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Preliminary definitions

X denotes a Banach space, and a function y : [a, b]→ X is called vector-valued.

We specifically consider X := L2(Ω), where Ω ⊂ RN is defined on the next slide.

Definition

C
(
[a, b]; X

)
is the space of functions y(x , t) continuous at every point t ∈ [a, b].

Definition

Lp(a, b; X ), 1 ≤ p <∞, is the space of measurable vector-valued functions y : [a, b]→ X such

that ‖y‖Lp (a,b;X ) :=
(∫ b

a ‖y(t)‖p
X dt

)1/p
<∞.

Definition

L∞(a, b; X ) is the space of measurable vector-valued functions y : [a, b]→ X such that
‖y‖L∞(a,b;X ) := ess sup[a,b]‖y(t)‖X <∞.
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Problem Statement

Problem 3.23

yt −∆y + c0y = f in Q = Ω× (0,T )

∂νy + αy = g on Σ = Γ× (0,T ) (3.23)

y(0) = y0 in Ω.

where f ∈ L2(Q), g ∈ L2(Σ), and y0 ∈ L2(Ω).

Assumption 3.8

Let Ω ⊂ RN be a bounded Lipschitz domain with boundary Γ, and let T > 0 be a fixed final
time. Moreover, assume that functions c0 ∈ L∞(Q) and α ∈ L∞(Σ), where α(x , t) ≥ 0 for
almost every (x , t) ∈ Σ, are prescribed.

Q: does this imply that Ω is connected?
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Definitions

Definition

W 1,0
2 (Q) :=

{
y ∈ L2(Q)

∣∣∣∣∣ ∂

∂xi
y ∈ L2(Q), i = 1, . . . ,N

}
.

Definition

W (0,T ) := {y ∈ L2(0,T ; V ) | y ′ ∈ L2(0,T ; V ∗)}

Definition

V = H1(Ω), and H = L2(Ω) where we identify H = H∗.

We have shown that
V ⊂ H ⊂ V ∗,

is a sequence of dense and continuous embeddings, implying

H1(Ω) ⊂ L2(Ω) ⊂ H1(Ω)∗.



Prelim Thms 3.9–3.11 Thm 3.12 Thm 3.13 Ex 1 Ex 2 Nec. Cond. N.C. Ex 1 N.C. Ex 2 Numerical Methods

Theorem 3.9

Suppose Assumption 3.8 holds. Then the parabolic initial-boundary value problem (3.23) has

a unique weak solution in W 1,0
2 (Q). Moreover there is a constant cp > 0, independent of f , g ,

and y0, such that

max
t∈[0,T ]

‖y(·, t)‖L2(Ω) + ‖y‖
W

1,0
2 (Q)

≤ cp
(
‖f ‖L2(Q) + ‖g‖L2(Σ) + ‖y0‖L2(Ω)

)
(3.26)

for all f ∈ L2(Q), g ∈ L2(Σ), and y0 ∈ L2(Ω).

Theorem 3.10

Every y ∈W (0,T ) coincides, possibly after modification on a null set, with an element of
C([0,T ],H). In this sense we have the continuous embedding W (0,T ) ↪→ C([0,T ],H).



Prelim Thms 3.9–3.11 Thm 3.12 Thm 3.13 Ex 1 Ex 2 Nec. Cond. N.C. Ex 1 N.C. Ex 2 Numerical Methods

Theorem 3.11

For all y , p ∈W (0,T ) the formula of integration by parts holds:∫ T

0

(
y ′(t), p(t)

)
V∗,V dt =

(
y(T ), p(T )

)
H
−
(
y(0), p(0)

)
H
−
∫ T

0

(
p′(t), y(t)

)
V∗,V dt.

Proof (3.11)

Apply the chain rule:

d

dt

(
y(t), p(t)

)
H

=
(
y ′(t), p(t)

)
V∗,V +

(
p′(t), y(t)

)
V∗,V .

XXX Much detail is missing from the above equality. XXX

Now integrate both sides:∫ T

0

d

dt

(
y(t), p(t)

)
H

dt =

∫ T

0

(
y ′(t), p(t)

)
V∗,V dt +

∫ T

0

(
p′(t), y(t)

)
V∗,V dt

(
y(T ), p(T )

)
H
−
(
y(0), p(0)

)
H

=

∫ T

0

(
y ′(t), p(t)

)
V∗,V dt +

∫ T

0

(
p′(t), y(t)

)
V∗,V dt.
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Theorem 3.12

Let y ∈W 1,0
2 (Q) be the weak solution to problem (3.23), which exists according to

Theorem 3.9. Then y belongs, possibly after a modification on a set of zero measure, to
W (0,T ).

The proof covers the next several slides.

You should recall the inner product,

(
y , v
)

L2(Ω)
:=

∫
Ω

y v dx .
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Proof (3.12)

It follows from the problem statement, when looking for a weak solution via (3.25), that for all

v ∈W 1,1
2 (Q) with v(T ) = 0,

−
∫∫

Q
y vt dx dt =

−
∫∫

Q
∇y · ∇v dx dt −

∫∫
Q

c0 y v dx dt −
∫∫

Σ
α y v ds dt

+

∫
Ω

y0 v(0) dx +

∫∫
Q

f v dx dt +

∫∫
Σ

g v ds dt. (1)

In particular we may insert any function of the form v(x , t) := v(x)φ(t), where φ ∈ C∞0 (0,T )

and v ∈ V = H1(Ω). Setting H = L2(Ω) and HN = H × H × · · · × H (N times), we find, first

−
∫∫

Q
y vt dx dt = −

∫ T

0

∫
Ω

y vt dx dt = −
∫ T

0

(
y , vt

)
L2(Ω)

dt

= −
∫ T

0

(
y , vφ′(t)

)
L2(Ω)

dt = −
∫ T

0

(
y(t)φ′(t), v

)
L2(Ω)

dt.

Applying this technique to each term in (1),
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Proof (3.12) contd.

−
∫ T

0

(
y(t)φ′(t), v

)
H

dt = −
∫ T

0

(
∇y(t),∇v)HNφ(t) dt −

∫ T

0

(
c0y(t), v

)
H
φ(t) dt

−
∫ T

0

(
α(t)y(t), v

)
L2(Γ)

φ(t) dt +

∫ T

0

(
f (t), v

)
H
φ(t) dt +

∫ t

0

(
g(t), v)L2(Γ)φ(t) dt.

Now y ∈ L2(Q), by the definition of W 1,0
2 (Q). Hence, by Fubini’s theorem, y(·, t) ∈ L2(Ω) for

almost every t ∈ (0,T ). Moreover Di y ∈ L2(Q) for i = 1, · · · ,N, and thus

∇y(·, t) ∈
(
L2(Ω)

)N
= HN for a.e. t ∈ (0,T ). Finally, y(·, t) ∈ H1(Ω), and thus

y(·, t) ∈ L2(Γ) for a.e. t ∈ (0,T ).

On the set of measure zero in [0,T ] where one of the above statements possibly does not
hold, we put y(t) = 0, which does not change the vector-valued function y in the sense of L2

spaces. Hence, we see that for any fixed t, the expressions in the integrals on the right-hand
side define linear functionals Fi (t) : H1(Ω)→ R:

F1(t) :v 7→
(
∇y(t),∇v

)
HN

F2(t) :v 7→
(
c0(t)y(t), v

)
H

F3(t) :v 7→
(
α(t)y(t), v

)
L2(Γ)

F4(t) :v 7→
(
f (t), v

)
H

F5(t) :v 7→
(
g(t), v

)
L2(Γ)
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Proof (3.12) contd.

We claim that the functionals Fi (t) are bounded and thus continuous on V for every t.

First we have for F1(t) : v 7→
(
∇y(t),∇v

)
HN =

∫
Ω∇y · ∇v dx ,

|F1(t)v | =

∣∣∣∣∫
Ω
∇y(t) · ∇v dx

∣∣∣∣ ≤ ∫
Ω
|∇y(t) · ∇v | dx

= ‖∇y(t) · ∇v‖L1(Ω) ≤ ‖∇y(t)‖L2(Ω)‖∇v‖L2(Ω) (2)

≤
(
‖y(t)‖L2(Ω) + ‖∇y(t)‖L2(Ω)

)(
‖v‖L2(Ω) + ‖∇v‖L2(Ω)

)
= ‖y(t)‖H1(Ω)‖v‖H1(Ω), ∀v ∈ H1(Ω). (3)

Line (2) is exactly Hölder’s inequality, and the final equality is by definition of the H1(Ω)
norm. Note that the function t 7→ ‖y(t)‖H1(Ω) belongs to L2(0,T ), and ‖y(t)‖H1(Ω) is by

construction everywhere finite: ‖y(t)‖H1(Ω) =
(∫

Ω|y(t)|2 dx
)1/2

<∞. Recall, for arbitrary
F ∈ V ∗, the dual norm is defined by

‖F‖V∗ := sup
v∈V

|F v |
‖v‖V

.

(3) gives us |F (t)v|
‖v‖

H1(Ω)
≤ ‖y(t)‖H1(Ω), for all v ∈ H1(Ω). Thus F1(t) is bounded:

‖F1(t)‖H1(Ω)∗ ≤ ‖y(t)‖H1(Ω).
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Proof (3.12) contd.

Similarly, for F3(t) : v 7→
(
α(t)y(t), v

)
L2(Γ)

=
∫

Γ α(t)y(t)v ds,

|F3(t)v | ≤
∫

Γ
|α(t)||y(t)||v | ds ≤ ‖α‖L∞(Σ)‖y(t)‖L2(Γ)‖v‖L2(Γ)

≤ c̃‖α‖L∞(Σ)‖y(t)‖H1(Ω)‖v‖H1(Ω).

Plenty of detail is omitted from the above line. Repeated application of Cauchy-Schwartz
and/or Hölder, followed by the Trace Theorem which gives us the c̃ multiple when going from
the boundary to the space.

Hence F3(t) is bounded: ‖F3(t)‖H1(Ω)∗ ≤ c̃‖α‖L∞(Σ)‖y(t)‖H1(Ω).
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Proof (3.12) contd.

These proofs are left out of the text as “easy exercises for the reader:”

• F2(t) : v 7→
(
c0(t)y(t), v

)
H

=
∫

Ω c0(t)y(t)v dx ,

|F2(t)v | ≤
∫

Ω
|c0(t)| |y(t)| |v | dx ≤ ‖c0‖L∞(Q)‖y(t)‖L2(Ω)‖v‖L2(Ω)

so that
‖F2(t)‖H1(Ω)∗ ≤ ‖c0‖L∞(Q)‖y(t)‖L2(Ω).

• F4(t) : v 7→
(
f (t), v

)
H

=
∫

Ω f (t)v dx

|F4(t)v | ≤
∫

Q
|f (t)| |v | dx =⇒ ‖F4(t)‖H1(Ω)∗ ≤ ‖f (t)‖L2(Ω).

• F5(t) : v 7→
(
g(t), v

)
L2(Γ)

=
∫

Γ g(t)v ds,

|F5(t)v | ≤
∫

Γ
|g(t)| |v | ds ≤ ‖g(t)‖L2(Γ)‖v‖H1(Γ) ≤ c̃‖g(t)‖L2(Γ)‖v‖H1(Ω)

so that
‖F5(t)‖H1(Ω)∗ ≤ c̃‖g(t)‖L2(Γ).

Since each Fi is bounded, we know each Fi (t) ∈ H1(Ω)∗ for every t.
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Proof (3.12) contd.

Since each ‖Fi (t)‖V∗ is bounded by some constant multiple of ‖y(t)‖H1(Ω), ‖f (t)‖L2(Ω), or

‖g(t)‖L2(Γ), there is some constant c > 0 such that

5∑
i=1

‖Fi (t)‖V∗ ≤ c
(
‖y(t)‖H1(Ω) + ‖f (t)‖L2(Ω) + ‖g(t)‖L2(Γ)

)
. (3.32)

Since the expression on the right-hand side belongs to L2(0,T ), so does the expression on the
left-hand side, showing that Fi ∈ L2(0,T ; V ∗) for each i . But then the functional F on the
right-hand side of the variational formulation, being just the sum of of the Fi , also belongs to
L2(0,T ; V ∗).

Rewriting the variational formulation in terms of F , we obtain that for all v ∈ V we have the
chain of inequalities

(
−
∫ T

0
y(t)φ′(t) dt, v

)
L2(Ω)

= −
∫ T

0

(
y(t)φ′(t), v

)
L2(Ω)

dt

=

∫ T

0

(
F (t)φ(t), v

)
V∗,V

dt =
(∫ T

0
F (t)φ(t) dt, v

)
V∗,V

and therefore as an equation in the space V ∗

−
∫ T

0
y(t)φ′(t) dt =

∫ T

0
F (t)φ(t) dt, ∀φ ∈ C∞0 (0,T ).



Prelim Thms 3.9–3.11 Thm 3.12 Thm 3.13 Ex 1 Ex 2 Nec. Cond. N.C. Ex 1 N.C. Ex 2 Numerical Methods

Proof (3.12) contd.

−
∫ T

0
y(t)φ′(t) dt =

∫ T

0
F (t)φ(t) dt, ∀φ ∈ C∞0 (0,T )

means that y ′ = F in the sense of vector-valued distributions; hence y ′ ∈ L2(0,T ; V ∗).

We conclude that, for any y ∈W 1,0
2 (Q) which is a weak solution of (3.23), we have

y ∈W (0,T ) := {y ∈ L2(0,T ; V ) | y ′ ∈ L2(0,T ; V ∗)}.
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Theorem 3.13

The weak solution y to the problem (3.23) satisfies an estimate of the form

‖y‖W (0,T ) ≤ cw
(
‖f ‖L2(Q) + ‖g‖L2(Σ) + ‖y0‖L2(Ω)

)
,

with some constant cw > 0 that does not depend on (f , g , y0). In other words, the mapping
(f , g , y0) 7→ y defines a continuous linear operator from L2(Q)× L2(Σ)× L2(Ω) into W (0,T )
and, in particular, into C

(
[0,T ], L2(Ω)

)
.
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Proof (3.13)

We estimate the square of the norm ‖y‖W (0,T ):

‖y‖2
W (0,T ) = ‖y‖2

L2(0,T ;H1(Ω))
+ ‖y ′‖2

L2(0,T ;H1(Ω)∗)
.

For the first summand, we obtain from Theorem 3.9 on page 140, with a generic constant
c > 0, the estimate

‖y‖2
L2(0,T ;H1(Ω))

= ‖y‖2

W
1,0
2 (Q)

≤ c
(
‖f ‖2

L2(Q)
+ ‖g‖2

L2(Σ)
+ ‖y0‖2

L2(Ω)

)
. (3.33)

The second summand requires only a little more effort. Indeed, with the functionals Fi defined
previously, we have

‖y ′‖L2(0,T ;H1(Ω)∗) =

∥∥∥∥∥
5∑

i=1

Fi

∥∥∥∥∥
L2(0,T ;H1(Ω)∗)

≤
5∑

i=1

‖Fi‖L2(0,T ;H1(Ω)∗) .

Using the above estimates, in particular (3.32), we find, with generic constants c > 0, that
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Proof (3.13) contd.

‖F1‖2
L2(0,T ;V∗)

=

∫ T

0
‖F1(t)‖2

V∗ dt ≤
∫ T

0
c‖y(t)‖2

H1(Ω)
dt ≤ c‖y‖2

W
1,0
2 (Q)

‖F2‖2
L2(0,T ;V∗)

=

∫ T

0
‖F2(t)‖2

V∗ dt ≤
∫ T

0
‖c0‖2

L∞(Q)‖y(t)‖2
L2(Ω)

dt ≤ c‖y‖2

W
1,0
2 (Q)

‖F3‖2
L2(0,T ;V∗)

=

∫ T

0
‖F3(t)‖2

V∗ dt ≤
∫ T

0
c̃‖α‖2

L∞(Q)‖y(t)‖2
L2(Ω)

dt ≤ c‖y‖2

W
1,0
2 (Q)

‖F4‖2
L2(0,T ;V∗)

=

∫ T

0
‖F4(t)‖2

V∗ dt ≤
∫ T

0
‖f (t)‖2

L2(Ω)
dt ≤ c‖f ‖2

L2(Q)

‖F5‖2
L2(0,T ;V∗)

=

∫ T

0
‖F5(t)‖2

V∗ dt ≤
∫ T

0
c̃‖g(t)‖2

L2(Γ)
dt ≤ c‖g‖2

L2(Σ)

Since, from (3.33),

‖y‖2

W
1,0
2 (Q)

≤ c
(
‖f ‖L2(Q) + ‖g‖L2(Σ) + ‖y0‖L2(Ω)

)2
,

we have

‖y ′‖2
L2(0,T ;H1(Ω)∗)

≤
5∑

i=1

‖Fi‖2
L2(0,T ;H1(Ω)∗) ≤ c

(
‖f ‖L2(Q) + ‖g‖L2(Σ) + ‖y0‖L2(Ω)

)2
,

and the assertion is proved.
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Example 3.5.1 – Optimal nonstationary boundary temperature

min J(y , u) :=
1

2

∫
Ω
|y(x ,T )− yΩ(x)|2 dx +

λ

2

∫∫
Σ
|u(x , t)|2 ds(x) dt,

subject to

yt −∆y = 0 in Q

∂νy + αy = βu on Σ

y(0) = 0 in Ω

and
ua(x , t) ≤ u(x , t) ≤ ub(x , t) for a.e. (x , t) ∈ Σ.

This is a parabolic boundary control problem with final-value cost functional.
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Assumptions

Assumption 3.14

Let Ω ⊂ RN be a domain with Lipschitz boundary Γ, and let λ ≥ 0 be a fixed constant.
Assume that we are given functions yΩ ∈ L2(Ω), yQ ∈ L2(Q), yΣ ∈ L2(Σ), α, β ∈ L∞(E), and
ua, ub, va, vb ∈ L2(E) with ua(x , t) ≤ ub(x , t) and va(x , t) ≤ vb(x , t) for almost every
(x , t) ∈ E. Here, depending on the specific problem under study, E = Q or E = Σ.

E is the domain of the control, which depends on the problem.
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Example 3.5.1 contd.

Theorems 3.12 and 3.13 guarantee a weak solution y ∈W (0,T ) for any control u ∈ L2(Σ),
which we represent by

y = GΣ(βu).

We only need information about the solution at time T , so we define an observation operator
ET : y 7→ y(T ); this is a continuous linear mapping from W (0,T ) into L2(Ω) since the
embedding W (0,T ) ↪→ C

(
[0,T ], L2(Ω)

)
has these properties. Hence for some constant c > 0

the bound applies:

‖y(T )‖L2(Ω) ≤ max
t∈[0,T ]

‖y(t)‖L2(Ω) =: ‖y‖C([0,T ],L2(Ω)) ≤ c‖y‖W (0,T ).

The first inequality holds by nature of the max operator. The second inequality holds by
consequence of Theorem 3.10. Hence, we have

y(T ) = ET GΣ(βu) =: Su.

In summary, u 7→ y 7→ y(T ) is a continuous linear mapping

S : u 7→ y(T )

from the control space L2(Σ) into the space L2(Ω) which contains y(T ).
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Example 3.5.1 contd.

Using S we can rewrite the problem as a quadratic optimization problem in the Hilbert space
U = L2(Σ):

min
u∈Uad

f (u) :=
1

2
‖Su − yΩ‖2

L2(Ω)
+
λ

2
‖u‖2

L2(Σ)
, (3.37)

where
Uad = {u ∈ L2(Σ) : ua(x , t) ≤ u(x , t) ≤ ub(x , t) for a.e. (x , t) ∈ Σ}.

The functional f is continuous in u because S and the norms are continuous. For any
h ∈ [0, 1], Hölder’s inequality gives us

‖hz1 + (1− h)z2‖2
L2 ≤ ‖hz1‖2

L2 + ‖(1− h)z2‖2
L2 ≤ h‖z1‖2

L2 + (1− h)‖z2‖2
L2 .

Setting z = Su − yΩ in one case and z = u in the other and adding, we see f (u) is convex.

The admissible set Uad is nonempty, closed, bounded, and convex subset of the Hilbert space
L2(Σ). Hence we can infer from Theorem 2.14 on page 50 the following existence result.

Theorem 3.15

Suppose that Assumption 3.14 holds with E := Σ. Then the optimization problem (3.37) and
hence the optimal nonstationary boundary temperature problem (3.1)-(3.3) has at least one
optimal control u ∈ Uad . If λ > 0 then u is unique.
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Example 3.5.2 – Optimal nonstationary heat source

min J(y , u) :=
1

2

∫∫
Σ
|y(x , t)− yΣ(x , t)|2 ds(x) dt +

λ

2

∫∫
Q
|u(x , t)|2 dx dt, (3.38)

subject to

yt −∆y = βu in Q

∂νy = 0 on Σ

y(0) = 0 in Ω

(3.39)

and
ua(x , t) ≤ u(x , t) ≤ ub(x , t) for a.e. (x , t) ∈ Q. (3.40)

This can be seen as an inverse problem: an unknown heat source u has to be recovered from
measurements of the temperature at the boundary.
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Example 3.5.2 contd.

Theorems 3.12 and 3.13 guarantee a weak solution y ∈W (0,T ) for any u ∈ L2(Q). The
control-to-state operator is

y = GQ (βu).

The cost functional only requires the values at the boundary, y(x , t)
∣∣
Σ

.

Since the trace operator y 7→ yΓ maps H1(Ω) continuously into L2(Γ), the mapping
EΣ : y 7→ yΣ defines a continuous linear operator from L2

(
0,T ; H1(Ω)

)
into L2

(
0,T ; L2(Γ)

)
.

Consequently the mapping u 7→ y 7→ y
∣∣
Σ

, i.e., the operator

S : u 7→ y
∣∣
Σ

maps the control space L2(Q) continuously into the space
L2
(
0,T ; L2(Γ)

) ∼= L2
(
(0,T )× Γ

)
= L2(Σ) to which y

∣∣
Σ

belongs. Thus

Su = EΣGQ (βu).
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Example 3.5.2 contd.

Substituting y = Su in the objective we arrive at the quadratic minimization problem in the
Hilbert space U = L2(Q):

min
u∈Uad

f (u) :=
1

2
‖Su − yΣ‖2

L2(Σ)
+
λ

2
‖u‖2

L2(Q)
. (3.42)

Theorem 2.14 gives us the existence of an optimal control, hence

Theorem 3.16

Suppose that Assumption 3.14 holds with E = Q. Then the optimal nonstationary heat source
problem (3.38)-(3.40) has at least one optimal control u ∈ Uad . If λ > 0 then u is unique.
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Necessary Optimality Conditions

We will derive the necessary optimality conditions for the prior two examples.

First a variational inequality will be derived that involves the state y .

Then y will be eliminated by means of the adjoint state to deduce a variational inequality for
the control u.
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Adjoint Problem

Consider the parabolic problem

−pt −∆p + c0p = aQ

∂νp + αp = aΣ (3.43)

p(·,T ) = aΩ

with bounded and measurable coefficient functions c0 and α, and prescribed functions
aQ ∈ L2(Q), aΣ ∈ L2(Σ), and aΩ ∈ L2(Ω).

This is the adjoint problem.
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Lemma 3.17

Using the bilinear form

a[t; y , v ] :=

∫
Ω

(
∇y · ∇v + c0(·, t) y v

)
dx +

∫
Γ
α(·, t) y v ds,

Lemma 3.17

The parabolic problem (3.43) has a unique weak solution p ∈W 1,0
2 (Q), which is the solution

to the variational problem

∫∫
Q

p vt dx dt +

∫ T

0
a[t; p, v ] dt =

∫
Ω

aΩv(T ) dx +

∫∫
Q

aQ v dx dt +

∫∫
Σ

aΣ v dx dt,

∀v ∈W 1,1
2 (Q) with v(·, 0) = 0.

We have p ∈W (0,T ), and there is a constant ca > 0, which does not depend on the given
functions, such that

‖p‖W (0,T ) ≤ ca
(
‖aQ‖L2(Q) + ‖aΣ‖L2(Σ) + ‖aΩ‖L2(Ω)

)
.
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Proof (3.17)

Let τ ∈ [0,T ], and put p̃(τ) := p(T − τ) and ṽ(τ) := v(T − τ). Then p̃(0) = p(T ),
p̃(T ) = p(0), ṽ(0) = v(T ), ṽ(T ) = v(0), as well as ãQ (·, t) := aQ (·,T − τ), etc., and also∫∫

Q
p vt dx dt = −

∫∫
Q

p̃ ṽτ dx dτ,

and so on. Consequently, the asserted variational formulation is equivalent to the definition of
the weak solution to the (forward) parabolic initial-boundary value problem

p̃τ −∆p̃ + c0p̃ = ãQ

∂ν p̃ + αp̃ = ãΣ

p̃(0) = aΩ

By Theorem 3.9 there is a unique weak solution p̃, which by Theorem 3.12 belongs to
W (0,T ). The assertion now follows from reversing the time transformation.
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Since p ∈W (0,T ) we can, in analogy to (3.35) rewrite after integration by parts the
variational formulation of the adjoint equation in the following shorter form:

∫ T

0

{
− (pt , v)V∗,V + a[t; p, v ]

}
dt =

∫∫
Q

aQ v dx dt +

∫∫
Σ

aΣ v ds dt,

∀v ∈ L2(0,T ; V )

p(T ) = aΩ.

(3.44)

Like in the elliptic case, for the derivation for the adjoint system we need the following
somewhat technical result.
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Theorem 3.18

Let y ∈W (0,T ) be the solution to the parabolic problem

yt −∆y + c0y = bQ v

∂νy + αy = bΣu

y(0) = bΩw ,

with coefficient functions c0, bQ ∈ L∞(Q), α, bΣ ∈ L∞(Σ), and bΩ ∈ L∞(Ω), and controls
v ∈ L2(Q), u ∈ L2(Σ), and w ∈ L2(Ω). Moreover, let square integrable functions aΩ, aQ , and
aΣ, be given, and let p ∈W (0,T ) be the weak solution to the adjoint problem, (3.43). Then
we have∫∫

Q
aQ y dx dt +

∫∫
Σ

aΣ y ds dt +

∫
Ω

aΩ y(·,T ) dx

=

∫∫
Q

bQ p v dx dt +

∫∫
Σ

bΣ p u ds dt +

∫
Ω

bΩ p(·, 0) w dx .



Prelim Thms 3.9–3.11 Thm 3.12 Thm 3.13 Ex 1 Ex 2 Nec. Cond. N.C. Ex 1 N.C. Ex 2 Numerical Methods

Proof (3.18)

The variational formulation for y , using the test function p, we have∫ T

0

{
(yt , p)V∗,V + a[t; y , p]

}
dt =

∫∫
Q

bq p v dx dt +

∫∫
Σ

bΣ p u ds dt, (3.45)

with the initial condition y(0) = bΩw . Integrating by parts we obtain∫ T

0

{
− (pt , y)V∗,V + a[t; y , p]

}
dt = −(y(T ), aΩ)L2(Ω) +

(
bΩw , p(0)

)
L2(Ω)

+

∫∫
Q

bq p v dx dt +

∫∫
Σ

bΣ p u ds dt. (3.47)

Analogously, taking y as test function in the equation for p, we find that∫ T

0

{
− (pt , y)V∗,V + a[t; p, y ]

}
dt =

∫∫
Q

aQ y dx dt +

∫∫
Σ

aΣ y ds dt, (3.46)

with the final condition p(T ) = aΩ. Since thet left-hand sides of (3.47) and (3.46) coincide,
the right hand sides of (3.46) and (3.47) must also be equal, which gives us∫∫

Q
aQ y dx dt +

∫∫
Σ

aΣ y ds dt + (y(T ), aΩ)L2(Ω)

=

∫∫
Q

bq p v dx dt +

∫∫
Σ

bΣ p u ds dt +
(
bΩw , p(0)

)
L2(Ω)
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Necessary Conditions for Example 1

In this section we determine the necessary conditions for (3.1)-(3.3), the parabolic boundary
control problem with final-value cost functional:

min J(y , u) :=
1

2
‖y(T )− yΩ‖2

L2(Ω)
+
λ

2
‖u‖2

L2(Σ)
,

subject to

yt −∆y = 0

∂νy + αy = βu

y(0) = y0

and
ua ≤ u ≤ ub.

Here the initial condition may be nonzero, which has been avoided previously. It is a
straightforward exercise to show the previous conclusions apply also to this case. (Next slide.)
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Problem 3.2

Prove the existence of an optimal control for (3.1)-(3.3) given an inhomogeneous initial
condition y0.

The problem is

min J(y , u) :=
1

2

∫
Ω
|y(x ,T )− yΩ(x)|2 dx +

λ

2

∫∫
Σ
|u(x , t)|2 ds(x) dt, (3.1)

subject to

yt −∆y = 0 in Q

∂νy + αy = βu on Σ

y(0) = y0 in Ω

(3.2)

and
ua(x , t) ≤ u(x , t) ≤ ub(x , t) for a.e. (x , t) ∈ Σ. (3.3)
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The arguments are identical to those leading to Theorem 3.15, and the supporting theorems
and equations all allow for any y0 ∈ L2(Ω). Hence the same arguments go through nearly
unmodified:

Theorem 3.9 gives us that for any control, including the initial condition, there is a unique
weak solution y ∈W 1,0

2 (Q), and by Theorem 3.12 it is in the equivalence class of a function
in W (0,T ). Adapting Theorem 3.13, we represent the unique solution for the zero initial
condition y(0) = 0 using the continuous linear operator y = GΣ(βu), and the unique solution
for homogeneous boundary conditions u = 0 with nonzero initial condition y(0) = y0 using the
continuous linear operator y = G0(y0). The superposition principle for linear problems gives us
a continuous linear mapping

y = GΣ(βu) + G0(y0),

We need only the value at final time T , so the linear continuous observation operator ET gives
us:

y(T ) = ET

(
GΣ(βu) + G0(y0)

)
.

which can be written as the linear continuous mapping

S : (u, y0) 7→ y(T ).

Thus the objective is

min J(y , u, y0) :=
1

2
‖S(u, y0)− yΩ‖2

L2(Ω)
+
λ

2
‖u‖2

L2(Σ)
,

subject to

Uad = {u ∈ L2(Σ) : ua(x , t) ≤ u(x , t) ≤ ub(x , t) for a.e. (x , t) ∈ Σ}.

Since f is convex and continuous, and Uad is nonempty, closed, bounded
and convex, Theorem 2.14 gives us existence of an optimal control.
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Adjoint problem for Example 1

Each term in the derivative of the objective w.r.t. y ,

∇y J(y , u) = y(T )− yΩ,

appears in the right-hand side of the adjoint. Since y(T )− yΩ ∈ L2(Ω), for optimal y , the
adjoint system must be

−pt −∆p = 0 in Q

∂νp + αp = 0 on Σ

p(T ) = y(T )− yΩ in Ω.

(3.48)

This conclusion comes from experience with previous problems. The formal Lagrange method
reaches the same system, as detailed in Chapter 6.

An incomplete attempt to use the formal Lagrange method follows, highlighting some of its
difficulties.
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Lagrangian

We will use p(i) as our Lagrange multipliers – what space they are from is as yet unknown, a
difficulty only overcome in Chapter 6 in the case of elliptic problems with the statement “the
theory for parabolic problems is quite similar.” However, for this formal approach that detail is
unecessary. The Lagrangian for Example 1 is

L(y , u, p) :=
1

2
‖y(T )− yΩ‖2

L2(Ω)
+
λ

2
‖u‖2

L2(Σ)

−
∫∫

Q
p(1)(yt −∆y) dx dt︸ ︷︷ ︸

1st constraint

−
∫∫

Σ
p(2)(∂νy + αy − βu) ds dt︸ ︷︷ ︸

2nd constraint

where we have left out the box constraints for now; they are applied later in a variational
inequality. Similarly the initial condition is left out of this formulation, to be used later.
Integrating by parts, we have (which can also be inferred from (3.25))

L(y , u, p) :=
1

2
‖y(T )− yΩ‖2

L2(Ω)
+
λ

2
‖u‖2

L2(Σ)
−
∫∫

Q

[
∇y · ∇p(1) − p

(1)
t y

]
dx dt

−
∫∫

Σ

[
y p(1) + αy p(2) − βu p(2)

]
ds dt +

∫
Ω

y0p(1)(0) dx −
∫

Ω
y(T )p(1)(T ) dx

Note that there is a cancelation between two ∂νy terms, one multiplied by p(1) and the other
by p(2). We proceed under the hope that our result will show, as it had previously, that the
two p terms are equal (more precisely, p(2) is the restriction of p(1) to the boundary).
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Lagrangian, contd.

Now that we have the Lagrangian,

L(y , u, p) :=
1

2
‖y(T )− yΩ‖2

L2(Ω)
+
λ

2
‖u‖2

L2(Σ)
−
∫∫

Q

[
∇y · ∇p(1) − p

(1)
t y

]
dx dt

−
∫∫

Σ

[
y p(1) + αy p(2) − βu p(2)

]
ds dt +

∫
Ω

y0p(1)(0) dx −
∫

Ω
y(T )p(1)(T ) dx

integrating the ∇p term by parts, then taking the y derivative we have

DyL(y , u, p) :=

∫∫
Q

pt dx dt −
∫∫

Σ
αp ds dt +

∫∫
Q

∆p ds dt −
∫∫

Σ
∂νp ds dt

Following the technique of Section 2.10, we multiply with test function v ∈ H1(Q) and, after
integration by parts and waving of hands, by setting equal to zero we achieve the weak
formulation of the adjoint problem (see Lemma 3.17):∫∫

Q
p vt dx dt +

∫∫
Q
∇p · ∇v dx dt +

∫∫
Σ
α p v ds dt =

∫
Ω

p(T )v(T ) dx −
∫

Ω
p(0)v(0) dx .

In Theorem 3.9 the assumption is made that v(0) = 0. The leap to p(T ) = y(T )− yΩ comes
from pp. 120–122, where also the p(1) = p(2) argument can be found.

Here, we end our trip down the rabbit hole of the formal Lagrangian method and continue
with the remaining material of this section.
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Theorem 3.19

Let u ∈ Uad be a control with associated state y, and let p ∈W (0,T ) be the corresponding
adjoint state that solves (3.48). Then u is an optimal control for the optimal nonstationary
boundary temperature problem (3.1)-(3.3) if and only if the variational boundary inequality∫∫

Σ

(
β(x , t)p(x , t) + λu(x , t)

)(
u(x , t)− u(x , t)

)
ds(x) dt ≥ 0 (3.49)

holds for all u ∈ Uad .

Observe that this is where the box constraints come into play in the formal Lagrange method,
and shows why they can be omitted from the Lagrangian.

βp + λu is the u derivative of the Lagrangian at the point u. This variational inequality is one
way of writing that the constrained problem has no direction of descent from this point.
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Proof (3.19)

Overview of the proof: We are going to use Lemma 2.21 (p.63) to show equivalence between
the optimal solution and the solution of the variational inequality, then by the result of
Theorem 3.18 transform the inequality into the necessary form.

Lemma 2.21 tells us that, for a convex f , and nonempty convex Uad a subset of a Banach
space, u solves

min
u∈Uad

f (u) :=
1

2
‖Su − yΩ‖2

L2(Ω)
+
λ

2
‖u‖2

L2(Σ)
(2.43)

if and only if it solves the variational inequality

f ′(u)(u − u) ≥ 0, ∀u ∈ Uad . (2.44)

Since f ′(u) = S∗(Su − yΩ) + λu, the variational inequality can be written(
S∗(Su − yΩ) + λu, u − u)L2(Σ) ≥ 0, ∀u ∈ Uad (2.45)

which is equivalently, and more conveniently, written(
Su − yΩ, Su − Su)L2(Σ) + λ(u, u − u)L2(Σ) ≥ 0, ∀u ∈ Uad . (2.47)
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Proof (3.19) contd.

Let S : L2(Σ)→ L2(Ω) be the continuous linear operator that, for the homogeneous initial
condition y0 = 0, assigns to each control u the final value y(T ) of the weak solution y to the
state equation. Moreover, let y = G0y0 denote the weak solution corresponding to y0 6= 0 and
u = 0. Then it follows from the superposition principle for linear equations that

y(T )− yΩ = Su + (G0y0)(T )− yΩ = Su − z,

where z := yΩ − (G0y0)(T ). The above control problem then takes the form

min
u∈Uad

f (u) :=
1

2
‖Su − z‖2

L2(Ω)
+
λ

2
‖u‖2

L2(Σ)
.

The general variational inequality (2.47) yields, for all u ∈ Uad ,

0 ≤
(
Su − z,S(u − u)

)
L2(Ω)

+ λ
(
u, u − u

)
L2(Σ)

(3.50)

=

∫
Ω

(
y(T )− yΩ

)(
y(T )− y(T )

)
dx + λ

∫∫
Σ

u(u − u) ds dt.

Here, we have used the identity

Su − Su = Su + (G0y0)(T )− (G0y0)(T )− Su = y(T )− y(T )

and, once more, that z = yΩ − (G0y0)(T ).
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Proof (3.19) contd.

Now put ỹ := y − y and apply Theorem 3.18 with the specifications aΩ = y(T )− yΩ, aQ = 0,
aΣ = 0, bΣ = β, v = 0, w = 0, y := ỹ , and ũ := u − u. Also c0 = 0. Note that w = 0 in this
situation since, by definition, Su(0) = 0; the part originating from y0 is incorporated into z. It
follows that (in the interest of space, the first line without differentials)∫∫

Q
aQ y +

∫∫
Σ

aΣ y +

∫
Ω

aΩ y(·,T ) =

∫∫
Q

bQ p v +

∫∫
Σ

bΣ p u +

∫
Ω

bΩ p(·, 0) w∫
Ω

(y(T )− yΩ) y(·,T ) =

∫∫
Σ
β p u ds dt

(
y(T )− yΩ, ỹ(T )

)
L2(Ω)

=

∫∫
Σ
β p ũ ds dt.

Substituting this result into inequality (3.50), we find that

0 ≤
∫

Ω

(
y(T )− yΩ

)(
y(T )− y(T )

)
dx + λ

∫∫
Σ

u(u − u) ds dt

=

∫∫
Σ
β p(u − u) ds dt + λ

∫∫
Σ

u(u − u) ds dt

=

∫∫
Σ

(β p + λu)(u − u) ds dt,

which concludes the proof of the assertion.
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Next, we employ the method described on page 69 for elliptic problems to derive a number of
results converning the possible form of optimal controls. This is a pointwise view of the
control, in contrast to the “L2 view” in Theorem 3.19.

Theorem 3.20

A control u ∈ Uad with associated state y is optimal for the problem (3.1)-(3.3) if and only if
it satisfies, together with the adjoint state p from (3.48), the following conditions for almost
all (x , t) ∈ Σ: the weak minimum principle(

β(x , t)p(x , t) + λu(x , t)
)(

v − u(x , t)
)
≥ 0, ∀v ∈

[
ua(x , t), ub(x , t)

]
, (3.51)

the minimum principle

β(x , t)p(x , t)u(x , t) +
λ

2
u(x , t)2 = min

v∈[ua(x,t),ub(x,t)]

{
β(x , t)p(x , t)v +

λ

2
v2
}
, (3.52)

and, in the case of λ > 0, the projection formula

u(x , t) = P[ua(x,t),ub(x,t)]

{
−

1

λ
β(x , t)p(x , t)

}
. (3.53)

For the proof of this assertion one takes, starting from the variational inequality (3.49), the
same series of steps that led from Theorem 2.25 to Theorem 2.27 in the elliptic case.
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Proof/Discussion (3.20)

Theorem 3.19, like Theorem 2.25, shows that, for control u, associated state y , and weak
solution p to the adjoint equation, satisfying the variational inequality, e.g., (3.49), is
equivalent to optimality. Rewrite (3.49) in the form∫∫

Σ

(
β(x , t)p(x , t) + λu(x , t)

)
u(x , t)︸ ︷︷ ︸ ds(x) dt

≤
∫∫

Σ

(
β(x , t)p(x , t) + λu(x , t)

)
u(x , t)︸ ︷︷ ︸ ds(x) dt, ∀u ∈ Uad .

The difference between the LHS and RHS has been marked for clarity.

Hence∫∫
Σ

(
β(x , t)p(x , t) + λu(x , t)

)
u(x , t)︸ ︷︷ ︸ ds(x) dt

= min
u∈Uad

∫∫
Σ

(
β(x , t)p(x , t) + λu(x , t)

)
u(x , t)︸ ︷︷ ︸ ds(x) dt,

and we can conclude that, assumping the expression inside the first parentheses is known, we
obtain u as the solution to a linear optmization problem in a function space.

This observation forms the basis of the conditioned gradient method, discussed in the various
sections on numerical methods.
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Proof/Discussion (3.20) contd.
“It is intuitively clear. . . ”

We present a lemma providing insight in the direction of a “pointwise” form of solution. It is
an exact parallel to the elliptic case’s Lemma 2.26.

Lemma 22 (c.f. Lemma 2.26)

A necessary and sufficient condition for the variational inequality (3.49) to be satisfied is that
for almost every (x , t) ∈ Q,

u(x , t) =


ua(x , t) if β(x , t)p(x , t) + λu(x , t) > 0

∈ [ua(x , t), ub(x , t)] if β(x , t)p(x , t) + λu(x , t) = 0

ub(x , t) if β(x , t)p(x , t) + λu(x , t) < 0.

(4)

An equivalent condition is given by the pointwise variational inequality in R,(
β(x , t)p(x , t)+λu(x , t)

)(
v−u(x , t)

)
≥ 0, ∀v ∈ [ua(x , t), ub(x , t)], for a.e. (x , t) ∈ Q. (5)

The proof of Lemma 2.26 goes through for this one, solely with the change of x to (x , t) and
Ω to Q. It shows that (3.49) ⇒ (4) ⇒ (5) ⇒ (3.49).

The most illuminating portion of that proof is the first implication, adapted on the next slide.



Prelim Thms 3.9–3.11 Thm 3.12 Thm 3.13 Ex 1 Ex 2 Nec. Cond. N.C. Ex 1 N.C. Ex 2 Numerical Methods

Proof (Lemma 22)

Let u, ua, and ub be arbitrary but fixed representatives of the corresponding equivalence
classes in L∞(Q). Suppose (4) is false (but the constraints are obeyed almost everywhere),
and consider the measurable sets

A+(u) = {(x , t) ∈ Q : β(x , t)p(x , t) + λu(x , t) > 0},
A−(u) = {(x , t) ∈ Q : β(x , t)p(x , t) + λu(x , t) < 0}.

By our assumption, there is a set E+ ⊂ A+(u) having positive measure such that
u(x , t) > ua(x , t) for all (x , t) ∈ E+, or there is a set E− ⊂ A−(u) having positive measure
such that u(x , t) < ub(x , t) for all (x , t) ∈ E−.

In the first case, we define the function u ∈ Uad ,

u(x , t) =

{
ua(x) for (x , t) ∈ E+

u(x , t) for (x , t) ∈ Q \ E+.

Then∫∫
Q

(
β(x , t)p(x , t) + λu(x , t)

)(
u(x , t)− u(x , t)

)
dx

=

∫∫
E+

(
β(x , t)p(x , t) + λu(x , t)

)(
ua(x , t)− u(x , t)

)
dx < 0,

since the first factor is positive on E+ and the second is negative. This contradicts (3.49).

The other case is handled similarly. We end our incomplete proof of the lemma here.
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Proof/Discussion (3.20) contd.

By a rearrangement of terms the pointwise variational inequality (5) can be rewritten(
β(x , t)p(x , t) +λu(x , t)

)
u(x , t) ≤

(
β(x , t)p(x , t) +λu(x , t)

)
v , ∀v ∈ [ua(x , t), ub(x , t)], (6)

for almost every (x , t) ∈ Q. Here v ∈ R, it is not a function. We can now complete our proof
of Theorem 3.20.

Proof (Theorem 3.20)

The weak minimum principle is nothing but a reformulation of (6).

The minimum principle is easily verified: a real number v solves for fixed (x , t) the convex
quadratic optimization problem in R,

min
v∈[ua(x,t),ub(x,t)]

g(v) := β(x , t)p(x , t)v +
λ

2
v2, (7)

if and only if the variational inequality

g ′(v)(v − v) ≥ 0, ∀v ∈ [ua(x , t), ub(x , t)]

is satisfied, that is, if(
β(x , t)p(x , t) + λv

)
(v − v) ≥ 0, ∀v ∈ [ua(x , t), ub(x , t)].

The minimum condition follows from taking v = u(x , t).

The solution to the quadratic optimization problem (7) in R is given by the projection formula
(3.53).
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Conclusion
of Necessary Conditions for Example 1

In the λ > 0 case, the triple (u, y , p) satisfies the optimality system

yt −∆y = 0 −pt −∆p = 0

∂νy + αy = βu ∂νp + αp = 0

y(0) = y0 p(T ) = y(T )− yΩ

u = P[ua,ub ]

{
−

1

λ
β p
}
.

(3.54)

If λ = 0 then the projection formula has to be replaced by:

u(x , t) =


ua(x , t) if β(x , t)p(x , t) > 0

∈ [ua(x , t), ub(x , t)] if β(x , t)p(x , t) = 0

ub(x , t) if β(x , t)p(x , t) < 0.
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Special Case: ua = −∞, ub =∞

In the case there are no control constraints, the projection formula yields u = −λ−1βp. Hence
u can be eliminated from the state equation, and we obtain the following forward-backward
system of two parabolic problems for the unknown functions y and p:

yt −∆y = 0 −pt −∆p = 0

∂νy + αy = −β2λ−1p ∂νp + αp = 0

y(0) = y0 p(T ) = y(T )− yΩ

(3.55)

The solution of such systems is not an easy task. (See page 162 for brief discussion of
methods.)
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Optimal nonstationary heat source

We recall problem (3.38)-(3.40), which in shortened form reads

min J(y , u) :=
1

2
‖y − yΣ‖2

L2(Σ)
+
λ

2
‖u‖2

L2(Q)
,

subject to u ∈ Uad and to the state system

yt −∆y = βu

∂νy = 0

y(0) = 0

Invoking the operator GQ : L2(Q)→W (0,T ) introduced in (3.36), we can express the
solution y to the state system in the form

y = GQ (βu).

The cost functional involves the observation y
∣∣
Σ

. The observation operator EΣ : y 7→ y
∣∣
Σ

is a

continuous linear mapping from W (0,T ) into L2
(
0,T ; L2(Γ)

) ∼= L2(Σ), which entail that the

control-to-observation operator S : u 7→ y
∣∣
Σ

defined in (3.41) is continuous from L2(Q) into

L2(Σ). Hence, the problem is equivalent to the problem minu∈Uad
f (u), where f is the reduced

functional introduced in (3.42).
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As in (3.50), we obtain the following as the necessary optimality condition for u:

0 ≤ (Su − yΣ, Su − Su)L2(Σ) + λ(u, u − u)L2(Q) ∀u ∈ Uad ,

that is, upon substituting y
∣∣
Σ

= Su and y
∣∣
Σ

= Su,

0 ≤
∫∫

Σ
(y − yΣ)(y − y) ds dt + λ

∫∫
Q

u(u − u) dx dt ∀u ∈ Uad . (3.56)

It is evident how the adjoint state p must be defined, namely as the weak solution to the
parabolic problem

−pt −∆p = 0

∂νp = y − yΣ

p(T ) = 0

By virtue of Lemma 3.17, it has a unique weak solution p.
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Theorem 3.21

A control u ∈ Uad is optimal for the optimal nonstationary heat source problem (3.38)-(3.40)
if and only if it satisfies, together with the adjoint state p defined above, the variational
inequality ∫∫

Q
(βp + λu) dx dt ≥ 0 ∀u ∈ Uad .

Proof (3.21)

This assertion is again a direct consequence of Theorem 3.18, with the specifications
aΣ = y − yΣ, aΩ = 0, aQ = 0, bQ = β, bΣ = 0, and bQ = 0. The steps are similar to those in
the proof of Theorem 3.20.

As in the previous section, the variational inequality just proved can be transformed into an
equivalent pointwise minimum principle for u or, if λ > 0, into a projection formula. In
particular, if λ > 0,

u(x , t) = P[ua(x,t),ub(x,t)]

{
−

1

λ
β(x , t)p(x , t)

}
for a.e. (x , t) ∈ Q.
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Overview of Numerical Methods

In the following slides we sketch the projected gradient method for the optimal nonstationary
boundary temperature problem (the “sketch” in the text spans 5 pages). Here we briefly
mention other published methods which are computationally more efficient:

Multigrid methods (for the unconstrained case)
In 1- and 2-dimensional problems, many methods for solving (3.55) do not require
multigrid

Primal-dual active set
In each iteration we update the active set for the upper and lower constraints

using −λ−1f ′(u) ≶ 0, as in section 2.12.4

Then solve the unconstrained forward-backward problem for the remaining values

Direct solution of the optimality system
Substitute u = P[ua,ub ]{−λ−1βp} in the state equation
The system is differentiable except at ua and ub

Good results have been achieved in solving the nonsmooth system

Discretize then optimize
Fully discretize the parabolic problem and the cost functional
Use existing solvers for finite-dimensional quadratic optimization problems
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Projected Gradient Method

As before, let S : u 7→ y(T ) for y0 = 0, and let ŷ be the solution to the homogeneous problem
with nonzero initial condition y0, so that

y(x ,T ) = (Su)(x) + ŷ(x ,T ).

In this way the problem becomes a quadratic Hilbert space optimization problem,

min
u∈Uad

f (u) :=
1

2
‖Su + ŷ(T )− yΩ‖2

L2(Ω)
+
λ

2
‖u‖2

L2(Σ)
.

We follow the algorithm in iterations, starting with an initial guess u0, which generates y0,
then p0, then u1, y1, p1, u2, y2, p2, etc., each in turn. The yn and pn iterates are (separately)
the solution of the now familiar state and adjoint equations,

yt −∆y = 0 −pt −∆p = 0

∂νy + αy = βu ∂νp + αp = 0

y(0) = y0 p(T ) = yn(T )− yΩ.

The derivative at an iterate un is

f ′(un)v =

∫∫
Σ

(
β(x , t)pn(x , t) + λun(x , t)

)
v(x , t) ds dt,

By the Riesz representation theorem, we obtain the usual representation of the reduced
gradient,

f ′(un) = βpn + λun.
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Projected Gradient Method contd.
The Algorithm

The algorithm proceeds as follows, suppose that iterates u1, . . . , un have been determined.

S1 (New State) Using un solve the state equation for yn.

S2 (New descent direction) Using yn solve the adjoint equation for pn. Take as descent
direction the negative gradient

vn = −f ′(un) = −(βpn + λun).

S3 (Step size control) Determine the optimal step size sn by solving

f
(
P[ua,ub ]

{
un + snvn

})
= min

s>0
f
(
P[ua,ub ]

{
un + snvn

})
.

S4 Put un+1 := P[ua,ub ]

{
un + snvn

}
, n := n + 1, GO TO S1.

The method is completely analogous to that for the elliptic case. The projection step is
necessary because un + snvn may not be admissible.

Although the method converges only slowly, it is easy to implement and thus very suitable for
numerical tests.

If we need to calculate the solution many times for different data problem many times for
different data, reducing the problem can save considerable calculation. Section 3.7.2 gives an
example of this.
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