We need to prove that assume that $Z_{1}$ and $Z_{2}$ are each multiplied componentwise by the entire windowing function $h$, and $N M Z_{1}$ and $N M Z_{2}$ in equation (11.38) are each multiplied componentwise by $h$, that equation (11.39) still holds.

Let $Z_{1}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$ and $Z_{2}=\left[\begin{array}{c}x_{3} \\ x_{4} \\ x_{5} \\ x_{6}\end{array}\right]$. Let $h_{j}=\sqrt{2} \sin \frac{\left(j-\frac{1}{2}\right) \pi}{2 n}$ for $j=1, \ldots, 2 n$.
We multiply $Z_{1}$ and $Z_{2}$ componentwise by the entire windowing function $h$. Then we have
$Z_{1}=\left[\begin{array}{l}h_{1} x_{1} \\ h_{2} x_{2} \\ h_{3} x_{3} \\ h_{4} x_{4}\end{array}\right]$ and $Z_{2}=\left[\begin{array}{c}h_{1} x_{3} \\ h_{2} x_{4} \\ h_{3} x_{5} \\ h_{4} x_{6}\end{array}\right]$.
Then $N M Z_{1}=\left[\begin{array}{c}h_{1} x_{1}-R h_{2} x_{2} \\ -R h_{1} x_{1}+h_{2} x_{2} \\ h_{3} x_{3}+R h_{4} x_{4} \\ R h_{3} x_{3}+h_{4} x_{4}\end{array}\right]$ and $N M Z_{2}=\left[\begin{array}{c}h_{1} x_{3}-R h_{2} x_{4} \\ -R h_{1} x_{3}+h_{2} x_{4} \\ h_{3} x_{5}+R h_{4} x_{6} \\ R h_{3} x_{5}+h_{4} x_{6}\end{array}\right]$.
We multiply $N M Z_{1}$ and $N M Z_{2}$ componentwise by the entire windowing function $h$. Then we have $N M Z_{1}=\left[\begin{array}{c}h_{1}^{2} x_{1}-h_{1} R h_{2} x_{2} \\ -h_{2} R h_{1} x_{1}+h_{2}^{2} x_{2} \\ h_{3}^{2} x_{3}+h_{3} R h_{4} x_{4} \\ h_{4} R h_{3} x_{3}+h_{4}^{2} x_{4}\end{array}\right]$ and $N M Z_{2}=\left[\begin{array}{c}h_{1}^{2} x_{3}-h_{1} R h_{2} x_{4} \\ -h_{2} R h_{1} x_{3}+h_{2}^{2} x_{4} \\ h_{3}^{2} x_{5}+h_{3} R h_{4} x_{6} \\ h_{4} R h_{3} x_{5}+h_{4}^{2} x_{6}\end{array}\right]$.

We take

$$
\begin{equation*}
\frac{1}{2}\left(N M Z_{1}\right)_{2}+\frac{1}{2}\left(N M Z_{2}\right)_{0}=\frac{1}{2}\left(h_{3}^{2} x_{3}+h_{3} R h_{4} x_{4}\right)+\frac{1}{2}\left(h_{1}^{2} x_{3}-h_{1} R h_{2} x_{4}\right) \tag{1}
\end{equation*}
$$

Observe that $R h_{i} x_{n}=h_{2 n-i+1} x_{n}^{\prime}$, where $x_{n}^{\prime}$ is the inverse of $x_{n}$.
Then

$$
\begin{align*}
\frac{1}{2}\left(h_{3}^{2} x_{3}+h_{3} R h_{4} x_{4}\right)+\frac{1}{2}\left(h_{1}^{2} x_{3}-h_{1} R h_{2} x_{4}\right) & =\frac{1}{2}\left(h_{3}^{2} x_{3}+h_{3} h_{1} x_{4}^{\prime}\right)+\frac{1}{2}\left(h_{1}^{2} x_{3}-h_{1} h_{3} x_{4}^{\prime}\right)  \tag{2}\\
& =\frac{1}{2} x_{3}\left(h_{3}^{2}+h_{1}^{2}\right)
\end{align*}
$$

Observe that

$$
\begin{align*}
h_{3}^{2}+h_{1}^{2} & =(\sqrt{2})^{2}\left(\left(\sin \frac{\left(1-\frac{1}{2}\right) \pi}{2 n}\right)^{2}+\left(\sin \frac{\left(3-\frac{1}{2}\right) \pi}{2 n}\right)^{2}\right) \\
& =2\left(\left(\sin \frac{\left(1-\frac{1}{2}\right) \pi}{4}\right)^{2}+\left(\sin \frac{\left(1-\frac{1}{2}\right) \pi}{4}-\frac{\pi}{2}\right)^{2}\right) \\
& =2\left(\left(\sin \frac{\left(1-\frac{1}{2}\right) \pi}{4}\right)^{2}+\left(\cos \frac{\left(1-\frac{1}{2}\right) \pi}{4}\right)^{2}\right)  \tag{3}\\
& =2 *(1) \\
& =2 .
\end{align*}
$$

Therefore, from equation (1), (2) and (3),

$$
\frac{1}{2}\left(N M Z_{1}\right)_{2}+\frac{1}{2}\left(N M Z_{2}\right)_{0}=\frac{1}{2}\left(2 * x_{3}\right)=x_{3}
$$

Apply the same logic for $\frac{1}{2}\left(N M Z_{1}\right)_{3}+\frac{1}{2}\left(N M Z_{2}\right)_{1}$, we could obtain

$$
\frac{1}{2}\left(N M Z_{1}\right)_{3}+\frac{1}{2}\left(N M Z_{2}\right)_{1}=x_{4} .
$$

Thus, $\left[\begin{array}{c}x_{3} \\ x_{4}\end{array}\right]=\frac{1}{2}\left(N M Z_{1}\right)_{n, \ldots, 2 n-1}+\frac{1}{2}\left(N M Z_{2}\right)_{0, \ldots, n-1}$, equation (11.39) still holds.

