not excessive) error control
during the search, keeping it from blindly devolving into
a random search. These techniques are developed in
Boesel and Nelson (1999).

3. Selection-of-the-best: After the alternative-genera-
tion-and-search phase has finished, the systems are passed
to a procedure that provides a statistical guarantee as to
which of the generated systems is the best. Some addi-
tional simulation may be required to achieve the guar-
antee. Our software uses one of the procedures developed
by Boesel er al. (1999) for this purpose.

Because of the difficulties mentioned above (lack of
known response properties, stochastic response and lim-
ited time), our algorithm does not guarantee that it re-
turns the best system over the entire solution space, just
over those systems visited by the search procedure. In
other words, we are not able to make statements about

Framework for simulation—optimization software

unvisited systems. Of course, if the system generators
exhaust the system space and visit all feasible systems,
then the statistical guarantee applies to the entire system
space. Because exhaustion is possible in smaller problems,
we designed the software to explicitly exhaust the system
space if the user has provided adequate time.

In the remainder of the paper we describe the design of
the software that we developed (Section 2), how we
control error during the search phase (Section 3) and how
we control error during the selection phase (Section 4). In
Section 5 we present an illustrative example, and in Sec-
tion 6 we offer some brief conclusions.

2. Software

The software that Northwestern delivered to JGC has five
inter-related components that are described below. The
flow of information among these five components in each
of the three phases (problem definition, alternative-gen-
eration-and-search, and selection-of-the-best) is dia-
grammed in Fig. 1.

1. Interface: The interface allows the user to define the
simulation-optimization problem (amount of time
available, ranges of the decision variables, etc.) and lets
the user add promising systems directly into the search.
As Fig. 1 shows, some of this information goes exclu-
sively to the system generators, some goes exclusively to
the selection-of-the-best procedure, and some goes to
both.

2. Alternative-generation-and-search: The software
currently has four complementary methods for generat-
ing new systems, some combination of which will be
employed during a single simulation—optimization run.
All of the systems are evaluated by the simulator and
passed on to the database, as shown in Fig. 1.

User-defined systems: Because the engineer developing
the simulation model usually has good ideas about
what systems might be promising, the software inter-
face allows the user to input these systems at the be-
ginning of the algorithm.
Extreme point finder: Because good systems often lie at
the extreme points of the system space, our software
generates all of the extreme (vertex) point systems at
the beginning of the algorithm. These extreme points
may later be fed into the genetic algorithm, ensuring
that it provides an adequately broad search of the
system space.
Exhaustor: On smaller problems, it often makes sense
to simply evaluate all possible systems. Our software
explicitly exhausts the system space if there is adequate
time. The software decides whether there is adequate
time by observing the average time to evaluate a sys-
tem. Exhaustion is desirable because the statistical
guarantee returned under exhaustion covers the entire
system space.

223

Genetic algorithm: Our software uses a genetic algo-
rithm to search the solution space. Our genetic algo-
rithm is initialized by filling the first population with the
extreme points and the best of the user-input systems.

3. Simulator. Central to the software is a simulation
package which evaluates each system produced by the
system generators. Our software employs the AweSim!
simulation package (Symix Corporation/Pritsker Divi-
sion), which is used by JGC. The user develops a simu-
lation model as usual, independent of our software, and
performs a few modifications to make the decision para-
meters into variables. The user then defines the objective
function, which can be any function of any combination
of simulation outputs, in a C++ user insert, which also
provides the “hooks” that allow our software to control
AweSim!

4. Selection-of-the-best procedure: After the system-
generation phase has concluded, all systems are sent from
the database (described below) to the selection proce-
dure, which provides the statistical guarantee. Although
several different selection procedures are available, our
software employs a sort-screen-and-select procedure that
sorts systems by sample mean and requests additional
replications on the observed best system. Each subse-
quent system is then either screened out by an earlier
system, or it also receives additional replications. Under
certain conditions, the procedure guarantees that the
system with the best sample mean is the best or within ¢
of the true best system visited by the search with prob-
ability >1 — a.

S. Database: Because the system generators may
produce a large number of alternatives, each of which
has unique parameter settings and output data, we
maintain a database to record this information. Each
unique system generated has a record in the database.
Furthermore, because a GA tends to generate the same
system more than once, and because we want to avoid
wasting simulation effort on repeat evaluations, the
genetic algorithm first checks the database to see if a
system has been evaluated previously. If not, the GA
requests the information from the simulator. The
simulator writes all output information to the data-
base, while the selection procedure writes status infor-
mation. (such as ‘“‘screened” or “‘unscreened”) to the
database. These information flows are diagrammed in
Fig. 1. The database also enables the user to analyze
system output after the simulation—optimization run
has concluded.

Our software, dubbed Scenario Seeker, runs under
Windows 95, 98 and NT. We developed the interface in
Visual Basic, while the system generators and the statis-
tical procedures were written in C++. We used GA-
Lib—a C++ library of genetic algorithms written by
Matthew Wall at MIT—to develop our GA.

Scenario Seeker employs an Access database to main-
tain all simulation results.

224
Information Flow Among Components

Phase 1 (User input)

User Interface
Definition of design variables
Search range settings
User-defined solutions

Time available
Objective (minimize or maximize)

Required confidence level, (1-a)

Boesel et al.

Practically significant difference, §

/

Solution Generators

Phase 2 (Solution generation)

N

Selection Procedure

Solution Generators

Data on previously
visited points .
on previously

Request for data

Request for
simulation

visited points
. Simulation .
Database < output Simulator
Phase 3 (Selection-of-the-best)
Database < Simulator
Simulatio
output
Non- competitive
Results from systems are tagged
solution generation Request for

simulation

Selection Procedure

Fig. 1. The three phases of simulation—optimization.

3. Error control in the search

Our software’s primary search method is a Genetic Al-
gorithm (GA). A GA is a probabilistic search and opti-
mization scheme that applies the ideas of Darwinian
evolution (survival of the fittest, reproduction, and mu-
tation) to difficult optimization problems. Essentially, a
genetic algorithm starts with an initial population of m
distinct systems, selects the better ones for “‘breeding,”

creates children by “mating” parent systems, “mutates” a
few of the children, and starts over again by evaluating
the new generation of m systems. In a deterministic set-
ting, a genetic algorithm determines the “fitness” of each
individual system by evaluating it via an objective func-
tion. Loosely speaking, the better/fitter systems are as-
signed a higher probability of being selected for mating.

We employed a real-valued GA in which child systems
were created via two-parent recombination by taking a

Framework for simulation—optimization software

uniformly distributed, convex combination of each par-
ent’s decision-variable value, for continuous and integer
variables, or making a random choice between the parent
systems for categorical variables. Independent Gaussian
mutation was used on all decision variables. The selection
probability mechanism is described more fully below. The
population size was held constant at m = 30. See Bick
(1996) or Michalewicz (1996) for a general description
and overview of genetic algorithms.

To adapt a deterministic GA for use in a stochastic
setting, we focused our attention upon the selection
probability assignment mechanism, which is the algo-
rithm’s “guidance system.” Because this mechanism de-
pends upon objective function evaluations, this is the only
GA component that could be badly misled in a stochastic
setting where we have an uncertain and expensive eval-
uation method (simulation). The other operators, such as
mating (also called crossover) and mutation do not de-
pend directly upon fitness evaluations.

In a deterministic setting, there are several ways to
translate a system’s objective function value into a se-
lection probability. In a ranking scheme, a system’s se-
lection probability is assigned strictly by rank in the
current generation. In other words, it does not matter if
the best system is 100 or 0.01 units better than the next
best, the assigned probability will be the same. By con-
trast, in schemes such as proportional selection, if the best
dominated the rest it would receive a higher selection
probability than if it barely beat the rest (Bick, 1996).

In a genetic algorithm, the selection probabilities favor
the better systems while still giving the poorer systems
some chance of survival; this keeps the search broad and
robust. The mapping of systems to the selection proba-
bilities, however, can take several different forms and still
provide good search performance. These mappings, then,
are not set in stone.

In a deterministic setting, we can easily and accurately
evaluate the objective function, so we use these exact
evaluations to determine selection probabilities. In a
stochastic setting, however, it is not possible to conclu-
sively rank any population of systems without expending
excessive simulation effort (number of replications). Be-
cause the success of a GA does not depend upon a strict
mapping of systems to probabilities, it is not worthwhile
to expend a great deal of effort trying to get highly ac-
curate estimates if less accurate estimates will suffice. In
other words, we have an uncertain evaluation method
(simulation), so we want to take advantage of the fact
that the GA seems relatively robust to a range of selection
probability mappings.

Therefore, our approach is to expend enough simula-
tion effort to achieve stochastic equivalence for some im-
portant characteristic of our GA applied to a stochastic
problem and a GA applied to a corresponding deter-
ministic problem. Specifically, we can guarantee that, for
any GA generation, the expected number of copies of the

225

best system chosen for the mating pool will be the same in
both deterministic and stochastic settings. In many in-
stances, such a guarantee can be delivered at a reasonable
sampling cost, as we show below.

In a stochastic setting, it typically requires less effort
(fewer simulation replications) to form and rank groups
of systems than to perform a comprehensive ranking of
all systems individually. For instance, we may be rea-
sonably confident that a group of g < m systems contains
the best system, and that each member of that group is
superior to each non-member, even though we may be
uncertain about the within-group ordering of the g sys-
tems. Below we show how to ensure that the expected
number of copies of the best system placed in the mating
pool is the same under a group-ranking procedure (which
typically requires very little sampling effort) as under a
comprehensive ranking procedure (which may require
much more effort).

To simplify the analysis, we use anti-ranks, instead of
ranks, so the best system has an index m rather than one.
Using anti-ranks and g-tournament selection (Béck,
1996), the ith anti-ranked system in the current genera-
tion is assigned a selection probability of

i —(i— 1)1

1T mq ?
where 2 < ¢ < m is a parameter that controls the “‘pres-
sure” on good systems (larger ¢ implies more pressure,
which means highly ranked systems are assigned rela-
tively larger values of p;). Under this scheme, the sum of
the selection probabilities for a group of size g starting
with anti-rank j can be expressed as

TE e (- 1)
m4 '

i
i=j
In particular, the sum of the selection probabilities of the
best group is
m

3 pi:m"—(m~g)q_)

q
i=m—g-+1 m

In a deterministic g-tournament, the selection probability
of the single best system in the current generation is p,,.
Because the mating pool is formed by taking m inde-
pendent random draws with replacement from the cur-
rent population, the expected number of copies of the
best system in the mating pool is mp,,.

Suppose that we want to maintain the expected number
of copies of the true best system in the mating pool at mp,,
in a stochastic setting. Because we are uncertain as to
which of the g members of the best group is the true best,
we assign each member of the best group the same se-
lection probability, pgesio. Let ¢’ be the pressure para-
meter used to determine the selection probabilities under
grouping. As a result, each member of the best group is
assigned its group’s average selection probability

226

mt — (o~ g)’

PBest ¢ = gm‘/'

)

which is simply the right-hand side of (1) divided by g, the
number of group members.

To get the same expected number of copies of the true
best in the mating pool in a stochastic (and grouped)
environment as in a deterministic (and ungrouped) envi-
ronment, we give cach member of the best group the same
selection probability as the best system would receive in a
deterministic environment, that is ppest ¢ = pi. To do this,
we set ¢’ so that

md — (m—g)" ~m?—(m—1)7
gmq(B m4

implying a revised pressure parameter
;_In(l —g(/ = (m—1)/m)?)
B)
n((m —g)/m)

To implement (2), we use a statistical grouping proce-
dure based on Calinski and Corsten (1985) to divide the
systems into non-overlapping groups. The grouping
procedure begins with each system in its own group.
Starting from the system with the largest (smallest)
sample mean, the procedure iteratively forms larger
groups by absorbing the next adjacent system. In each
iteration, the absolute difference between the sample
means of the largest (smallest) group member and the
new candidate member is compared to an expression
based on sample variances, the number of replications
taken, and a studentized range statistic. If the absolute
difference of the means is smaller than the expression,
then the candidate is absorbed into the group. If the
absolute difference of the means is larger than the ex-
pression, then the candidate system becomes the first
point in the next group, which then begins absorbing
adjacent systems. This process continues until the pro-
cedure reaches the smallest (largest) system.

Suppose the procedure forms ¢ groups, where group 4
has g different systems and g; + - - - 4+ g. = m, the pop-
ulation size. If we let G; be the set of the indices of the
systems in group /4, then

G ={1,2,...,g/}
G2 :{(g1+1)71

(worst group),
(g1 +g2)},

Ge={(gi+g+ +g-1+1),. ..,
(g1 +g+ - +g—1+8g)} (best group).

If g., the size of the group containing the best system, is
greater than 1/p,, then it is not possible to match the
selection pressures, because p,g. > I, and the sum of all
selection probabilities must be equal to one. In this case,
one would have to go back for more data (that is, per-
form more simulation replications) to reduce g..

Boesel et al.

Once g, is small enough, ¢’ can be determined ac-
cording to Equation (2), letting g = g.. To find the indi-
vidual selection probabilities, first find each group’s total
selection probability, then divide by the group’s size to
assign each system its group’s average selection proba-
bility. If we let j, = g; + - - - + g, + I be the index of the
worst system in group £, the total selection probability for
group A is given by the expression

(ZIZ:; gﬂ) (Ze 1 g/>

mq

Jnten—1
pi =

i=/n
As a result, each individual system i in group 4 is assigned
the average of the group’s probability,

<Z?:1 g> (Ze 1g€>
Pin = ghmq) (3)
where #=1,2,...,c and Zg=1 = (. This concept of sto-
chastic equivalence based on a statistical grouping pro-
cedure was implemented in the search portion of
Scenario Seeker.

Although stochastic equivalence, in terms of the ex-
pected number of occurrences of the best system in the
mating pool, is an effective way to insure progress of the
GA search, it has a few drawbacks. For instance, systems
not in the group containing the best may receive selection
probabilities much lower than they would have received
in a deterministic environment, and the non-best systems
grouped with the true best system may receive much
higher selection probabilities. A more comprehensive
measure of “‘stochastic equivalence,” which ameliorates
some of these drawbacks, is described in Boesel and
Nelson (1999).

4. Error control in selection after search

At the conclusion of the search phase, the GA has ex-
plored some portion of the system space, uncovering
good systems and (quite likely) many poor systems as
well. We therefore turn our attention to separating those
systems into the best, near best and inferior systems.
Since we apply only enough error control in the search
phase to ensure that the search makes progress, it is quite
likely that there is too much sampling error in the per-
formance estimates to make these finer distinctions.
Several different procedures for finding the best among
a large number of simulated systems are developed in
Nelson et al. (1998) and Boesel et al. (1999). These pro-
cedures guarantee, with probability >1 — ¢, that the se-
lected system is the true best of all the systems visited by
the search or is within some user-defined distance, J, of
the true best. First, these procedures perform a subset
selection, using the sample data gathered during the
search phase to eliminate or screen out clearly inferior

Framework for simulation—optimization software

systems, then they perform a selection-of-the-best proce-
dure, which usually requires additional replications, to
determine which of the remaining systems is the true best.
The primary assumption behind these procedures is that
the simulation output data are normally distributed;
therefore, they are most appropriate when the perfor-
mance measure is estimated by the sample average of a
large number of more basic outputs.

A classical selection-of-the-best procedure, such as
Rinott’s procedure (Rinott, 1978), assumes that system
means are arrayed in the Least Favorable Configuration
(LFC); that is, the configuration of means that is most
likely to cause the procedure to fail (for further discus-
sion, see Bechhofer er al. (1995)). The least favorable
configuration, in this case, is the slippage configuration, in
which the best system has a true mean that is exactly ¢
better than the means of the inferior systems, all of which
are equal. Because Nature is rarely so malevolent, this
LFC assumption can be grossly conservative. Therefore,
combining a subset-selection (screening) procedure with a
selection-of-the-best procedure is often more efficient
than a selection-of-the-best procedure alone because
clearly superior systems will screen out inferior systems.
As a result, no additional sampling is required from the
(screened-out) inferior systems, greatly reducing the total
simulation effort needed. This is especially important in
our setting, where we encounter a large number of sys-
tems, many of which are clearly inferior.

Further refinements to the combined screen-and-select
procedure, described in Nelson et al. (1998) and Boesel
et al. (1999), can boost efficiency dramatically. For in-
stance, one such refinement sorts systems by their first-
stage sample means and takes additional replications of
the best observed system. The next-best observed system
then faces screening by the best system; if it survives,
additional replications are taken from it as well. Simi-
larly, each subsequent system faces screening by all those
which have preceded it.

To set-up the procedure, let ny; be the number of rep-
lications that system i received during the search, let N; be
the total number of replications that system 7 has received
if it has received second-stage (selection) sampling, and let

1/2
282 1S3,

I/V;T/' — I~Ol + ,I~0.1 ,
' Ni N

where

ngi, if system 7 has only received
N first-stage (search) sampling,
"7 1 N;, if system i has received

second-stage (selection) sampling,

the constant ¢ is a quantile from the #-distribution and S2,
is a sample variance (both defined more carefully below).

227

We next present a step-by-step description of the sort-
screen-and-select procedure. Assume that maximization
is the goal, and that the search has uncovered k potential
systems. In the procedure a superscript (1) indicates a
quantity computed from first-stage (search) data, while a
superscript (2) indicates a quantity computed from all
available data after first- and second-stage (selection)
sampling.

1. Select the overall confidence level 1 — o and indiffer-
ence amount d. Set i =1, e, and h= h((1
7a/2)1/(k~1)’nmm,2)’ where ngin = mini{n()i}’ his
Rinott’s constant and fg, is the f quantile of the ¢
distribution with v degrees of freedom.

2. Let Iy =0 and Jy =0 (I is the set of systems still in
contention to be the best, while .J is the set of systems
that have been eliminated from consideration).

3. Based on the data generated during the search phase,
compute the first-stage sample means and variances,

) and S and set N; = ng; for all i.

4, Sort by sample mean, X; () "Reset the indices to reﬂect
the sorted order; that is, let X M > X «) so that X, M
largest.

5. For each system, i = 1,2,...,k, do the following:

X" >x" —wy, ey and XV > X — Wy, v
€ i, then system i passes the screen, so more repli-
cations are required:

(a) Compute the total sample size N; based on Rinott’s
procedure; that is:

= | (22)]]

where [a] is the least integer greater than or equal
to a.
(b) Sample N; — ng; additional replications from system
i, and compute the second-stage sample mean X,-(2)
(c) Place this system into group /[;, so [; = I;_; Ui. Let
Ji=Ji_1.

Otherwise, system i is screened out, and should be
placed into J;, so J; = J;—; Ui. No more replications are
needed on system i. Let I; = [;_.

6. Select as best the system i € [; with the largest sample
mean X!

This provably valid sort-screen-and-select procedure
uses the second-stage replications taken on the better
systems to help in the screening process (see Boesel, et al.
(1999) for the proofs). These additional replications in-
crease N, thus reducing W,;, making it easier to eliminate
inferior systems. Sorting by first-stage sample means en-
sures that the better systems—the ones most likely to
screen out inferior systems—receive second-stage sam-
pling early, increasing their ability to eliminate inferior
systems. Eliminating inferior systems from contention

228

before they can receive second-stage sampling saves
simulation effort. A version of this procedure is imple-
mented in Scenario Seeker.

5. Example

To illustrate the simulation—optimization software, JGC
prepared a simulation model of the automobile assembly
line problem mentioned earlier. In brief, the problem is to
determine the size of four buffers in an automobile engine
assembly line, while accounting for the additional pro-
duction that larger buffer sizes could allow over a 2-week
period. Our objective is to minimize the expected value of:

K + 1000 x Total buffer capacity
Number of engines produced

where K is a constant representing costs not allowed to
vary within our model. The capacities of the first and
third buffers were allowed to range from two to 36, while
the capacities of the second and fourth buffers were al-
lowed to range from two to 60. As a result, 35% x

ScenanoSeeker

& 2utoPlant

Fig. 2. Scenario Seeker’s main user interface screen.

Boesel et al.

597 = 4264225 combinations were possible. The main
user interface screen for Scenario Seeker (with settings
for the example problem) is presented in Fig. 2.

We allowed the program to run for 12 hours. Of the
356 combinations evaluated by the software, the best
combination encountered was (2,2,2,2). This combination
yielded an expected per-unit cost of $147.27. We are
guaranteed that this is the best system visited by the
search, or within § = $10 of the best, with 90% con-
fidence.

The best combination was the first system encountered,
so the extreme point generator, rather than the search
procedure, found the best system. To give a sense of the
range of costs across systems, the worst combination
encountered was (36,60,36,60), which had an estimated
cost of $256.00. Although it might well be that an analyst
with sufficient training in queueing theory could have
proven that the smallest possible buffer allocation would
be best in this case, the reason for wanting good simu-
lation—optimization software is to allow a practitioner
without such training to obtain good results in real-world
problems.

WG CvButoPlant

Framework for simulation—optimization software

6. Conclusions

Our approach to simulation—optimization has three dis-
tinct phases: the first phase allows the user to define the
problem and input promising systems; the second phase
generates new systems; and the third phase uses a statis-
tical procedure to determine which system is best. In the
search segment of the system-generation phase, we have
incorporated adaptive error control so that our approach
expends adequate—but not excessive—simulation effort
to deal with sampling variability.

One of the strengths of our approach is its separation
of the search procedure from the selection procedure,
which enables it to incorporate improved ‘“‘component”
procedures. For instance, if a problem-specific search
procedure is known to work better than our general
search procedure, it can be incorporated into our
framework. Similarly, when better post-search “clean-
up” procedures are developed, they too, can be incor-
porated. In fact, we believe that a better search procedure
may make the post-search statistical selection procedure
more efficient by generating better systems that screen out
inferior systems with less simulation effort.

Acknowledgments

This work was sponsored by JGC Corporation of Japan,
Symix Corporation/Pritsker Division, and National Sci-
ence Foundation Grant Number DMI-9622065.

References

Andradottir, S. (1998) Simulation optimization, in Handbook of Simu-
lation, Banks. J, (ed.), Wiley, New York, ch. 9.

Bick, T. (1996) Evolutionary Algorithms in Theory and Practice: Evo-
lution Strategies, Evolutionary Programming, Genetic Algorithms,
Oxford University Press, New York.

Boesel, J. and Nelson, B.L. (1999) Designing evolutionary algorithms
for stochastic optimization. Technical report, Department of In-
dustrial Engineering and Management Sciences, Northwestern
University, Evanston, 1L 60208, USA.

Boesel, J., Nelson, B.L. and Kim, S.-H. (1999) Using ranking and
selection to ‘clean up’ after simulation optimization. Technical

229

report, Department of Industrial Engineering and Management
Sciences, Northwestern University, Evanston, IL 60208, USA.

Bechhofer, R.E., Santner, T.J. and Goldsman, D. (1995) Design and
Analysis for Statistical Selection, Screening and Multiple Com-
parisons, Wiley, New York.

Calinski, T. and Corsten, L.C.A. (1985) Clustering means in ANOVA
by simultaneous testing. Biomerrics, 41, 39-48.

Michalewicz, Z. (1996) Genetic Algorithms + Data Structures = Evolu-
tion Programs, Springer-Verlag, New York.

Nelson, B.L., Swann, J., Goldsman, D. and Song. W. (1998) Simple
procedures for selecting the best simulated system when the
number of alternatives is large. Technical report, Department of
Industrial Engineering and Management Sciences, Northwestern
University, Evanston, IL 60208, USA.

Rinott, Y. (1978) On two-stage selection procedures and related
probability-inequalities. Communications in Statistics—Theory
and Methods A7, 799-811.

Biographies

Justin Boesel is a Senior Simulation and Modeling Engineer at the
MITRE Corporation in McLean, VA. Boesel received his Ph.D. in the
Department of Industrial Engineering and Management Sciences at
Northwestern University in 1999. While a graduate student at North-
western, Boesel developed simulation—-optimization theory and soft-
ware for JGC, a Japanese construction management company.

Barry L. Nelson is a Professor in the Department of Industrial Engi-
neering and Management Sciences at Northwestern University, and is
Director of the Master of Engineering Management Program there.
His research centers on the design and analysis of computer simulation
experiments on models of stochastic systems. He has published nu-
merous papers and two books, including Discrete-Event System Sim-
ulation, (Prentice Hall, 1995). In 1997 he received the Institute of
Industrial Engineers Operations Research Division Award. Nelson has
served the profession as the Simulation Area Editor of Operations
Research and President of the INFORMS (then TIMS) College on
Simulation. He has held many positions for the annual Winter Simu-
lation Conference, including Program Chair in 1997.

Nobuaki Ishii is a Manager of the Management Science and Engi-
neering Team at JGC Corporation (Nikki k.k.), Japan. He is currently
developing an advanced planning and scheduling system for a food
company. Ishii received his Doctor of Engineering Degree in Industrial
Engineering and Management Science at Tokyo Institute of Technol-
ogy in 1995. His research interests are in scheduling heuristics, simu-
lation, life cycle engineering, and engineering economics.

Contributed by the Simulation Department

