
INFORMS Journal on Computing
Vol. 25, No. 1, Winter 2013, pp. 133–146
ISSN 1091-9856 (print) � ISSN 1526-5528 (online) http://dx.doi.org/10.1287/ijoc.1110.0481

© 2013 INFORMS

An Adaptive Hyperbox Algorithm for
High-Dimensional Discrete Optimization via

Simulation Problems

Jie Xu
Department of Systems Engineering and Operations Research, George Mason University,

Fairfax, Virginia 22030, jxu13@gmu.edu

Barry L. Nelson
Department of Industrial Engineering and Management Sciences, Northwestern University,

Evanston, Illinois 60208, nelsonb@northwestern.edu

L. Jeff Hong
Department of Industrial Engineering and Logistics Management, Hong Kong University of Science and Technology,

Clear Water Bay, Hong Kong, China, hongl@ust.hk
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1. Introduction
Both academic researchers and industrial practition-
ers have designed various algorithms for optimizing
the performance of simulated systems. We refer to
such problems as optimization via simulation (OvS). See
Fu (2002) and Fu et al. (2005) for a review of OvS.
In many applications, such as multiproduct inventory
management, the system design variables are discrete
valued, and thus the optimization problems are dis-
crete optimization via simulation (DOvS) problems.

There have been a number of approaches to DOvS
problems proposed in the research literature. When
the number of feasible solutions is not too large
(at most a few hundred), ranking-and-selection pro-
cedures attempt to choose the best solution by
simulating all of them in such a way that a prob-
ability of correct selection is maximized or guaran-
teed. The indifference-zone procedure of Nelson et al.
(2001), the Bayesian procedure of Chick and Inoue
(2001), and the optimal budget allocation procedure
of Chen et al. (2000) fall into this category. The ordinal
optimization approach of Ho et al. (1992) relaxes the

problem of finding the global optimum to instead
finding one of the top-n solutions. This is done by
first sampling k solutions from the set of feasible solu-
tions, simulating them, and then selecting the best
from those k solutions. The critical decision is choos-
ing k such that at least one of the simulated solutions
is a top-n solution.

When the solution space is large, adaptive ran-
dom search has been the dominant paradigm for
designing DOvS algorithms. Many algorithms achieve
asymptotic convergence to the global optimum; these
include the stochastic ruler algorithm of Yan and
Mukai (1992), the simulated annealing algorithm of
Alrefaei and Andradóttir (1999), the stochastic com-
parison algorithm of Gong et al. (1999), and the
nested partitions algorithm of Shi and Ólafsson (2000)
and Pichitlamken and Nelson (2003). However, to
guarantee global convergence without any struc-
tural information about the problem, these algorithms
essentially have to visit every solution; thus they do
not scale up efficiently for practical problems with
a large number of feasible solutions. More recently,
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Andradóttir and Prudius (2009) and Hu et al. (2007)
designed two OvS algorithms that combine the effi-
ciency of local search and the guarantee of converg-
ing to a global optimum by balancing the efficiency
of intensive local search and the requirement to keep
sampling solutions from the entire solution space for
global convergence.

Another class of adaptive random search DOvS
algorithms guarantee to converge to a locally optimal
solution. Andradóttir (1995) proposed a locally con-
vergent algorithm for one-dimensional DOvS prob-
lems. The COMPASS algorithm of Hong and Nelson
(2006) is another instance of a locally convergent,
random search algorithm, but it is not restricted to
one dimension. By focusing on finding a local opti-
mum, these algorithms can efficiently search the solu-
tion space and deliver good finite-time performance
because they only need to visit a small fraction of the
feasible solutions.

To bridge the divide between the academic com-
munity and industrial practitioners, Xu et al. (2010)
proposed a framework for locally convergent DOvS
algorithms and implemented it in a software pack-
age called Industrial Strength COMPASS (ISC). ISC
solves linearly constrained DOvS problems with a
finite solution space. The framework consists of three
phases: global search, local search, and final cleanup.
The global search phase explores the feasible solution
space and identifies promising regions for intensive
local search. The local search phase investigates these
regions and may return multiple locally optimal solu-
tions. The cleanup phase then selects the best among
these local optima and estimates the objective value
with controlled error. In ISC, a niching genetic algo-
rithm performs the global phase, the local phase is
COMPASS with constraint pruning, and the cleanup
phase is a two-stage ranking-and-selection procedure.
Numerical experiments show that ISC has finite-time
performance comparable to or better than one of the
best and most popular commercial optimization via
simulation software products, OptQuest, for problems
up to dimension 10. However, ISC dramatically slows
down when dimensionality increases beyond 10.

The slowdown of ISC is due to COMPASS’ behav-
ior in higher-dimensional spaces: COMPASS closes in
on a locally optimal solution by progressively adding
linear constraints that define the most promising area
for exploration. As dimension increases, the number
of constraints that COMPASS needs to define the most
promising area quickly increases. As a result, there
is more algorithm overhead for sampling new solu-
tions from the most promising area. To manage the
number of constraints, COMPASS can employ con-
straint pruning. Constraint pruning involves solving
linear programs (LPs), and it is needed much more
frequently in high-dimensional problems. Although

constraint pruning is time consuming, it is essential
to keep COMPASS from slowing down in problems
where it visits many solutions. Our primary goal in
this paper is to identify alternative locally convergent
algorithms without this shortcoming and thus make
the ISC software applicable to higher-dimensional
problems.

COMPASS and most other adaptive random search
algorithms construct a most promising area (MPA) at
each iteration and focus on sampling solutions within
the MPA. We propose an adaptive hyperbox algo-
rithm (AHA), where the MPA takes the form of a
hyperbox. AHA has two advantages. First, it scales
up well as problem dimension increases; we model
the behavior of the algorithm and show why this is
so. Using the model, we also provide insight into
the impact of dimensionality on COMPASS, which
sheds light on why COMPASS slows down as dimen-
sion increases. Second, AHA does not require a time-
consuming constraint pruning step to identify the set
of active solutions at each iteration (i.e., the solutions
that define the MPA and thus need to be simulated
at that iteration). The procedure to identify the set of
active solutions is much faster for AHA.

We first briefly describe the COMPASS algorithm
with constraint pruning in §2. In §3, we introduce
AHA, prove its local convergence for fully con-
strained DOvS problems, and model its performance.
We then report experiment results in §4, and we
conclude the paper in §5. Proofs for the conver-
gence property of AHA and derivations of other
results presented in §3 can be found in the online
supplement (available at http://dx.doi.org/10.1287/
ijoc.1110.0481).

2. Background
The problem we face is to find an integer-valued
D-dimensional decision variable x to optimize the
expected value of the performance of a system mod-
eled by a stochastic simulation. The performance of
the system is a random variable denoted by G4x5,
which can be observed by running simulation exper-
iments at x. We assume the sample mean of obser-
vations of G4x5 is a strongly consistent estimator of
g4x5= E6G4x57. In this paper, we also assume that the
optimization problem is a minimization problem on
ä = ê ∩ ZD, where ê is convex and compact, and
ZD denotes the D-dimensional integer lattice. There-
fore ä is finite. Stated formally, we want to solve the
problem

Minimize g4x5= E 6G4x57

subject to x ∈ä =ê∩ZD0 (1)

Following Hong and Nelson (2006, 2007), we define a
local minimum of problem (1) as follows.
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Definition. Let N4x5 = 8y2 y ∈ ä and �x − y� = 19
be the local neighborhood of x ∈ ä, where �x − y�

denotes the Euclidean distance between x and y. Then
x is a local minimum if x ∈ ä and either N4x5 = � or
g4x5 ≤ g4y5 for all y ∈ N4x5. Let M denote the set of
local minimizers of the function g in ä.

Suppose that we have an iterative random search
algorithm that reports x̂∗

k as the sample best solution
at the end of iteration k. Following Hong and Nelson
(2006, 2007) and Xu et al. (2010), we define local con-
vergence of the algorithm as follows.

Definition. An algorithm is a locally conver-
gent random search (LCRS) algorithm if the infinite
sequence 8x̂∗

01 x̂
∗
11 0 0 09 generated by the algorithm con-

verges with probability 1 (w.p.1) to the set M in the
sense that Pr8x̂∗

k yM infinitely often 4i0o059= 0.

An iterative random search algorithm for DOvS
problems has two essential components: a sampling
scheme and an estimation scheme. On iteration k,
sampling a solution means selecting a feasible solu-
tion x from the MPA Ck ⊆ ä, which is usually done
by randomly choosing a solution according to a sam-
pling distribution Fk defined on Ck. One example of
a sampling distribution is the uniform distribution
defined on Ck. When the algorithm samples a solu-
tion multiple times within Ck, duplicates are possible,
and we denote the set of unique sampled solutions
on iteration k as Sk. We use S4k5 to denote the set
of all sampled solutions through iteration k. The esti-
mation scheme chooses a subset of solutions Ek ⊆

S4k5 and allocates ak4x5 additional simulation obser-
vations to all x ∈ Ek. Let ak4x5 = 0 for all x y Ek.
Then, the total number of simulation observations x
has received up to iteration k is Nk4x5 =

∑k
i=0 ai4x5.

The cumulative sample mean of solution x is Ḡk4x5=
∑Nk4x5

i=1 Gi4x5/Nk4x5 if Nk4x5 > 0, where Gi4x5 is the ith
observation of G4x5.

Hong and Nelson (2007) proposed a generic LCRS
algorithm and gave sufficient conditions on the sam-
pling scheme and the estimation scheme to guarantee
local convergence. We present their generic algorithm
with some minor modifications so that the presenta-
tion is consistent with the remainder of this paper.

Algorithm 1 (The generic LCRS algorithm)
Step 0. Let x0 be the starting solution provided by

the user. Set the iteration counter k = 0. Let S0 =

S405 = 8x09 and x̂∗
0 = x0. Set E0 = 8x09. Determine

a04x05. Take a04x05 observations from x0, set N04x05 =

a04x05, and calculate Ḡ04x05.
Step 1. Let k = k+1. Determine the MPA Ck and the

sampling distribution Fk on Ck according to the sam-

pling scheme. Sample mk solutions xk11xk21 0 0 0 1xkmk

from Ck using Fk. Remove any duplicates from
xk11xk21 0 0 0 1xkmk

, and let Sk be the remaining set. Let
S4k5=S4k− 15∪Sk.

Step 2. Determine Ek ⊂ S4k5 according to the esti-
mation scheme. For all x ∈ Ek, take ak4x5 simulation
observations. Update Nk4x5 and Ḡk4x5. For all x y Ek,
let Nk4x5=Nk−14x5 and Ḡk4x5= Ḡk−14x5.

Step 3. Let x̂∗

k = arg minx∈Ek
Ḡk4x5. Go to Step 1.

The convergent optimization via most promising
area stochastic search (COMPASS) algorithm is an
instance of this generic LCRS algorithm. It lets C1 =ä,
Ck = 8x2 x ∈ä and �x− x̂∗

k−1� ≤ �x−y�1 ∀y ∈S4k−159
for k > 1, uses a uniform distribution defined on Ck

as the sampling distribution Fk, and sets Ek = S4k5,
mk =m for all k, where m is an algorithm design
parameter.

COMPASS converges to a local optimum under
mild conditions. When ä is finite, which is the scope
of this paper, COMPASS is convergent as long as each
sample mean Ḡk4x5 satisfies a strong law of large
numbers and the estimation scheme guarantees that
Nk4x5 goes to infinity as k → � for all x ∈S4k5.

The constraints defining the COMPASS MPA have
the form

4x̂∗

k−1 − xi5
′

(

x−
x̂∗

k−1 + xi
2

)

≥ 01 xi ∈S4k− 150 (2)

Not all constraints are required to define Ck. Hong
and Nelson (2007) noted that to guarantee local con-
vergence, it is sufficient to drive Nk4x5 to infinity only
for those solutions xi ∈S4k− 15 that yield active con-
straints defining the MPA Ck, which greatly reduces
the computational effort.

To determine whether solution xi ∈S4k−15 defines
an active constraint, Xu et al. (2010) showed that one
can solve the following LP:

min
x

4x̂∗

k−1 − xi5
′

(

x−
x̂∗

k−1 + xi
2

)

s.t. 4x̂∗

k−1 − xj5
′

(

x−
x̂∗

k−1 + xj
2

)

≥ 0

∀xj ∈S4k− 15 \ 8x̂∗

k−191 j 6= i0 (3)

The solution xi defines an active constraint if and only
if the objective function value is negative.

Xu et al. (2010) referred to those solutions defining
active constraints as active solutions and used the LP
(3) for constraint pruning. In practice, we do not nec-
essarily want to run the constraint pruning procedure
at the end of each iteration. Xu et al. (2010) used a
constraint pruning parameter in the ISC software to con-
trol the frequency of constraint pruning. However, it
is difficult to know a priori what is a good choice for
this parameter.

Hong and Nelson (2006) compared COMPASS to
random search, simulated annealing, and OptQuest.
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Numerical experiments showed that COMPASS per-
forms much better than random search and simulated
annealing and is competitive with OptQuest. Xu et al.
(2010) compared the ISC software to OptQuest in
more extensive numerical experiments and showed
that ISC is able to achieve competitive finite-time
performance and yet deliver convergence guaran-
tees. However, they also noted that as dimensionality
increases beyond 10, ISC exhibits a dramatic slow-
down, even with constraint pruning.

One factor causing the slowdown is the increas-
ingly large LPs the constraint pruning procedure
needs to solve. However, constraint pruning is essen-
tial to keeping the amount of simulation effort low,
because otherwise, we would need to simulate all vis-
ited solutions, which can be as many as m ·k solutions
at iteration k. In this paper, we show that the geom-
etry of the COMPASS MPA is also an impediment
to solving large-dimension problems, and we propose
an alternative.

3. Adaptive Hyperbox
In this section, we propose using a hyperbox geom-
etry for constructing the MPA for Algorithm 1. We
describe the algorithm and state its convergence prop-
erty in §3.1. Through a model characterizing the
behavior of both algorithms, we then gain some
insight into why AHA more easily scales up to higher
dimensions than COMPASS in §3.2.

3.1. The Adaptive Hyperbox Algorithm
For a visited solution x, let x4d5 be its dth coordinate,
1 ≤ d ≤ D. Let l

4d5
k = maxx∈S4k51x 6=x̂∗

k
8x4d52 x4d5 < x̂∗4d59 if

it exists; otherwise, let l
4d5
k = −�. Similarly, let u

4d5
k =

minx∈S4k51x 6=x̂∗
k
8x4d52 x4d5 > x̂

∗4d5
k 9 if it exists; otherwise, let

u
4d5
k = �. Note that u4d5

k and l
4d5
k may be ±� because x̂∗

may be on the boundary, or we may not have visited
enough solutions yet. The hyperbox containing x̂∗

k is
Hk =

{

x2 l4d5k ≤ x4d5 ≤ u
4d5
k 1 1 ≤ d ≤D

}

. Put another way,
u
4d5
k and l

4d5
k specify the positions of the two edges

of the hyperbox along the dth coordinate direction if
such edges exist. These two edges cross two solutions
that have already been visited and are closest to x̂∗

k

along coordinate direction d among all visited solu-
tions, but not in the same position as x̂∗

k . Let Lk =

4l
415
k 1 0 0 0 1 l

4D5
k 5 and Uk = 4u

415
k 1 0 0 0 1u

4D5
k 5.

AHA constructs its MPA Ck at iteration k by find-
ing Hk and letting Ck = Hk ∩ ä. Notice that it is
much easier to identify Hk than to identify the set of
active solutions for the COMPASS algorithm. Again,
we define the local neighborhood of a solution x as
N4x5. The algorithm is described below.

Algorithm 2 (Adaptive hyperbox)

Step 0. Let x0 be the starting solution provided by
the user. Set the iteration counter k = 0. Let S0 =

S405 = 8x09 and x̂∗
0 = x0. Set E0 = 8x09. Determine

a04x05. Take a04x05 observations from x0, set N04x05 =

a04x05, and calculate Ḡ04x05.

Step 1. Let k = k + 1. Identify Uk and Lk and thus
Hk (for k = 1, Uk = �1Lk = �, and Ck = ä). Let Ck =

Hk ∩ ä. Sample xk11xk21 0 0 0 1xkm independently from
Ck using a sampling distribution Fk defined on Ck.
Remove any duplicates from xk11xk21 0 0 0 1xkm, and let
Sk be the remaining set. Let 4k5=S4k− 15∪Sk.

Step 2. Let Ek = Sk ∪ 8x̂∗

k−19. For all x ∈ Ek, take
ak4x5 simulation observations and update Nk4x5 and
Ḡk4x5. For all x y Ek, let Nk4x5 = Nk−14x5 and Ḡk4x5 =

Ḡk−14x5.

Step 3. Let x̂∗

k = arg minx∈Ek
Ḡk4x5. Go to Step 1.

To better understand the differences in MPA con-
struction between COMPASS and AHA, it is help-
ful to examine a simple two-dimensional example. In
Figure 1, the feasible solution space ä is the integer
points in a rectangle. The current sample best solution
is x̂∗

k , and there are four other visited solutions: x1,
x2, x3, and x4. COMPASS places a hyperplane halfway
between x̂∗

k and each solution x1, x2, x3, and x4 (which
is a line in two dimensions). In this particular exam-
ple, there are four COMPASS constraints. In contrast,
the AHA MPA is defined by x1 and x2. Notice that
the four COMPASS constraints do not form a closed
MPA by themselves and rely on the boundaries of ä
to define Ck. Because of this, the volume of the COM-
PASS MPA may be much larger than that of the AHA
MPA for the same set of visited solutions, especially
when D is large.

Although the MPA of AHA and COMPASS differ,
we can use the same rule as in COMPASS (Hong and
Nelson 2006) to determine the number of additional
simulation observations ak4x5 for each solution x ∈Ek.
For example, we can set the total number of observa-
tions for x ∈Ek through iteration k:

Nk4x5= min851 �54log k51001
�90 (4)

x1

x2

x3
x4

x*
k

Θ
^

Figure 1 COMPASS MPA vs. AHA MPA: A Two-Dimensional Example
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To prove the local convergence of AHA, we first
need the following assumption, which states that the
sample mean of G4x5 is a strongly consistent estimator
of g4x5.

Assumption 1. For all x ∈ä,

lim
r→�

1
r

r
∑

i=1

Gi4x5= g4x5 w0p010

When we generate independent and identically
distributed replications of a terminating simulation,
Assumption 1 is simply the strong law of large num-
bers. Under certain conditions, steady-state simula-
tion also satisfies this assumption.

We modify the conditions on the sampling scheme
and the estimation scheme for the generic LCRS algo-
rithm proposed by Hong and Nelson (2007), so that
we can have a more efficient implementation of AHA.
We show that when the solution space is finite, the
new conditions also guarantee the convergence of
Algorithm 1. We then verify that AHA satisfies these
conditions. Because AHA is a particular instance of
Algorithm 1, it is an LCRS algorithm.

Condition 1. The sampling scheme satisfies the
following requirement:

The sampling distribution Fk guarantees that Pr8x ∈

Sk9≥ � for all x ∈N4x̂∗

k−15 for some � > 0 that is inde-
pendent of k.

Condition 2. The estimation scheme satisfies the
following requirements:

1. Ek is a subset of S4k5;
2. Ek contains x̂∗

k−1 and Sk; and
3. ak4x5 is allocated such that minx∈Ek

Nk4x5 ≥ 1
for all k = 1121 0 0 0 1 and minx∈Ek

Nk4x5 → � w.p. 1 as
k → �.

The first condition requires that the sampling
scheme gives a nonzero sampling probability to all
feasible neighbors of the current sample best solu-
tion. By comparison, Hong and Nelson (2007) only
required that the feasible neighbors of the current
sample best solution that have not yet been visited have
a nonzero probability to be sampled. So the new sam-
pling condition is stronger than the original sampling
condition. The second condition requires the algo-
rithm to estimate the sample best solution from the
previous iteration as well as the newly sampled solu-
tions, and as the iteration count goes to infinity, all
solutions in the estimation set receive infinitely many
simulation observations. Hong and Nelson (2007)
gave a stronger estimation condition by requiring the
algorithm to estimate all visited neighbors of the sam-
ple best solution from the previous iteration, in addi-
tion to the sample best solution of the previous iter-
ation and the newly sampled solutions. Hong and
Nelson (2007) also imposed additional conditions to

guarantee convergence for unbounded DOvS prob-
lems (�ä� = �). These conditions are not necessary in
the context of this paper, and thus we drop them.

We first state the result that gives the convergence
of Algorithm 1 when Conditions 1 and 2 hold. The
proof is provided in the online supplement.

Proposition 1. Let x̂∗

k , k = 011121 0 0 0 be a sequence of
solutions generated by Algorithm 1 when applied to prob-
lem (1). Suppose that Assumption 1 is satisfied. If Condi-
tions 1 and 2 hold, then Pr8x̂∗

k yM i.o.9= 0.

Because Proposition 1 guarantees the convergence
of any particular design of the generic algorithm, it
is sufficient to verify that AHA satisfies Conditions 1
and 2 to establish AHA’s local convergence property
for some sampling distribution Fk. Throughout the
remainder of this paper, we let Fk be the uniform dis-
tribution defined on the MPA Ck.

Proposition 2. AHA is an instance of the general
LCRS algorithm when solutions are uniformly randomly
sampled within the MPA Ck at each iteration k.

Proof. We verify that AHA satisfies Conditions 1
and 2. To verify Condition 1, we need to compute
Pr8x ∈ Sk9 for all x ∈ N4x̂∗

k−15. We first notice that
N4x̂∗

k−15 ⊆ Hk ∩ ä = Ck−1 by construction. Denote
the m solutions independently and uniformly sam-
pled within Ck−1 as x11x21 0 0 0 1xm. For all x ∈ N4x̂∗

k−15,
we have Pr8x ∈ Sk9 = 1 − Pr8x y Sk9 = 1 − Pr8x1 6=

x1 0 0 0 1xm 6= x9 = 1 − Pr8x1 6= x9m0 Then we have
Pr8x1 6= x9= 4�Ck−1� − 15/�Ck−1�. So

Pr8x ∈Sk9= 1 −

(

1 −
1

�Ck−1�

)m

≥ 1 −

(

1 −
1

�ä�

)m

> 00

Thus Condition 1 is satisfied.
Next, we check Condition 2. It is clear that Ek is

a subset of S4k5. So the first requirement is satis-
fied. By construction, Algorithm 2 also satisfies the
second part of Condition 2. The third requirement is
on the sample allocation schedule, and thus we can
use (4), which satisfies this requirement. Therefore,
Condition 2 is also satisfied. �

When implementing the algorithm, we have differ-
ent ways to identify Uk and Lk. A straightforward
implementation is to use a data structure such as the
multimap provided by the standard C++ container
library to record the positions of all visited solutions
for each coordinate, and then for each x̂∗

k , search the
entire map for u

4d5
k and l

4d5
k . The algorithmic complex-

ity is O4�S4k5� log4�S4k5�55. In practice, where sim-
ulation is much more time consuming than a map
lookup, this overhead is not significant. Compared
with the constraint pruning in the original COMPASS
algorithm, this overhead is also quite small.
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3.1.1. The Local Optimality Stopping Test for
AHA. Like COMPASS, AHA is an asymptotically
convergent algorithm; i.e., the algorithm is locally
convergent as the number of iterations goes to infin-
ity. However, in practice, the algorithm will be ter-
minated at some point. A reasonable approach is to
compare the current sample best solution and all of its
neighbors and decide whether to accept it as the local
optimum with a statistical guarantee. Xu et al. (2010)
developed one such test, which takes the form of

H02 g4x̂
∗

k5≤ min
y∈N4x̂∗

k5
g4y5 versus H12 g4x̂

∗

k5> min
y∈N4x̂∗

k5
g4y50

The Type I error of the test is set to �. If g4x̂∗

k5 ≥

miny∈N4x̂∗
k5
g4y5+�, the power of the test is at least 1−�,

where � is the tolerance level provided by the user.
There are two outcomes of the test: either x̂∗

k passes
the test and is accepted as the local optimum or some
other solution in N4x̂∗

k5 is returned as the current sam-
ple best solution and the search continues.

The construction of Ck means that AHA will always
have more than one solution inside the MPA. There
are two obvious options for the local optimality test.
In option 1, as soon as x̂∗

k is the only interior solu-
tion of the MPA Ck, the algorithm hands x̂∗

k and all
of its neighbors (some of which may not have been
visited yet) to the stopping test procedure. However,
this may lead to too many premature tests and con-
sume a lot of simulation replications unnecessarily.
In option 2, when x̂∗

k is the only interior solution of
the MPA Ck, the algorithm checks whether all of x̂∗

k’s
neighbors have been visited. If not, the algorithm pro-
ceeds to the next iteration; if so, the algorithm hands
x̂∗

k and all of its neighbors to the stopping test proce-
dure. However, waiting for all neighbors to be visited
by uniform random sampling can take a long time for
high-dimensional problems and hence will unneces-
sarily slow down AHA.

Therefore, it is of great practical importance to
achieve a proper balance between applying the stop-
ping test prematurely and waiting for all neighbors to
be visited by uniform random sampling. We modify
AHA so that all unvisited neighbors of x̂∗

k can be vis-
ited sooner than using uniform random sampling of
the MPA when x̂∗

k is the only interior solution of the
MPA. The following steps are executed after Step 3 in
Algorithm 2.

Algorithm 3 (AHA stopping test)
Step 3.1. Check if x̂∗

k is the only interior solution in
Ck. If not, continue with Step 1 in Algorithm 2.

Step 3.2. Let k = k + 1. For all x ∈ N4x̂∗

k−15, check
if x ∈ S4k − 15. Let Dk ⊆ 81121 0 0 0 1D9 be the set of
coordinate directions along which there are unvisited
neighbors. If Dk = �, invoke stopping test.

Step 3.3. Randomly pick a coordinate direction from
Dk and sample one neighbor along that direc-
tion. Repeat the process m − 2 times to generate
xk11xk21 0 0 0 1xk4m−15. Sample randomly within Ck−1 to
generate xkm. Remove any duplicates from xk11xk21 0 0 0 1
xkm, and let Sk be the remaining set. Let S4k5 =

S4k− 15∪Sk and Ck =Ck−1. Continue with Step 2 in
Algorithm 2.

In Step 3.3, we randomly sample xkm from Ck−1
to satisfy Condition 1 and thus maintain the con-
vergence property of AHA. This procedure performs
well in our numerical experiments. Alternative
procedures may further improve the finite-time per-
formance of AHA, but they are not the focus of
this article.

3.2. Analysis of AHA vs. COMPASS
Intuitively, AHA should scale well in high-
dimensional problems because at most 2D solutions
and as few as two solutions are needed to construct
a hyperbox containing x∗

k , where D is the dimension
of the search space. Figure 1 illustrates this. In
this two-dimensional example, two solutions define
the hyperbox, which is a rectangle. However, this
plane will be a hyperplane in an arbitrary high-
dimensional problem, and only two solutions can
define the entire hyperbox. In contrast, COMPASS
needs to have more and more solutions to define an
enclosing MPA containing x∗

k as dimension increases.
Numerical experiments also support this intuitive
belief. In this subsection, we develop a model to
characterize the behavior of AHA and COMPASS
and provide insights into the performance differences
between them.

It is virtually impossible to model, in a mathemati-
cally tractable and comprehensive way, anything but
the asymptotic behavior of adaptive random search
DOvS algorithms. However, it is possible to ana-
lyze one aspect of the algorithm’s behavior: how it
cuts down the MPA for a deterministic problem. We
undertake such an analysis here. Of course, more than
the volume of the MPA matters in overall algorithm
performance. However, the effectiveness of a locally
convergent DOvS algorithm depends on its ability
to focus in on a locally optimal solution. An algo-
rithm whose ability to do so degrades as dimension
increases in the best case (deterministic output) will
certainly struggle in a stochastic problem. Thus, the
following analysis helps explain why AHA is more
effective than COMPASS in our empirical study in §4
and suggests that we can expect it to be effective more
generally.

We look at a deterministic optimization problem
with continuous decision variables and model how
each algorithm reduces the volume of the MPA from
iteration to iteration. The feasible region is a hyperbox
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of volume 1 in a D-dimension solution space. The
optimization problem has a unique locally optimal
solution, x∗ = 40101 0 0 0 105T . We study two cases. In the
first case, the feasible solution, space is ä1 = 60117D.
In this case, x̂∗ is located at the corner of the feasible
solution space. The second case has ä2 = 6−1/211/27D,
and thus x∗ is located at the center of the feasible
solution space. These two cases represent the two
extremes among all possible locations of x∗. We shall
refer to them as “Corner Case” and “Center Case”
hereafter.

We assume that x∗ is given as the initial solution of
the optimization problem. In one iteration, we sample
m solutions x11x21 0 0 0 1xm uniformly from ä1 or ä2.
We then construct the MPA with these solutions using
AHA or COMPASS. Because the problem is determin-
istic, all solutions are estimated without noise, and
thus x∗ is the sample best solution. The measure of
the algorithms we consider is E4V 5, where V is the
volume of MPA in each case. The smaller E4V 5 is, the
more efficient the algorithm is in terms of reducing
the search area. Derivations of all analytical results in
this section are given in the online supplement.

3.2.1. The AHA MPA. For the Corner Case, the
expected volume of the MPA constructed according
to Algorithm 2 using m solutions x11x21 0 0 0 1xm uni-
formly randomly sampled within ä1 is

E4V 5=

(

1
m+ 1

)D

0 (5)

For the Center Case, the expected volume of the
MPA constructed according to Algorithm 2 using m
solutions x11x21 0 0 0 1xm uniformly randomly sampled
within ä2 is given by

E4V 5=

{

2
m+ 1

[

1 −

(

1
2

)m+1]}D

0 (6)

As the number of sampled solutions m increases,
(6) can be very accurately approximated by

E4V 5≈

(

2
m+ 1

)D

1 (7)

which is also an upper bound for E4V 5 in the Center
Case.

We can extend the analysis above to other locations
for x∗. But since the Corner Case is the most favor-
able position because the problem constraints (i.e., the
boundaries of ä) help reduce the size of the MPA,
and the Center Case is the least favorable because we
have to rely on sampling solutions to close in on x∗

from all directions, we may conclude that at each iter-
ation, AHA reduces the volume of the MPA at a rate
of 4C/4m+155D, where C is a constant between 1 and 2
and varies from iteration to iteration.

The formula for E4V 5 can also provide guidance on
how to allocate simulation budget to most efficiently
reduce the size of the MPA and thus minimize the
number of simulation replications needed to find the
local optimum. Suppose we have a fixed budget of
M simulation replications, and it takes one replica-
tion to evaluate each sampled solution. If we sample
m solutions at each iteration, then we will use up the
simulation budget at iteration k ≈M/m. At that time,
the expected volume is E4Vk5 ∼ 4C/4m + 155DM/m. We
would like to minimize E4Vk5 by choosing m. By sim-
ple analysis, we can find that E4Vk5 is minimized by
letting m= 208 (when C = 1) or m= 505 (when C = 2).
Therefore we may conclude that it is reasonable to
sample three to six solutions at each iteration.

3.2.2. The COMPASS MPA. Unlike AHA, the
geometry of COMPASS is much more complicated,
and thus we do not have simple closed-form expres-
sions for E4V 5. However, we are able to derive asymp-
totic lower bounds when D is large. For the Corner
Case, the expected volume of the MPA constructed by
COMPASS using m solutions x11x21 0 0 0 1xm uniformly
randomly sampled within ä1 = 60117D has an asymp-
totic lower bound given by

E4V 5≥ê4−0049
√
D5m1 (8)

where ê is the cumulative distribution function of
the standard normal distribution. For the Center Case,
we have

E4V 5≥ê40046
√
D5m0 (9)

To verify the accuracy of the approximation, we ran
simulation experiments with different m values, and
the results show that the approximation is quite accu-
rate for dimension D as small as 3. The maximum
relative error is 5.96% for Corner Case and 5.63% for
Center Case when m is between 2 and 20. The accu-
racy improves as m increases.

Unlike AHA, the MPA formed by COMPASS is no
longer a hyperbox. As a result, we are not able to
extend the analysis to multiple iterations.

Again, the volume of the MPA alone is not a com-
plete characterization of the performance of an LCRS
algorithm. Shrinking too quickly could also be ineffi-
cient. At a minimum, our analysis sheds light on how
AHA and COMPASS differ; we believe that it also
helps explain the empirical results in §4.

3.2.3. Comparison. From the previous analyses of
AHA and COMPASS, we see that the location of the
optimal solution x∗, the number of solutions sampled
at each iteration m, and dimension D influence the
volume-shrinking efficiency of the algorithms in very
different ways. In Figure 2, we plot E4V 5 for both
AHA and COMPASS using the approximations.



Xu, Nelson, and Hong: An AHA for High-Dimensional DOvS Problems
140 INFORMS Journal on Computing 25(1), pp. 133–146, © 2013 INFORMS

0 10 20 30 40 50 60
10–60

10–40

10–20

100
AHA vs. COMPASS, Corner Case

E
(V

)

D

AHA, m = 3
AHA, m = 6
AHA, m = 9
COMPASS, m = 3
COMPASS, m = 6
COMPASS, m = 9

0 10 20 30 40 50 60
10–40

10–30

10–20

10–10

100

AHA vs. COMPASS, Center Case

E
(V

)

D

AHA, m = 3
AHA, m = 6
AHA, m = 9
COMPASS, m = 3
COMPASS, m = 6
COMPASS, m = 9

Figure 2 E4V 5 as a Function of D for Different m for AHA and COMPASS

Although it is not surprising that both algorithms
perform better for the Corner Case than the Cen-
ter Case, it is interesting to see that COMPASS is
much more sensitive to the location of x∗ than AHA.
For COMPASS, when x∗ is at the center of ä, E4V 5
increases as D increases, whereas E4V 5 is decreasing
in D when x∗ is at the corner of ä. In contrast, for
AHA the effect of the location of x∗ is only through
the constant in the numerator, which is 1 for the Cor-
ner Case and 2 for the Center Case. So AHA’s abil-
ity to shrink the MPA is more robust than COMPASS
with respect to the location of x∗.

Even though COMPASS may be more efficient at
shrinking the MPA than AHA when D is small and
m is large for the Corner Case (e.g., D < 101m = 9;
as can be seen in Figure 2), as D increases the effi-
ciency of AHA quickly catches up and surpasses that
of COMPASS.

Finally, since D appears as the exponent in AHA’s
formula for E4V 5, we see that AHA’s ability to shrink
the volume of the MPA keeps up with the exponen-
tial increase in the number of feasible solutions as
D increases. We thus expect AHA to scale up well
as dimensionality increases. By comparison, in the
Corner Case the ability of COMPASS to shrink the
volume of the MPA clearly falls far behind the expo-
nential increase in the number of feasible solutions

as dimensionality increases (note that the vertical axis
has log scale). For the Center Case, as D increases,
inequality (9) shows that E4V 5 actually increases,
which helps to explain why COMPASS slows down
dramatically as the dimension of ä increases.

The analysis in this section is far from characteriz-
ing every aspect of the behavior of AHA and COM-
PASS in general DOvS problems. Nor does it establish
the superiority of AHA over COMPASS in terms
of the quality of the final solution, given the same
computation budget. However, it does illuminate the
fundamental impact of MPA geometry on the abil-
ity of the algorithm to converge to a locally optimal
solution.

4. Numerical Experiments
Hong and Nelson (2006) compared the performance
of COMPASS to pure random search and simu-
lated annealing. Xu et al. (2010) further compared
the performance of ISC to one of the most pop-
ular commercial OvS software packages, OptQuest,
and demonstrated that ISC’s finite-time performance
was comparable to that of OptQuest and, in many
cases, even outperformed OptQuest. Because those
two studies have established the competitiveness of
ISC and stand-alone COMPASS, we focus on compar-
ing the performance of AHA to that of COMPASS,
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both as the local search phase algorithm of ISC and
as a stand-alone algorithm.

4.1. Test Problems
We use the same set of test problems as in Xu et al.
(2010). In this section, we briefly describe these test
problems. Detailed descriptions can be found in Xu
et al. (2010).

The first test problem is the multimodal function
g14x11x25:

F24x5=
sin640005�x5

2244x−105/8052
1 0 ≤ x ≤ 1001

g14x11x25= −6F24x15+ F24x2571 0 ≤ x11x2 ≤ 1000 (10)

There are 25 local optima and the global optimum
is located at (10, 10) with objective value −2. The
second-best local optima are (10, 30) and (30, 10), both
with an objective function value of −10834. We add
normally distributed noise with 0 mean and standard
deviation of 0.3 to g14x11x25.

The second test problem is the singular function of
Hong (2004):

g24x11x21x31x45 = 4x1 + 10x25
2
+ 54x3 − x45

2

+ 4x2 − 2x35
4
+ 104x1 − x45

4
+ 10 (11)

When only integer solutions are considered, this
function has three local minima: 401010105 with
g2401010105= 1; 411010115 with g2411010115= 7; and
4−110101−15 with g24−110101−15 = 7. We add nor-
mally distributed noise with 0 mean and standard
deviation 30 (substantial noise near the global opti-
mum) to make it a stochastic optimization problem.
The feasible solution space is −100 ≤ xi ≤ 100, xi ∈Z+,
i = 1121314.

The third test problem is a three-stage flowline with
finite buffer storage space in front of stations 2 and 3
(denoted by x4 and x5) and an infinite number of jobs
in front of station 1 (see Buzacott and Shantikumar
1993, Pichitlamken and Nelson 2003). There is a sin-
gle server at each station, and the service time at sta-
tion i is exponentially distributed with service rate xi,
i = 11213. If the buffer of station i is full, then station
i− 1 is blocked, and a finished job cannot be released
from station i− 1. The total buffer space and the ser-
vice rates are limited. The objective is to find a buffer
allocation and service rates such that the steady-state
throughput is maximized. The constraints are x1 +

x2 + x3 ≤ 20, x4 + x5 = 20, 1 ≤ xi ≤ 20, and xi ∈ Z+

for i = 1121 0 0 0 15. This gives 21,660 feasible solu-
tions. The local optima happen to also be global
optima: 461717112185 and 471716181125 with steady-
state throughput 50776. The average throughput from
time 50 to time 1,000 constitutes a replication.

The fourth test problem is an inventory management
problem with dynamic consumer substitution. The
model that we optimize is adapted from Mahajan and
van Ryzin (2001), and it represents a difficult prob-
lem for which the optimal solutions are not known.
The model considers a one-shot inventory stocking
decision faced by a retailer for v product variants at
the beginning of a season; no inventory replenishment
happens in the model, and there is no salvage value
for the products. Pricing is assumed to be an exoge-
nous decision. Variant j’s unit price is given as pj ,
and the unit cost is cj . The number of customers is
Poisson with mean 10,000, and the customer’s choice
behavior is modeled by the widely used multinomial
logit model. Briefly, variant j’s utility to customer t
is Utj = aj − pj + �tj , j = 1121 0 0 0 1 v, where aj is vari-
ant j’s quality factor, and �tj is a random variable
having an extreme value (Type I) distribution. It is
assumed that each individual consumer chooses an
available product with the highest utility, which may
be a no-purchase option. There are six products and
one no-purchase option. The stock levels for these
six products range from 0 to 500. In Mahajan and
van Ryzin (2001), a continuous relaxation of the prob-
lem was numerically solved via a sample path algo-
rithm, which is essentially a continuous-variable OvS
method.

The fifth problem is to test the performance of the
algorithms in high-dimensional spaces:

g54x11x21 0 0 0 1 xD5= −�exp
{

−�
D
∑

d=1

4xd − �∗52

}

1 (12)

where we set � = 000011� = 101000, and �∗ = 0. The
response surface has the shape of an inverted multi-
variate normal density function with a single globally
optimal solution at x = 4�∗1 �∗1 0 0 0 1 �∗5. The feasible
region is the hyperbox defined by

xd ∈

{

−
m1/D

2
1
m1/D

2

}

for d = 1121 0 0 0 1D with m = 1020. We round the
bounds to the nearest integer if necessary. Normally
distributed noise with standard deviation 003×�g54x5�
is added. The number of the feasible solutions is kept
constant for all D, and thus we can focus on the
impact of dimensionality without worrying about the
increase in the size of search space.

The last problem is to test the performance of AHA
and COMPASS when solving high-dimensional multi-
modal functions:

g64x11x21 0 0 0 1 xD5 = −

D
∑

d=1

(

�1 exp
{

−�14xd − �∗

1 5
2
}

+�2 exp
{

−�24xd − �∗

2 5
2
})

1 (13)
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where we set �1 = 000011�1 = 3001�2 = 000051�2 =

500, �∗
1 = −38, and �∗

2 = 56. The response surface
along any coordinate d has the shape of two inverted
normal density functions with two locally optimal
solutions at xd ∈ 8�∗

11 �
∗
2 9, with the globally optimal

solution at xd = �∗
2 . The combined D-dimensional

function has 2D locally optimal solutions, of the form
xd = �∗

1 or �∗
2 , for d = 1121 0 0 0 1D, with a unique glob-

ally optimal solution at x = 4�∗
21 �

∗
21 0 0 0 1 �

∗
2 5. The feasi-

ble region is the hyperbox defined by xd ∈ 8−10011009
for d = 1121 0 0 0 1D. Normally distributed noise with
standard deviation 1 is added.

4.2. Empirical Results
We plot the performance of the algorithms being com-
pared against the number of simulation replications
as the search progresses. When we know the true
objective value of a solution, we use the true objec-
tive value of the current sample best solution as the
performance measure because that is what the user
will obtain if the search is terminated at that moment.
For the first three test problems, we run COMPASS
and AHA as stand-alone algorithms as well as the
local phase algorithm for ISC. For the inventory prob-
lem, we only run them with ISC because it is closer
to what users will do in practice for such a complex
problem. For the single-mode, high-dimensional test
problem, we only run COMPASS and AHA in stand-
alone mode, so that we can focus on the effect of
dimensionality. For the high-dimensional multimodal
test problem, we only run COMPASS and AHA in
conjunction with ISC, because neither algorithm can
find the better solutions without it. We use the local
optimality test in both stand-alone and ISC mode.

Figures 3, 4, and 5 are the performance plots
for the multimodal function, singular function, and
flowline problem, respectively (color versions of all
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performance plots can be found in the online supple-
ment). The curves are the average of 50 independent
runs for the multimodal function and the singular
function and the average of 25 runs for the flowline
problem. Note that the local optimality test may stop
COMPASS and AHA when local optimal solutions are
found. In that case, the curves are the average of the
remaining runs.

For the multimodal function, we see that stand-
alone AHA is more prone to converging to inferior
local optima than stand-alone COMPASS because of
its quick convergence behavior. However, in prac-
tice, we recommend using AHA for the local search
phase of the ISC framework. As we see from the
results, the global search phase was able to allevi-
ate the problem of AHA being trapped in inferior
local optima by identifying starting points close to
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the global optimum that lead to good final results.
In both cases, AHA converges to local optima much
faster than COMPASS. We should also point out that
because different runs can take quite different num-
bers of simulation replications to finish, the actual ter-
minating performance of AHA is usually better than
the curve suggests because the tail of the ISC-AHA
curve comes from the few runs that return inferior
local optima.

For the singular function, COMPASS performs bet-
ter than AHA both as a stand-alone algorithm and
as the local phase algorithm for ISC. Because AHA
quickly shrinks the MPA and the stochastic noise is
significant, AHA tends to converge prematurely and
then spends a large number of simulation replications
doing the stopping test, only to find that the current
sample best solution is not a locally optimal solu-
tion; it therefore resumes the search. Nevertheless, the
performance of AHA is still acceptable on this low-
dimensional problem and can be improved with fine
tuning of the local optimality stopping test step.

For the flowline problem, the performance curves
of COMPASS and AHA are very similar, with AHA
being able to stop much earlier because of its ability
to quickly reduce the search space.

For the inventory management problem, we do
not know the true objective value. To compare ISC-
COMPASS and ISC-AHA, we ran each for 10 trials,
and at the end of each trial, we ran extensive simu-
lation of the chosen best solution to accurately esti-
mate the objective value. Table 1 shows the results
(notice that this problem is a maximization problem).
For each algorithm, the Ḡ4x̂∗5 column shows the esti-
mated value of the sample best solution when the
algorithm terminated, and the column labeled “True”
is an estimate of this solution’s true expected value
based on 10,000 replications (the standard error of this
estimate is shown in the SE column). The N column
gives the number of simulation replications used by
the algorithm when it stops.

Table 1 Ten Trials of ISC-COMPASS and ISC-AHA on the Inventory
Management Problem

ISC-COMPASS ISC-AHA

Trial Ḡ4x̂∗
5 “True” SE N Ḡ4x̂∗5 “True” SE N

1 4,670 4,662 1.9 352,644 4,648 4,626 1.9 2091289
2 4,678 4,658 2.3 411,891 4,588 4,577 2.6 1391882
3 4,679 4,660 2.1 261,829 4,628 4,616 2.4 171146
4 4,659 4,637 2.8 138,313 4,542 4,533 2.1 81239
5 4,680 4,664 2.5 301,031 4,516 4,503 1.8 31588
6 4,683 4,665 2.5 351,666 4,596 4,589 1.0 1591145
7 4,688 4,670 0.8 603,401 4,634 4,627 2.4 4181221
8 4,680 4,665 2.1 411,092 4,606 4,586 2.6 2251085
9 4,668 4,654 2.0 340,945 4,488 4,471 2.6 1251447
10 4,670 4,660 2.5 439,345 4,480 4,458 2.5 2271815

Average 4,676 4,660 361,216 4,573 4,559 1531386

We again observe similar patterns. In general, ISC-
AHA is more aggressive than ISC-COMPASS in look-
ing for locally optimal solutions. Usually, the number
of simulation replications that ISC-AHA spends is
less than half of what ISC-COMPASS uses. However,
ISC-COMPASS searches the space more thoroughly
than ISC-AHA, and the performance, is on average,
2.2% better than ISC-AHA. In some sense, for low-
dimensional problems, ISC-COMPASS and ISC-AHA
present a trade-off between speed and quality for the
user to choose.

For the high-dimensional test problems, we try D =

5, 10, 15, and 20 and plot the results in Figure 6. We
take the average of 25 trials for D = 5, 10, and 15.
Because COMPASS is extremely slow when D = 20,
we only plot one sample path. Also note that the hor-
izontal axis in the D = 20 case has a log scale. We see
from the plots that both COMPASS and AHA even-
tually find the optimal solution in all cases. However,
AHA is much faster than COMPASS.

To illustrate the performance of AHA in higher
dimensional cases, we also apply AHA to D = 50 and
D = 100, which are virtually impossible for COMPASS
to handle. For these two experiments, we keep the
range of xj the same as the D = 20 case to show how
AHA is able to handle the exponential growth in the
volume of the search space. AHA are able to find the
global optimal in all trials. Table 2 compares the aver-
age CPU time (in seconds) of each COMPASS and
AHA run for high-dimensional problems.

Recall the analysis in §§3.2.1 and 3.2.2. The high-
dimensional test problems are the Center Case in
the analysis. According to (6), the volume of the
MPA shrinks exponentially with a rate of D and thus
scales up well as D increases. In contrast, Equation (9)
tells us after the first iteration, COMPASS’s ability to
shrink the volume of MPA decreases as D increases.
As a result, we see the dramatic differences in con-
vergence speed between COMPASS and AHA. The
tremendous savings in CPU time achieved by AHA
also comes from the fact that AHA’s algorithmic over-
head is much smaller than that of COMPASS. AHA’s
biggest overhead is the map lookup step to determine
the position of the hyperbox when constructing the
MPA. In contrast, COMPASS has a computationally
intensive constraint pruning step whose performance
deteriorates quickly as dimension increases.

Because AHA converges to locally optimal solu-
tions much more aggressively than COMPASS does,
a valid concern is whether this will lead to a deteri-
oration of solution quality when the response surface
has many inferior locally optimal solutions. Our first
test problem showed that AHA by itself tends to be
trapped into inferior locally optimal solutions, but the
global phase of ISC alleviates the problem. The last
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test problem examines this concern in higher dimen-
sions. We use the global phase of the ISC framework
for this test problem, trying D = 5, 10, 15, and 20.
The results are shown in Figure 7. We take the aver-
age of 20 trials for AHA and COMPASS when D = 5,
10, and 15; however, because COMPASS is extremely
slow when D = 20, we only plot one sample path.
Notice that we use a log scale for the horizontal axis
when D = 15 and D = 20. The global optimal solution
has an objective value of −500D.

We see from the plots that except for D = 5, where
COMPASS is able to find the global optimal solu-
tion eventually, neither COMPASS nor AHA finds the
global optimum within the given simulation budget
of one million replications. COMPASS tends to have
a better average solution quality than AHA in a typ-
ical run. But in practice, within the given compu-
tation budget, instead of running COMPASS/AHA

Table 2 The Average CPU Time (Seconds) for High-Dimensional Test
Problems

Variable D = 5 D = 10 D = 15 D = 20 D = 50 D = 100

COMPASS 1205600 432 2,716.6 289,122 NA NA
AHA 005856 3.42 8.541 17.3556 463.12 6,456.94

only once, the decision maker can run the algorithm
multiple times and adopt the best solution found from
multiple runs of the algorithm as the final solution.

Table 3 compares the best solutions (g4x̂∗5) found
by ISC-COMPASS and ISC-AHA (stand-alone COM-
PASS/AHA for high-dimensional problems) among
all trials for test problems with known optimal solu-
tions. We also report the average numbers of sim-
ulation replications used in each run (N ), the mean
objective value of solutions (ḡ4x̂∗5) returned by COM-
PASS/AHA on termination for all runs, and the per-
centages of returned solutions being true local opti-
mum and global optimum. From the table, we clearly
see that except for high-dimensional multimodal D =

5 problem, the best solutions that ISC-AHA can find
are at least as good as ISC-COMPASS. When D =

20, AHA is able to achieve about 5% improvement
in solution quality. Furthermore, ISC-AHA is able to
achieve this with far fewer simulation replications,
which is less than 5% of what ISC-COMPASS used for
D = 20 cases. Both COMPASS and AHA are able to
find local optimal solutions with very high probabil-
ity, and the global phase of the ISC framework largely



Xu, Nelson, and Hong: An AHA for High-Dimensional DOvS Problems
INFORMS Journal on Computing 25(1), pp. 133–146, © 2013 INFORMS 145

0 1 2 3 4 5
–3,000

–2,500

–2,000

–1,500

–1,000

–500

0

Number of replications × 104

g
(x

)

5-dimension case

 COMPASS
 AHA

0 1 2 3
–4,500

–4,000

–3,500

–3,000

–2,500

–2,000

–1,500

–1,000

Number of replications × 105

g
(x

)

10-dimension case

COMPASS
AHA

100 105 1010
–7,000

–6,000

–5,000

–4,000

–3,000

–2,000

–1,000

Number of replications

g
(x

)

15-dimension case

 COMPASS
 AHA

100 102 104 106
–8,000

–7,000

–6,000

–5,000

–4,000

–3,000

–2,000

Number of replications

g
(x

)

20-dimension case

 COMPASS
 AHA

Figure 7 Performance Plot for the High-Dimensional Multimodal Test Problem: D = 51101151 and 20

alleviates AHA’s tendency to converge too early to
poor local optimal solutions, as suggested by the rea-
sonable probabilities to find global optimal solutions.
We should point out the low percentages of finding
true global/local optima in the Flowline case are due

Table 3 The Performance Metrics of AHA and COMPASS

ISC-COMPASS ISC-AHA

Variable g4x̂∗5 ḡ4x̂∗5 N Local (%) Global (%) g4x̂∗5 ḡ4x̂∗5 N Local (%) Global (%)

Multimodal −200 −10990 1.35E4 96 90 −200 −10990 1.33E4 100 82
Singular 1.0 3.160 1.86E4 100 64 1.0 3.160 1.93E4 100 64
Flowline −50776 −50766 1,512 40 40 −50776 −50772 1,336 44 44
HD5 −104 -104 7,295 100 100 −104 −104 5,350 100 100
HD10 −104 −104 6.40E4 100 100 −104 −104 1.59E4 100 100
HD15 −104 −104 1.26E5 100 100 −104 −104 2.24E4 100 100
HD20 −91890 −91890 106 0 0 −104 −104 2.89E4 100 100
MD5 −21500 −21210 1.26E4 100 10 −21300 −21090 7,611 100 0
MD10 −41400 −31970 9.14E4 100 0 −41600 −31850 3.27E4 100 0
MD15 −61700 −61140 8.62E5 100 0 −61700 −51705 7.80E4 95 0
MD20 −81000 −81000 2.75E6 100 0 −81400 −71760 1.48E5 100 0

Notes. HDn, high-dimensional test problem with dimension = n; MDn, multimodal high-dimensional test problem with dimension = n. g4x̂∗5, the objective
value of the best solution found; ḡ4x̂∗5, the mean objective value of solutions found; N, the average number of simulation replications used; Local/Global, the
percentage of returned solutions being true local/global optimum.

to the relatively larger tolerance level � used to speed
up the search process, as the response surface is quite
flat around the optimal solutions. Nevertheless, the
average solution quality is almost identical to that of
the true global optimum.
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In summary, from the results we obtained for six
test problems with dimensions from 2 to 100 and
varying difficulty in terms of noise and number
of locally optimal solutions, we have the following
observations on AHA’s performance compared with
that of COMPASS:

• AHA achieves performance comparable to that
of COMPASS for low-dimensional problems (D ≤ 10)
and is much more efficient in solving high-
dimensional problems (D> 10).

• AHA converges to locally optimal solutions very
quickly and therefore risks being trapped in inferior
ones in the presence of multiple locally optimal solu-
tions. However, the global phase of the ISC software
largely alleviates this problem.

Therefore, AHA as a locally convergent algorithm
is a viable choice as the local search phase of the
ISC software when solving high-dimensional DOvS
problems.

5. Conclusion
In this paper, we propose an LCRS algorithm for high-
dimensional DOvS problems. AHA has performance
similar to or slightly inferior to that of COMPASS
when dimension is low, say, less than 10. For high-
dimensional problems, AHA outperforms COMPASS
by a significant margin. Through analyzing the behav-
ior of AHA and COMPASS in simplified settings, we
illustrate why AHA is much less affected by dimen-
sionality than COMPASS is.

Numerical experiments have also identified some
places where AHA can be further improved. Because
AHA is very aggressive in closing toward locally opti-
mal solutions, it may invoke more stopping tests than
COMPASS does. It is of vital importance to maintain
a proper balance between premature local optimality
testing and the time it takes AHA to sample all neigh-
bors of the current sample best solution. The current
scheme has reasonable performance but is certainly
improvable.

AHA makes use of the LCRS framework proposed
by Hong and Nelson (2007). It adopts a hyperbox-
shaped MPA geometry but still uses the same uni-
form random sampling as COMPASS does to sample
solutions inside the MPA. Future research will look
into other sampling distributions to improve the algo-
rithm’s performance.

Electronic Companion
An electronic companion to this paper is available as
part of the online version at http://dx.doi.org/10.1287/
ijoc.1110.0481.
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