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9.1 Introduction 

Typically, when we talk about an ‘engineering approach’ to a given social system, we are referring to the 
transformation of the current state of that social system to some future state that meets needs, requirements, or goals. 
The ‘end product’ of social systems engineering is the transformed social system. But what if the social system is an 
innovation community and the ‘end product’ is innovation or discovery of new knowledge? In this case, we are no 
longer applying an established body of knowledge and methods to solve a given problem, but instead the social 
system is trying to expand the state of knowledge and generate inventions that are genuinely novel and distinctly 
beneficial. Given the fundamental uncertainties of innovation and discovery, we can’t reliably predict the end results 
or even the trajectory of innovation that will unfold.  

Further, we consider settings that are contested territory—i.e. there are rival world views regarding the 
nature of the problems and the nature of innovations need to address those problems. With two or more rival views 
(‘schools of thought’), there might be diverging innovation trajectories where each school of thought develops and 
exploits knowledge that fits that school but not rival schools. For an example of this in scientific knowledge, 
consider the rival theories of infectious disease in the early to mid 1800s: the Germ Theory versus the long-
established Miasma Theory (i.e. noxious air due to rotting organic matter, etc.). In this case, there was very little 
synergy or mutual benefit in their knowledge and methods. Microscopes, microbe cultures, and statistical 
epidemiology were all tools and methods that advanced Germ Theory but had no relevance to people who were 
interested in advancing Miasma Theory. The same divergence can happen in institutional innovation.  

Is it possible to apply an engineering approach to the process of institutional innovation? If so, how might it 
help promote innovation or influence the trajectory? Cyber security will be our motivating case, described in some 
detail in Section 16.2. Cyber security is one of a large class of complex socio-technical systems that are 
characterised by low probability/high cost loss events and interdependent risk. Policy makers have recognised since 
2003 that we do not have adequate institutions to manage cyber security and mitigate risk, and therefore they have 
called for ‘leap-ahead’ innovation, especially in incentive institutions and quantitative measurement systems. 
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Unfortunately the pace of institutional innovation has been slow—much slower than the pace of innovation in 
information technology and by threat agents.  
      Institutions are norms and ‘rules of the game’ that support and enable social life (Scott 2007; North 1990). They 
can be explicit or tacit, formal or informal. Chisholm (1995) gives these examples: legislatures, bureaucracies, 
corporations, marriage, insurance, wage labor, the vacation, academic tenure, and elections. An institutional 
innovation is a significant change or improvement in an institution such that it has novel functional or performance 
characteristics. An example is consumer credit scoring (Ryan, Trumbull, and Tufano 2011; Marron 2007). The 
incumbent institution had been in place for hundreds of years: credit managers exercising subjective judgment of 
each consumer’s ‘character’ and personal history. In its mature form, the institution of consumer credit scoring 
replaced personal judgment with algorithmic judgment, and replaced individual evaluation rules with population and 
portfolio evaluation rules. It was seen as legitimate, supported the values of consumerism and the information age, 
fit well with other institutions (e.g. credit reporting, financial risk management, etc.), and provided stability that 
enabled fast growth in both consumer credit and firms that depend on consumer credit.  

Compared to technological innovation, much less is known about institutional innovation. Based on 
historical cases, we can say that institutional innovation can happen intentionally and by design, unintentionally 
through collective or accidental processes, or by a combination of the two. Institutional entrepreneurs are actors aim 
to achieve innovation intentionally, but they rarely control or determine the entire process, in contrast to technology 
inventors or entrepreneurs. To succeed, any institutional innovation must fulfill these desiderata (Battilana, Leca and 
Boxenbaum 2009; Weik 2011; Leca, Battilana and Boxenbaum 2008; Scott 2007; North 1990):  
 

1. Functional: Does it work? Does it perform? 
2. Feasibility: Is there a viable evolutionary path from ‘here’ to ‘there’? 
3. Legitimacy: Does it flow from legitimate authorities, as seen by social actors?  
4. Cultural Fit: Does it fit and reinforce the society’s values? 
5. Coherence: Does it interrelate effectively with other institutions? 
6. Uncertainty Reduction: Does it make social life more predictable or less risky?  
7. Stability: Ultimately, does it make society more stable and resilient?  

 
Given that institutional entrepreneurs are relatively ‘blind’ regarding most feasible or desirable paths of 

innovation, how do they take meaningful action? The thesis of this chapter is that institutional entrepreneurs 
engineer the process rather than the end result. By this we mean that they apply an engineering approach to design, 
build and use knowledge artefacts – e.g. dictionaries, taxonomies, conceptual frameworks, formal procedures, digital 
information systems, tools, instruments, etc. – as cognitive and social scaffolding to support iterative refinement and 
development of partially developed ideas. Our hypothesis is that the rate of innovation progress will critically 
depend on the quality and nature of the knowledge artefacts at their disposal.  

The plan for the chapter is as follows. Section 16.2 describes the institutional innovation problem to be 
solved and describes the two schools of thought regarding how best to solve the problem. Section 16.3 presents a 
theoretical model of social processes of innovation, and explains why rival schools of thought arise in nascent fields 
where there is no established base of scientific knowledge or methods. Sections 16.4 and 16.4 present a 
computational model of innovation that will be used to illuminate the dynamics of social innovation aided by 
knowledge artefacts and to identify conditions under which one or the other rival school of thought is likely to 
prevail. The chapter closes with a discussion of the main findings and implications for institutional entrepreneurs.  

 
9.2 Can Cyber Security and Risk Be Quantified?  

Though there is no settled definition for ‘cyber security’, for our purposes we will define it as the confluence of 
information security, digital privacy, digital civil rights, digital (trusted) identity, digital (content) rights 
management, digital information protection, and the digital aspects of homeland and national security. Given the 
pervasive and vital role of information and communication technology (ICT) in modern life, cyber security affects 
every organization and government, plus a large and growing proportion of individuals worldwide.  

Cyber security is a vexing problem. Many problematic aspects of cyber security are sociological, economic, 
political, and cultural. This has been well known for over a decade, leading to many policy reports and research 
funding solicitations that call for research and innovation in these domains (National Science and Technology 
Council 2011; Department of Homeland Security 2011). Many institutional innovations have been discussed or 
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proposed, including some based on analogies from existing institutions in other domains1. Unfortunately, innovation 
progress to date has not been satisfactory.  

 
9.2.1  Schools of Thought  

With some oversimplification, we can identify two broad schools of thought regarding institutional innovation in 
cyber security: 1) the ‘Quants’ who believe that cyber security and risk can and should be quantified in ways similar 
to other domains involving socioeconomic-technical risk (Geer, Soo Hoo and Jaquith  2003); and 2) the ‘Non-quants’ 
who believe that cyber security and risk either cannot be quantified or that there is no net benefit compared to 
alternate methods of guiding or structuring action, decisions, rules, etc. Examples of non-quantitative methods 
include checklists, audit questions and procedures, policy and practice guidelines, and situational professional 
judgment (Langner and Pederson 2013). There is also third school of thought we might call ‘Hybrid’ in that they 
believe some degree of quantification can be usefully combined with non-quantitative approaches. 

The degree of difference between these schools of thought varies by what is being quantified and how that 
quantification is used in analysis and decision-making. Where they differ least is in operational security – e.g. the 
uptime of a network firewall, the false positive rate for spam filters, etc. Where they differ most is on risk 
quantification, i.e. can we measure risk in economic units in a way that will guide investment decisions or serve as 
foundation for cyber insurance or other incentive contracts? We will focus our attention on risk quantification 
because it makes vivid the contest between these schools of thought. The quantification of cyber security and risk is 
an intellectual and social domain where control and influence is contested by interest groups. Focusing on risk 
quantification, examples of interest groups associated with the Quant school include the Society of Information Risk 
Analysts and companies who specialize in measuring or modelling risk. Examples of Non-quant interest groups 
include some security consultants (Langner and Pederson 2013) and most regulators2 . Examples of ‘Hybrid’ interest 
groups include most large information security companies, the US National Institute of Standards and Technologies 
(NIST) in the Department of Commerce, and ISACA, a professional organization formerly known as Information 
Systems Audit and Control Association. Regarding evidence of innovation success and adoption, the Quants have 
been struggling for more than a decade. Verendel (2009) presents a comprehensive survey of academic research up 
to that time, and finds that quantified cyber security is still a weakly supported hypothesis. As of 2015, no one can 
yet say that cyber security risk can be effectively and efficiently quantified. Even so, there has been some progress 
in some areas and growth in the number of people and organizations actively working on new ways to quantify risk.  

The Non-quants have frequently pointed to this lack of success as evidence that quantified risk is 
impossible in principle (i.e. in the same way that perpetual motion machines impossible) or, at least, too complicated 
and expensive to invest in. Additional negative arguments come from the Financial Crisis of 2008, where 
sophisticated/complicated risk models have been widely blamed as one of the aggravating factors. However, the 
most frequent and fundamental argument against quantified cyber security risk is based on the complicating factor 
mentioned above – intelligent, adaptive adversaries. Though taken from a report on risk analysis for physical 
security of nuclear weapons complexes and not cyber security, this quote nicely summarizes the argument against 
quantified risk in cyber security, too:  

“The committee concluded that the solution to balancing cost, security, and operations at facilities in the 
nuclear weapons complex is not to assess security risks more quantitatively or more precisely. This is 
primarily because there is no comprehensive analytical basis for defining the attack strategies that a 
malicious, creative, and deliberate adversary might employ or the probabilities associated with them.” 
[emphasis added] (National Research Council 2011, p. 1)  
 

The Quants respond to this negative argument in a variety of ways, including a claim that lack of progress or 
complete success over ten years is not sufficient evidence that it can’t be successful given enough time and effort. 
To support this claim, references are made to historical cases of the development and adoption of quantitative 
methods in similar domains.  
 
9.3 Social Processes of Innovation in Pre-paradigmatic Fields       
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 E.g. ‘Cyber CDC’: Center for Disease Control; ‘Cyber UL’: Underwriters Laboratory; and ‘Cyber NTSB’: 
National Transportation Safety Board. 
2 In the US, one example of a Non-quant regulator is the Federal Financial Institutions Examination Council. 
https://www.ffiec.gov/cybersecurity.htm  
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Generalizing from the cyber security case, we now turn our attention to social processes of innovation in nascent 
fields – those that Thomas Kuhn called ‘pre-paradigmatic’. In Kuhn’s model of scientific revolutions, an established 
field of science is characterised by a ‘paradigm’, which is an “entire constellation of beliefs, values, techniques, and 
so on shared by members of a given community” (Kuhn 1970, p. 175). Established paradigms feature exemplars that 
serve as ideal models or templates to be emulated by subsequent research. For example, Newton’s Laws of Motion 
served as exemplars in Physics until the early 20th century. In contrast, ‘pre-paradigmatic’ fields are those where 
there are no established, widely accepted paradigms and, therefore, lack of clarity over what constitutes ‘good’ or 
‘normal’ scientific research. Without the normative influence of paradigms, the discourse and debate can be 
unproductive. Kuhn describes it this way: “the pre-paradigm period, in particular, is regularly marked by frequent 
and deep debates over legitimate methods, problems, and standards of solution, though these serve rather to define 
schools [of thought] than to produce agreement” (Kuhn 1970, p. 47-48). Even though quantified cyber security and 
risk is not purely about science or scientific research, we can characterize it as being in a ‘pre-paradigmatic’ state of 
development.  
 
9.3.1 Epistemic and Ontological Rivalry 

Recall that we said that institutional entrepreneurs aim to achieve innovation on purpose, not just by chance events 
or through collective processes of change. Furthermore, they aim to achieve innovation in a particular direction, not 
just anywhere. To achieve this, they need a way of thinking about problems and solutions that enables progress. 
They also need to have a model of reality that enables progress. In philosophical language, we can say that 
institutional entrepreneurs need both an epistemology and an ontology that are beneficial and instrumental to their 
teleological (i.e. goal-driven) approach to innovation. In pre-paradigmatic fields such as quantified cyber security 
and risk, the schools of thought often feature rival or even mutually exclusive epistemologies and ontologies.  
In the case of quantified cyber security and risk, the two rivalrous schools of thought— Quants vs. Non-quants—
differ sharply over the ontology of cyber security and risk, i.e. what is real and what is not real. For example, some 
Non-quants argue that quantifying cyber risk is impossible in principle because of the non-reality of hypothetical or 
counterfactual events: “How is it possible, they say, to quantify what didn’t happen?” (Borg 2009, p. 107). There is 
considerable disagreement over the ontological status of ‘intangible’ losses such as reputation. Also there is 
ontological debate carried over from Mathematics and Statistics concerning the reality or non-reality of subjectivist 
interpretations of probability. There is even dispute over the methods or possibility of ever resolving these 
ontological debates. For example, many Quants are in favor of computer simulations as tools to explore 
counterfactual or hypothetical situations, while many Non-quants argue against the validity of computer simulations 
as evidence in ontological arguments, given the intelligent, adaptive, creative, and malicious adversaries.  

Likewise, there is sharp disagreement between Quants and Non-quants regarding the best way to think 
about cyber security and risk. Quants argue that quantification and quantitative analysis can be a powerful tool to 
make better decisions and achieve better outcomes, much in the same way that Statistical Process Control and Total 
Quality Management has helped revolutionize product and service quality across many industries from the 1980s to 
present. Some Non-quants counter with the argument that attempting to quantify abstract and non-real entities such 
as ‘risk’ is not only a waste of time and effort, but that it leads to worse outcomes through “analysis paralysis” or 
mistaken efforts to “manage” risk (Langner and Pederson 2013).  

From the perspective of Sociology of Innovation, we are less concerned with the ultimate truth of any of 
these positions than we are with their functional and instrumental effects, i.e. are they effective in helping the actors 
to achieve progress? This leads to the next topic: what knowledge artefacts do institutional entrepreneurs develop 
and use in during the innovation process and how do they promote progress?  

 
9.3.2  Knowledge Artefacts 

A knowledge artefact is something created by actors informed by their knowledge and makes that knowledge useful 
or productive. A knowledge artefact can be a thing (i.e. a message, a book, a tool, a design, etc.) or a realizable 
process (i.e. a training process, a production process, a communication process, and information processing process, 
a utilization process, etc.). Thus, it is through knowledge artefacts that people create, transform, and use knowledge 
for practical aims. This is not meant to reify knowledge. Instead, knowledge artefacts can be seen as the tangible, 
observable instantiations of knowledge, much like a circle drawn on a sheet of paper is an instantiation of the 
Platonic idea of ‘circle’. Boisot (1999) uses a similar term—‘knowledge assets’—which he defines as “knowledge 
that yields an appropriable stream of benefits over time” (p 155). However, this definition presumes that we can 
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point to, instantiate, define or specify the knowledge in question, which can be problematic. Instead, we prefer to use 
the term ‘knowledge artefact’ to highlight the point that knowledge artefacts are products of human intention and 
effort and that they can be observed and instantiated, at least in principle. We retain Boisot’s notion of “appropriable 
stream of benefits over time” through the emphasis on instrumentality.  

Boisot (1995) developed the Information Space (I-Space) framework for characterizing knowledge and 
knowledge artefacts along three dimensions: 1) Codification, 2) Abstraction, and 3) Diffusion. The main purpose of 
the I-Space framework is to study the transformation of knowledge through life cycles of discovery, learning, and 
diffusion. Our focus will be on the first two dimensions. The Codification dimension evaluates knowledge in terms 
its degree of compression or abbreviation within some coding scheme such as categories, taxonomies, variables, 
conditions, relations, and so on. For any given knowledge, expressing it in a highly codified will be very compressed 
and economical. In contrast, uncodified knowledge may take many more words to express, or may even be only 
learned through experience or example (i.e. ‘tacit knowledge’). The Abstraction dimension evaluates knowledge in 
terms of the inferences you can draw from it, and the degree of generality regarding inferences, ranging from 
concrete (highly specific and contextual) to abstract (highly general and free of context).  

 
9.3.3 Implications of Theory 

Before moving to next section, we can summarize the implications of these theories in relation to our case and also 
to the general study of institutional innovation in pre-paradigmatic fields. First, institutional entrepreneurs in rival 
schools of thought are engaged in a contest between each other and also with Nature regarding who has the best way 
to think about problems and solutions (epistemology) and whose model of reality is most effective (ontology). While 
this contest plays out in many ways that are mostly or purely social, there is also a contest in the practical world of 
realizing inventions and innovation. It is not enough to talk a good game or convince many others. Eventually, some 
inventions work and others do not. Those that work and can be used and understood by the masses will get widely 
adopted. But institutional entrepreneurs often start in a fog of uncertainty and ignorance, even if some insights, 
intuitions, role models, or goals guide them. Therefore, they create and use knowledge artefacts that have several 
uses at once. They solve some immediate problem while providing some foundation or platform for further 
invention or knowledge creation/transformation. In this way, knowledge artefacts can serve as cognitive scaffolding 
(Lane and Maxfield 2005) to help the institutional entrepreneurs make progress in the face of ignorance and 
uncertainty. We can usefully characterize their knowledge artefacts along the dimensions of Codification and 
Abstraction. Boisot’s Social Learning Cycle (SLC) theory predicts that insights that trigger innovation cycles start 
out as tacit, hard-to-explain and concrete/specific. SLC predicts that knowledge artefacts will be developed and 
unused in a specific sequence: first they will be increasingly codified (i.e. through formal definitions, taxonomies, 
measurement systems), and then they will be increasingly generalised thorough more abstract sign systems, relation 
systems, and inference systems.  

In the case of quantified cyber security and risk, we can position specific knowledge artefacts in the I-
Space, shown in this table:  

 
Artefact  School of Thought Codification Abstraction 
1) Ad hoc security metrics  Quant Low Low 
2) NIST Cyber Security 
Framework (CSF)  

Non-quant Moderate Moderate-Low 

3) Risk analysis software  Quant High Moderate-High 
Table 9.1 List of example knowledge artifacts and their position in the I-space 

 
Here is the rationale, starting with 1) Ad hoc security metrics. Many medium-sized and large companies 

have a dedicated information security department and many of these collect and report ‘security metrics’ to 
company executives in regularly scheduled reports. Evaluated as artefacts for knowledge relating to quantified 
security and risk, most of these reports are low in Codification because they do not follow any well-defined 
taxonomy for what should be measured and reported. Also they are relatively low in Abstraction because the rules or 
logic as to how the different metrics might be combined or interpreted together is mostly in the form of heuristics. 
Regarding 2) US National Institute of Standards and Technology (NIST) Cyber Security Framework (CSF), we can 
locate it as moderate in Codification because it does attempt to define key phenomena and conditions in cyber 
security and risk, but in itself it does not attempt to quantify security or risk. It is moderately low in Abstraction 
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since it mostly points to classes of phenomena and does not embody any specific theory or knowledge as to how 
security is achieved or risk reduced through the implementation of the ‘best practices’. Finally, regarding 3) Risk 
analysis software, there are several commercial software products and services that quantify some aspect of cyber 
security and risk. In terms of the I-Space we can locate them as high in Codification, certainly much higher than the 
NIST-CSF, and moderately high in Abstraction, since they embody formalised knowledge regarding how 
quantitative inferences are to be drawn from evidence (i.e. ‘ground-truth data’).  

From the point of view of the SLC, we can see that there are (at least) two innovation and learning cycles at 
work. The Non-quant learning cycle is represented by the NISTCSF, and is explicitly aimed to be a viable stage of 
refinement, performance improvement, and usability that can support wide spread diffusion and adoption. The 
Quant learning cycle is aiming for a much higher goal in terms of Codification and Abstraction, and thus wide 
spread diffusion is not yet happening, or maybe it is just beginning.  

In summary, the contest between rival schools of thought in a pre-paradigmatic field such as cyber security 
can be viewed as different navigational strategies through I-Space. The Non-quant school is aiming for a lower 
region in I-Space (i.e. less Codification, less Abstraction), betting that this will be more feasible and will achieve 
practical success and wider adoption, compared to the higher road of the Quants. Conversely, the Quants are betting 
that the high road (i.e. more Codification, more Abstraction), though more difficult to traverse, will ultimately lead 
to more compelling results – better security, lower risk, and better use of societies resources. Note that the I-Space 
framework and SLC theory do not represent the space of possible inventions because they do not account for the 
specific traits, characteristics, or dependencies of each invention. Therefore, I-Space and SLC not facilitate analysis 
of how difficult it may be to go from any point ‘A’ to any other point ‘B’ in the space of possible inventions. We 
address this in a computational model, presented in the next section.  
 
9.4 A Computational Model of Innovation 

In this section our goal is to demonstrate how computational modelling can be used to investigate institutional 
innovation in contested territory, and the effects of knowledge artefacts. In the specific case of quantified cyber 
security, we don’t yet know who will win: the Quants or the Non-quants. Given the time span of institutional 
innovation, we may not know for many years. By using computer simulation, we can examine a generalised abstract 
model of innovation and perhaps learn more about the conditions under which one or the other rival school of 
thought is likely to prevail.  

To model the phenomena of interest, we need a way to model the space of possible inventions. We also 
need a way to model the relative difficulty of achieving each invention, both with respect to making the final 
discoveries or solving the final problems, but also to the inventions that came before (i.e. precursors and 
dependencies). Finally, we need a way to model the relative effects of knowledge artefacts as characterised by I-
Space.  

 
 

9.4.1 Base Model: Innovation as Percolation 

     To meet these requirements in a parsimonious way, we chose to develop a percolation model of innovation based 
on the model presented in Silverberg and Verspagen (2005) (“S&V”). ‘Percolation’ is the phenomena of fluid 
moving or filtering through porous materials. Percolation modelling originates in the fields of Physics, Chemistry 
and Materials Science, and has been abstracted in Mathematics as Percolation Theory. In the model of Silverberg 
and Verspagen (2005) , the ‘porous material’ is taken to represent the space of possible inventions, the ‘fluid’ is 
taken to represent the advancing front of innovation (‘best practice frontier’) in that space, and the local dynamics of 
percolation are taken to represent the local dynamics of innovation. We adopt the S&V’s term ‘technology’ to mean 
any solution, method, process, procedure, tool, or machine, and also the term ‘R&D’ means inventive activity, 
whether formal or informal. S&V use the term ‘firms’ but we prefer the more general and abstract term ‘agents’ to 
refer to localised bundles of inventive activity, be it a person, a team of people, a firm, or some mixture.  

For readers not familiar with agent-based modelling (ABM), here is a basic overview. An ABM consists of 
an environment and a set of agents that operate and interact within that environment. An ‘agent’ is a simple program 
that has a set of behaviour rules, a memory (i.e. internal state), a position within the environment, and runs once 
each time step. Generally, all agents run the same program, with the only difference being the agent’s internal state, 
it’s location, and the state of the local environment. The following is pseudo-code for a generic agent (single step):  
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Figure 9.1 Generic agent algorithm for a single time step. 

 
In our model, the ’agents’ represent R&D effort in a particular technology type (column). There is one 

agent per technology type. Each possible technology is a cells connected in a discrete two dimensional lattice3 (i.e. 
grid, see Figure 9.2). Each cell in the lattice has horizontal neighbors that are very similar and interrelated, and 
vertical neighbors that are slightly more or less sophisticated. Overall, the neighborhood structure reflects 
technological interrelatedness. Considering the horizontal dimension, each column represents a ‘technology type’, 
all sorted to the most similar types are next to each other. Considering the vertical dimension, each row represents a 
degree of sophistication, from the minimal ‘baseline’ at the bottom, rising monotonically without bound in principle, 
but limited to a maximum size to fit constraints of computer processing. The lattice is connected with a periodic 
boundary the horizontal dimension so that it has a cylindrical topology. This allows every technology type (column) 
to have exactly two neighbors and eliminates horizontal boundary effects in the model.  

Formally, we define a lattice A with h columns and periodic boundary in the horizontal dimension (i.e. 
cylinder topology), v rows, and h × v = N cells indexed by i and j, 0 < i < h and 0 < i < v. Parameters h > 0, v > 0 are 
set by the experimenter to be large enough so that the boundaries of the lattice do not influence the results involving 
rates of innovation and distribution of sizes of innovation. Each lattice cell ai,j can be in one of four states: 0 = 
impossible (black); 1 = possible but not yet discovered (white); 2 = discovered but not yet viable (light grey); and 3 
= discovered and viable (mid-grey).  

Through R&D activity of agents, some cells near the baseline are discovered and therefore move from state 
1 to state 2. These newly discovered cells become the ‘adjacent possible’ (Kauffman 1996) meaning they are the 
next candidates for becoming viable technologies (state 3). Any discovered cell (state 2) becomes viable (state 3) 
when there is a contiguous Manhattan4 path from it to the baseline. Sites initialised as impossible (state 0) can never 
be converted into any other state.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 A 2D lattice is chosen for simplicity, but also Silverberg & Verspagen (2005) say that they believe their main 
results will hold for more general topologies.  
4 A ‘Manhattan’ path is a series of up-or-down and left-or-right steps. This implies a Von Neumann neighborhood 
for each cell, i.e. only the cells reachable with Manhattan distance of n steps. An alternative definition for path is 
‘chessboard distance’, which include any combination of up-or-down, left-or-right, or diagonal steps. This would 
imply a Moore neighborhood for each cell. If we switch to chessboard distance and Moore neighbor- hood, this 
provides more connectivity between cells and increases the number of possible-but-not yet-discovered technologies 
(state = 1, white) to explore. The main effect is to increase the overall rate of innovation because ‘impossible’ 
regions are more easily traversed. However, the qualitative results are not different from current model with 
Manhattan path and Von Neumann neighborhood.  
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Figure 9.2 The 2D lattice of ‘technologies’ in our percolation model of innovation after 1,200 simulation steps.  

One region in the lattice around the best-practice frontier (BPF) is magnified. See Figure 9.3 for details.  
Grey scale code: black = impossible, white = possible but not yet discovered; very dark grey = possible,  

but not reachable; lightest grey = discovered but not yet viable; medium-light grey = discovered and viable; 
medium-dark grey = discovered, viable, and on best-practice frontier (BPF). Medium-dark grey cells are the loci of 

R&D. The two horizontal lines show the “average” level of innovation (i.e. BPF) across all ‘technologies’ (columns).  
The dark line is the average (i.e. mean) BPF, while the dark grey line is the mean + standard deviation of the BPF.  

The probability that any cell will be initialised in state = 1 (possible) rather than state = 0 (impossible) is 
given by parameter p. If all paths from a given possible cell to the baseline are blocked by impossible cells, then we 
say that these cells are not accessible. There is a critical value for p ≈ 0.6. Much above 0.6 and nearly every possible 
cell becomes accessible. Much below 0.6 and nearly every possible cell is not accessible. When 0.6 ≤ p ≤ 0.65, each 
random realization produces a different complex pattern of accessibility. For all of our simulation runs, we set p = 
0.62.  

 
Figure 9.3 Detailed view of the magnified region in Figure 9.2.  

Every technology type (column) has an individual technology (cell) that is the most advanced (highest in 
the column), and this cell has BPF = true. All other cells have BPF = false. All R&D activity take place in 
technologies (cells) around the best practice frontier (BPF), i.e. BPF = true. BPF moves vertically in each column as 
R&D is successful. All R&D takes place within the search radius around the technologies (cells) at the BPF (Figure 
9.5). R&D activity consists of each agent expending a budgeted amount of effort to ‘discover’ cells that were 
previously ‘undiscovered’ within their search radius. This is realised through probability of discovery that is the 
search effort e divided by the size of the search area. (In our simulation runs, e = 0.5 and radius = 4, which yields a 
search area of 40 technologies (cells) and a probability of discovery p = 0.0125 per R&D attempt.) Thus, in the base 
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model of S&V, an ‘ R&D attempt’ is realised as a random draw from (0, 1), and if this is less than the probability of 
discovery, the technology is ‘discovered’. Here is pseudo-code for this algorithm:  

 

 
Figure 9.4 Algorithm for R&D activity in a single time step 

 
After all agents have executed this algorithm, an Environment program runs to identify newly discovered 

technologies (cells with state = 2) that are now viable. If any are found, those cells have their state is set to 3. The 
best practice frontier (BPF) is adjusted by setting BPF = true for highest viable cell in each column. Agents are 
moved to the BPF cell in their column.  

The ‘size’ of any innovation is the number of rows between the newly discovered technology and the 
previous best-practice frontier technology in that column. In other words, large innovations make a big ‘leap’ in the 
vertical dimension, while small innovations might only move up one cell.  

 
9.4.2  Full Model: Innovation with Knowledge Artefacts 

We made several extensions to the base model to simulate the effects5 of knowledge artefacts and learning. The 
effect of knowledge artefacts is to improve the effectiveness of R&D, but only if the knowledge appropriately 
matches the domain, i.e. effectiveness is proportional to their fidelity relative to the Nature and also relative to the 
social and technical context of innovation.  

In our extension, there is only one knowledge artefact available to all agents with parameters set at 
initialization time corresponding to their characteristics in I-Space: Codification c ∈ (0 . . . 5) and Abstraction a ∈ 
(0 . . . 5). For simplicity, these parameters take integer values. We model the effects of knowledge artefacts by 
through a sub-model of the R&D activity: a random draw from multiple balls-in-urns instead of the uniform random 
number draw in the base model. Each undiscovered technology (cell) starts the simulation with a large but finite 
number of ‘balls’ (N = 1, 000), which are possible solutions that are either ‘successful’ (13 balls) or ‘unsuccessful’ 
(987 balls). These balls are distributed in a number of urns determined by the Codification parameter c. If c = 0, then 
all the balls are in a single urn, and this is equivalent of blind ‘trial and error’ search. If c = 5 (maximum value), then 
the balls are allocated to 32 urns, with all the ‘successful’ balls in one urn (13 out of 32 balls in that ‘lucky urn’). 
The effect of Abstraction is that it increases the probability that the agent will select the ‘lucky urn’. If a given agent 
is aided by a high fidelity knowledge artefact with high abstraction, then they will most likely select the ‘lucky’ urn 
containing all the ‘successful’ balls. But if either the Fidelity parameter f ∈ (0 . . . 1) is zero or Abstraction a = 0, 
then the agent will be choosing among the 32 urns with uniform probability, which again is equivalent to blind ‘trial 
and error’ search. While both c and a are fixed for the duration of a simulation run, f can change if the Learning rate 
parameter l ∈ (−1 . . . 1) is not zero. If l > 0, then Fidelity f increases during the run as a function of the height of 
the BPF, and conversely if l < 0, then Fidelity f decreases during the run as a function of the height of the BPF. This 
allows us to simulate scenarios where a knowledge artefact is initially appropriate and effective in guiding 
innovation but decreases in appropriateness and effectiveness as technologies get more advanced/sophisticated. 
  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 For simplicity, we are only simulating the effects of knowledge artefacts with different I-Space characteristics 
rather than the specific contents or traits of the knowledge artefacts themselves.  
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9.4.3 Experiment 

We design three experimental treatments that, in an abstract way, represent the different schools of thought (Quant 
vs. Non-quant) and the differences in the knowledge artefacts they are attempting to create and use. Recall that the 
Non-quants are building and using knowledge artefacts with less Codification and less Abstraction, believing that 
this will be more feasible and will achieve practical success soon and therefore wide adoption soon, too. Conversely, 
the Quants are developing and using knowledge artefacts with higher Codification and higher Abstraction will be 
more successful to promote innovation, though progress may be more difficult to achieve initially. We do not know 
whether the Quants will learn rapidly or slowly (i.e. adapt and refine their knowledge artefacts), and therefore we 
will define separate experimental treatments for each scenario. We add ‘control’ treatment with no knowledge 
artefact, resulting in four treatments total: 

1. Trial-and-error with no knowledge artefact   
2. Non-quant with initial knowledge artefact parameters: Codification = 2, Abstraction  = 2, Fidelity = 1.0, 

and Learning Rate = 0.0   
3. Quant – slow learning with initial knowledge artefact parameters: Codification = 4, Abstraction = 4, 

Fidelity = 0.2, and Learning Rate = 0.2   
4. Quant – fast learning with initial knowledge artefact parameters: Codification = 4, Abstraction = 4, 

Fidelity = 0.0, and Learning Rate = 1.0   
 

Figure 9.5 shows a single run and series of screen shots at different time steps, along with a time series 
chart of the innovation rate (i.e. change in BPF per time step). Figure 9.6 compares two experimental treatments on 
the same initial lattice configuration. 
 

 
Figure 9.5 A single run at different time steps, with a time series chart showing  

Innovation Rate for Mean BPF (black horizontal line in b) and c)) and Upper BPF  
(mean + standard deviation, dark grey horizontal line in b) and c) ). 
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Figure 9.6 Screen shots of two treatments tested on the same lattice configuration: a) Quant–slow learning vs. b) 

Quant–fast learning. In b), the Innovation Rate increases as Fidelity increases due to learning. Therefore, even 
though it started out slower, the Quant– fast learning treatment wins this innovation race. (The black horizontal lines 

are mean BPF. The dark grey horizontal lines are Upper BPF = mean + standard deviation.) 
 

Each of the four experimental treatments were tested with the same random initial lattices, ten in total, with 
twenty runs for each lattice condition using different random seeds for each run. Each run ended when the best-
practice frontier (BPF) reached the highest row in the lattice. Figures 9.7a and b show violin plots for the experiment 
results for two dependent variables: 1) Innovation Rate at the end of the run and 2) Time to Complete a run (i.e. the 
BPF reaches the top of the lattice).  
 

      
Figure 9.7 Violin plot of experiment results. Experiment results for four treatments,  

each tested with 10 random lattice initial conditions, 20 runs per lattice condition.  
a) Innovation rate at the end of simulation run; b) Time to complete a simulation run. 

 
Even without statistical hypothesis testing, we can make several inferences from the results shown in 

Figures 9.7a and b. As we might expect, the ‘control’ treatment of Trial-and-error R&D had the lowest innovation 
rate at the end of each run and the slowest time to complete a run (i.e. the BPF reaches the top row in the lattice). 
Notice that the distribution of Time to Complete for Trial-and-error is not symmetrical; instead it is skewed with 
some runs taking much longer than average. In comparison, the distributions for the other treatments are much less 
skewed and more symmetrical. From this we can infer that blind Trial-and-error R&D is more prone to getting 
‘stuck’ on difficult landscapes, compared to the other treatments that have the benefit of knowledge artefacts to 
improve their success rate.  



12	  
	  

The second result is that the Non-quant treatment is noticeably better than Trial-and-error, both in 
Innovation Rate and Time to Complete, but not by a large margin. Thus, even though the Fidelity = 1.0 (i.e. the 
knowledge artefact was an ideal match to Nature), the relatively low Codification and Abstraction characteristics 
provide only modest improvement in innovation rates. 

The third result is that the relative success of the Quant approach depends critically on the learning rate. 
With ‘slow learning’ (initial Fidelity = 0.2, Learning Rate = 0.2), the Quant innovation results are only slightly 
better than the Non-quant results, both in final Innovation Rate and in Time to Complete. However, with ‘fast 
learning’ (initial Fidelity = 0, Learning Rate = 1.0) the Quant treatment wins the race by a wide margin, both in final 
Innovation Rate and in Time to Complete. 

 
9.5 Discussion 

 If we frame the contest between the Quant and Non-quant schools as an innovation race (perhaps on a slippery 
surface) then we might draw an analogy to the parable of the Tortoise and the Hare. The Non-quants are adopting a 
Tortoise strategy toward knowledge – slow and steady – mostly because they believe that no more aggressive 
strategy is feasible given the state of Nature. The Quants are adopting a Hare strategy toward knowledge – start very 
slow and then rapidly accelerating to the finish – mostly because they believe that this will ultimately achieve cyber 
security outcomes that are much better than less ambitious methods. Though quite abstract and stylised, controlled 
experiments with our computational model have allowed us to explore the circumstances where either school will 
win the innovation race, if any. 

The experiment results show that the likelihood of the Quant school winning is critically dependent on the 
learning rate, i.e. the rate of improvement in how well its knowledge artefacts fit Nature and are therefore effective 
in facilitating innovation success. If the learning rate is slow, then even if the Quant school achieves slightly higher 
innovation rates, the Non-quant school might still win the race due to substantial social advantages. It appears that 
viability Quant school can only be assured if it achieves a high learning rate and becomes demonstrably effective at 
achieving innovation. 

Therefore, it is imperative that institutional entrepreneurs within the Quant school should adopt practices 
that accelerate learning regarding their knowledge artefacts. While this advice could apply to any professional 
community, the risky approach of the Quant school means they have more to gain and more to lose, compared to the 
more conservative approach of the Non-quant school. 

Of course, there are limitations to our approach. Our computational model is both abstract and simplified. 
Therefore it excludes many important factors and dynamics that might ultimately decide who wins, or if there is a 
winner at all. In a more complete analysis, we would like to assess the scientific merit of each of the schools of 
thought, i.e. their explanatory coherence (Thagard 1992). We would also want to analyse social dynamics such as 
legitimization (Nicholls 2010), power struggles (Aronowitz 1988), rivalry over discourse frames (Werner and 
Cornelissen 2014; Torgersen and Schmidt 2013; Hoffman and Ventresca 1999), and structuration (Giddens 1984). 
Finally, it would be important to analyse the institutional structure of R&D associated with each school of thought. 
This holistic analysis would give us a rich picture of the dynamics of institutional innovation in a contested field like 
quantified cyber security. It would shine light on the challenges and opportunities faced by institutional 
entrepreneurs who are trying to accelerate innovation in particular directions. As illustrated in this chapter, 
computationally modelling can complement other methods of analysis and can make unique contributions to 
research. 
 
Acknowledgements 

This chapter is based upon work supported by the National Science Foundation under Grant No. CMMI-1400466. 
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and 
do not necessarily reflect the views of the National Science Foundation. 
 
  



13	  
	  

References 

1. Aronowitz, S 1988, Science As Power: Discourse and Ideology in Modern Society, University of 
Minnesota Press, Minneapolis, MN.  

2. Battilana, J, Leca, B & Boxenbaum, E 2009, ‘How actors change institutions: Towards a theory of 
institutional entrepreneurship’, The Academy of Management Annals, vol. 3, no. 1, p. 65–107.  

3. Boisot, M 1995, Information Space: A Framework For Learning in Organizations, Institutions and Culture, 
Routledge, London, UK.  

4. Boisot, MH 1999, Knowledge Assets: Securing Competitive Advantage in the Information Economy, 
Oxford University Press, Oxford, UK.  

5. Borg, S 2009, ‘The Economics of Loss’, in C. W Axelrod, J. L Bayuk & D Schutzer (eds), Enterprise 
Information Security and Privacy, Artech House, Norwood, MA, p. 103–114.  

6. Chisholm, D 1995, ‘Problem solving and institutional design’, Journal of Public Administration Research 
and Theory, vol. 5, no. 4, p. 451–492.  

7. Department of Homeland Security 2011, ‘Cyber Security Research and Development Broad Agency 
Annoucement (BAA) 11-02’, Solicitation, US Department of Homeland Security.  

8. Geer, D, Soo Hoo, K & Jaquith, A 2003, ‘Information security: why the future belongs to the quants’, IEEE 
Security Privacy, vol. 1, no. 4, p. 24 – 32.  

9. Giddens, A 1984, The Constitution of Society: Outline of the Theory of Structuration, University of 
California Press, Oakland, CA.  

10. Hoffman, AJ & Ventresca, MJ 1999, ‘The Institutional Framing of Policy Debates Economics Versus the 
Environment’, American Behavioral Scientist, vol. 42, no. 8, p. 1368–1392.  

11. Kauffman, S 1996, At Home in the Universe: The Search for the Laws of Self-Organization and Complexity, 
Oxford University Press, Oxford, UK.  

12. Kuhn, TS 1970, The Structure of Scientific Revolutions, University of Chicago Press, Chicago, IL.  
13. Lane, DA & Maxfield, RR 2005, ‘Ontological uncertainty and innovation’, Journal of Evolutionary 

Economics, vol. 15, no. 1, p. 3–50.  
14. Langner, R & Pederson, P 2013, ‘Bound to Fail: Why Cyber Security Risk Cannot Be “Managed” Away’, 

Paper, The Brookings Institution, Washington, D.C.  
15. Leca, B, Battilana, J, Boxenbaum, E & School, HB 2008, ‘Agency and institutions: A review of 

institutional entrepreneurship’, Working Paper Volume 8, Issue 96, Harvard Business School, Cambridge, 
MA.  

16. Marron, D 2007, “Lending by numbers’: credit scoring and the constitution of risk within American 
consumer credit’, Economy and Society, vol. 36, no. 1, p. 103–133.  

17. National Research Council 2011, Understanding and Managing Risk in Security Systems for the DOE 
Nuclear Weapons Complex, National Academies Press, Washington, D.C.  

18. National Science and Technology Council 2011, ‘Trustworthy Cyberspace: Strategic Plan for The Federal 
Cybersecurity Research and Development Program’, Official policy, United States Government, Executive 
Office of the President National Science and Technology Council.  

19. Nicholls, A 2010, ‘The Legitimacy of Social Entrepreneurship: Reflexive Isomorphism in a Pre-
Paradigmatic Field’, Entrepreneurship Theory and Practice, vol. 34, no. 4, p. 611–633.  

20. North, DC 1990, Institutions, Institutional Change and Economic Performance, Cambridge University 
Press, Cambridge, UK.  

21. Ryan, A, Trumbull, G & Tufano, P 2011, ‘A Brief Postwar History of U.S. Consumer Finance’, Business 
History Review, vol. 85, no. 03, p. 461–498.  

22. Scott, WR 2007, Institutions and Organizations: Ideas and Interests, 3rd edn, Sage Publications, Inc., 
Thousand Oaks, CA.  



14	  
	  

23. Silverberg, G & Verspagen, B 2005, ‘A percolation model of innovation in complex technology spaces’, 
Journal of Economic Dynamics and Control, vol. 29, no. 1–2, p. 225–244.  

24. Thagard, P 1992, Conceptual Revolutions, Princeton University Press, Princeton, NJ.  
25. Torgersen, H & Schmidt, M 2013, ‘Frames and comparators: How might a debate on synthetic biology 

evolve?’, Futures, vol. 48, p. 44–54.  
26. Verendel, V 2009, ‘Quantified security is a weak hypothesis: a critical survey of results and assumptions’, 

Proceedings of the 2009 New Security Paradigms Workshop, NSPW ’09, ACM, New York, NY, p. 37 – 50.  
27. Weik, E 2011, ‘Institutional Entrepreneurship and Agency’, Journal for the Theory of Social Behaviour, 

vol. 41, no. 4, p. 466–481.  
28. Werner, MD & Cornelissen, JP 2014, ‘Framing the change: Switching and blending frames and their role in 

instigating institutional change’, Organization Studies, vol. 35, no. 10, p. 1449–1472.   


