Reality Check 11 Problem 3

We need to prove that assume that Z_1 and Z_2 are each multiplied componentwise by the entire windowing function h, and NMZ_1 and NMZ_2 in equation (11.38) are each multiplied componentwise by h, that equation (11.39) still holds.

Let
$$Z_1 = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$
 and $Z_2 = \begin{bmatrix} x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix}$. Let $h_j = \sqrt{2}sin\frac{(j-\frac{1}{2})\pi}{2n}$ for $j = 1, \dots, 2n$.

We multiply Z_1 and Z_2 componentwise by the entire windowing function h. Then we have

$$Z_{1} = \begin{bmatrix} h_{1}x_{1} \\ h_{2}x_{2} \\ h_{3}x_{3} \\ h_{4}x_{4} \end{bmatrix} \text{ and } Z_{2} = \begin{bmatrix} h_{1}x_{3} \\ h_{2}x_{4} \\ h_{3}x_{5} \\ h_{4}x_{6} \end{bmatrix}.$$

Then $NMZ_{1} = \begin{bmatrix} h_{1}x_{1} - Rh_{2}x_{2} \\ -Rh_{1}x_{1} + h_{2}x_{2} \\ h_{3}x_{3} + Rh_{4}x_{4} \\ Rh_{3}x_{3} + h_{4}x_{4} \end{bmatrix} \text{ and } NMZ_{2} = \begin{bmatrix} h_{1}x_{3} - Rh_{2}x_{4} \\ -Rh_{1}x_{3} + h_{2}x_{4} \\ h_{3}x_{5} + Rh_{4}x_{6} \\ Rh_{3}x_{5} + h_{4}x_{6} \end{bmatrix}.$

We multiply NMZ_1 and NMZ_2 componentwise by the entire windowing function h. Then

•

we have
$$NMZ_1 = \begin{bmatrix} h_1^2 x_1 - h_1 R h_2 x_2 \\ -h_2 R h_1 x_1 + h_2^2 x_2 \\ h_3^2 x_3 + h_3 R h_4 x_4 \\ h_4 R h_3 x_3 + h_4^2 x_4 \end{bmatrix}$$
 and $NMZ_2 = \begin{bmatrix} h_1^2 x_3 - h_1 R h_2 x_4 \\ -h_2 R h_1 x_3 + h_2^2 x_4 \\ h_3^2 x_5 + h_3 R h_4 x_6 \\ h_4 R h_3 x_5 + h_4^2 x_6 \end{bmatrix}$

We take

$$\frac{1}{2}(NMZ_1)_2 + \frac{1}{2}(NMZ_2)_0 = \frac{1}{2}(h_3^2x_3 + h_3Rh_4x_4) + \frac{1}{2}(h_1^2x_3 - h_1Rh_2x_4)$$
(1)

Observe that $Rh_i x_n = h_{2n-i+1} x'_n$, where x'_n is the inverse of x_n .

Then

•

$$\frac{1}{2}(h_3^2x_3 + h_3Rh_4x_4) + \frac{1}{2}(h_1^2x_3 - h_1Rh_2x_4) = \frac{1}{2}(h_3^2x_3 + h_3h_1x_4') + \frac{1}{2}(h_1^2x_3 - h_1h_3x_4') \\
= \frac{1}{2}x_3(h_3^2 + h_1^2)$$
(2)

Observe that

$$h_{3}^{2} + h_{1}^{2} = (\sqrt{2})^{2} \left(\left(\sin \frac{(1 - \frac{1}{2})\pi}{2n} \right)^{2} + \left(\sin \frac{(3 - \frac{1}{2})\pi}{2n} \right)^{2} \right)$$

$$= 2 \left(\left(\sin \frac{(1 - \frac{1}{2})\pi}{4} \right)^{2} + \left(\sin \frac{(1 - \frac{1}{2})\pi}{4} - \frac{\pi}{2} \right)^{2} \right)$$

$$= 2 \left(\left(\sin \frac{(1 - \frac{1}{2})\pi}{4} \right)^{2} + \left(\cos \frac{(1 - \frac{1}{2})\pi}{4} \right)^{2} \right)$$

$$= 2 * (1)$$

$$= 2.$$
(3)

Therefore, from equation (1), (2) and (3),

$$\frac{1}{2}(NMZ_1)_2 + \frac{1}{2}(NMZ_2)_0 = \frac{1}{2}(2 * x_3) = x_3$$

Apply the same logic for $\frac{1}{2}(NMZ_1)_3 + \frac{1}{2}(NMZ_2)_1$, we could obtain

$$\frac{1}{2}(NMZ_1)_3 + \frac{1}{2}(NMZ_2)_1 = x_4.$$

Thus,
$$\begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \frac{1}{2} (NMZ_1)_{n,\dots,2n-1} + \frac{1}{2} (NMZ_2)_{0,\dots,n-1}$$
, equation (11.39) still holds.